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Abstract

A macroscopic model describing nonlinear viscoelastic waves is derived in Eulerian for-

mulation, through the introduction of relaxation tensors. In the limiting case of small de-

formations, the governing equations recover those of the linear Zener model with memory

variables, which is widely used in acoustics. The structure of the relaxation terms ensures

that the model is dissipative. The chosen family of specific internal energies ensures also that

the model is unconditionally hyperbolic. Numerical examples are proposed to illustrate the

properties of viscoelastic waves, in small and large deformations.

Keywords: Hyperelasticity, Zener model, memory variables, hyperbolic systems

1 Introduction

Wave motion in real media differs in many aspects from motion in an idealized elastic medium.

The dispersion and attenuation induced, for instance, by grain-to-grain friction can greatly affect

the amplitude of the waves and their arrival times.

Usually, linear viscoelasticity is assumed to provide reasonably accurate means of describing

these effects. Viscoelastic constitutive laws give the stress in terms of the past strain rate history.

Among the many existing models, the linear Zener’s model has proven its ability to describe the

viscoelastic behaviour in small deformation of various type of materials [5]. It accounts for quite

general attenuation laws, such as quality factors with a frequency power law. Introduction of

memory variables yields a hyperbolic local-in-time evolution problem, which is computationally

affordable [28, 21].

However, the linear framework is insufficient to describe wave propagation in many interesting

configurations. In the biomedical context, both nonlinearities and viscoelasticity are needed to

model shock waves in soft solids such as the brain or the liver [8, 29]. In granular media, the

physical source of the nonlinearities and attenuation is associated to grain-to-grain interactions

[31]. At a larger scale, nonlinearities and viscous damping arising during the wave propagation are

commonly studied in the context of site effect assessment, and related resonance phenomena [7]. In

the acoustical litterature, nonlinear mechanisms are generally introduced heuristically into existing

linear models. For example, a nonlinear term has been added to the linear Zener model [22], but

within the framework of a linear constitutive law and infinitesimal strains. Such a methodology

raises two fundamental questions: (i) are the underlying approximations consistent? (ii) what are

their mathematical and physical properties of the resulting equations?

A rational answer to these questions can be found by turning to the literature of solid mechan-

ics. Numerous works have focused on the coupling of viscoelasticity and hyperelastic behavior laws
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in finite strain. The reader is referred to reference works such as [17, 19, 32] for an overview of

the dedicated litterature. Nevertheless, these models are often designed in the quasi-static regime,

and they do not incorporate the particularities of wave phenomena. In particular, viscoelastic

models for nonlinear waves should ensure a finite propagation speed, leading to explicit-in-time

numerical schemes. Finally, the model parameters should be identifiable from classical acoustic

measurements (phase velocity, quality factor).

In summary, the construction of nonlinear viscoelastic models for wave propagation needs to

incorporate both the rigor of rational mechanics and the specificities of wave propagation. The

criteria of choice that we consider the most important are: (i) to be thermodynamically consistent;

(ii) to yield a well-posed initial-valued problem that is local in time; (iii) to degenerate towards

the linear Zener model in the limit-case of small deformations. The objective of this paper is

to propose such a consistent model. An approach satisfying (i)-(ii) has been proposed in [18],

in the incompressible case. The present work can be seen as an extension of this paper to the

compressible case, with additionally the criterion (iii) unconditionnaly satisfied. On the other

hand, a Zener model satisfying the three criteria has already been developed by the authors, but

in the one-dimensional case [13, 2]. One aim of the present article is to generalize these 1D works

to higher spatial dimensions, in a rigorous tensorial framework.

For this purpose, our approach is based on hyperelasticity where relaxation tensors are in-

troduced. The model is built in an Eulerian framework and yields a nonlinear hyperbolic set of

first-order partial differential equations with source terms (a Lagrangian formulation would require

only small adjustments). One parameter of the model controls the nonlinearity. On a bounded in-

terval of values, this parameter ensures hyperbolicity of the governing equations [24, 15]. The other

parameters can be calibrated in the linear regime, based on an optimization procedure described

in [3]. The numerical solution can be estimated based on a splitting method: the hyperbolic part

is solved by a Godunov-type HLLC scheme, while the relaxation part is solved analytically.

The paper is organised as follows. In Section 2, we present the linear Zener model and the

hyperelastic model in Eulerian formulation. The nonlinear Zener model is introduced in Section

3, together with the equation of state and a way to calibrate the parameters. A numerical scheme

is proposed in Section 4. Numerical experiments illustrate the wave phenomena in Section 5, for

various magnitudes of nonlinearity. Conclusion is drawn in Section 6.

2 Limit cases

2.1 Linear viscoelasticity

The linear Zener model is largely used in acoustics and in computational seismology. This model

adequately describes the usual relaxation and creep tests of solids under small deformations [5].

By optimizing its parameters, the Zener model allows to finely describe dispersion relations of the

waves [3]. The relaxation functions of compressional (P) and shear (S) waves write respectively

ψπ(t) = πr

(

1 +

N
∑

ℓ=1

κpℓ e
−θℓt

)

H(t), ψµ(t) = µr

(

1 +

N
∑

ℓ=1

κsℓ e
−θℓt

)

H(t), (1)

where H is the Heaviside function, N is the number of relaxation mechanisms, θℓ are relaxation

frequencies, and the parameters κp,sℓ are positive weights. Describing P and S waves with identical

relaxation frequencies, as well as identical numbers of relaxation mechanisms, allows to greatly

2



reduce the memory requirements [28]. In (1), πr = ρ c2p(0) and µr = ρ c2s(0) are relaxed moduli

under compressional and shear loads, where cp(0) and cs(0) denote the phase velocities of P and

S waves at zero frequency, respectively. The unrelaxed moduli are

πu = πr

(

1 +
N
∑

ℓ=1

κpℓ

)

= ρ0 c
2
p(∞), µu = µr

(

1 +
N
∑

ℓ=1

κsℓ

)

= ρ0 c
2
s(∞), (2)

where cp(∞) and cs(∞) are the phase velocities of P and S waves at infinite frequency, and ρ0 is

a reference density.

A naive use of the relaxation functions (1) would involve convolution products, which is com-

putationally too expensive. Introducing the so-called memory variables ξℓ provides a local-in-time

hyperbolic system with source term. The velocity-stress formulation writes [21]:



































ρ0
∂v

∂t
= div(σ), (3a)

∂σ

∂t
= (πu − 2µu) div(v) I+ 2µuD+

N
∑

ℓ=1

ξℓ, (3b)

∂ξℓ
∂t

= −θℓ ((πrκ
p
ℓ − 2µrκ

s
ℓ) div(v) I + 2µrκ

s
ℓ D+ ξℓ) , ℓ = 1, · · · , N, (3c)

where v = (u, v, w)T is the velocity, σ is the Cauchy stress, and ξℓ are symmetric tensors.

2.2 Nonlinear hyperelasticity

The conservation of mass, momentum and energy in Eulerian formulation writes:



























∂ρ

∂t
+ div(ρv) = 0, (4a)

∂(ρv)

∂t
+ div(ρv ⊗ v − σ) = 0, (4b)

∂(ρE)

∂t
+ div(ρvE − σv) = 0, (4c)

and the kinematic equation is
d

dt
F−⊤ = −grad⊤(v).F−⊤. (5)

The system (4)-(5) yields 7 waves [16]. The differential operators are applied in the Eulerian

coordinates x = (x, y, z)⊤ ∈ R
3. The deformation gradient is F. The density is ρ = ρ0/|F|, where

ρ0 is a reference density and | • | = det(•). The total specific energy E is

E =
v2

2
+ e(η,C−1), (6)

where e is the specific internal energy, η is the specific entropy, and C = FT .F is the right

Cauchy-Green strain tensor. The nullity of dissipation yields the Cauchy stress tensor:

σ = −2 ρF−⊤.
∂e

∂C−1
.F−1. (7)

Using C−1 in (6) ensures the symmetry of σ even in the anisotropic case.
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3 Nonlinear Zener model

3.1 Objective

We aim to build a model that satisfies the following properties:

(i) recovering the linear Zener model (3) in the case of infinitesimal deformation;

(ii) recovering the hyperelastic model (4) in the lossless case;

(iii) satisfying the second principle of thermodynamics;

(iv) being unconditionally hyperbolic.

This new model is built by adding to the system (4) relaxation terms (Section 3-3.2). The study

of this model in small deformations in Section 3-3.3 leads, by identifying the parameters, to the

linear Zener model (criterion (i)). When these terms cancel, the hyperelastic model is recovered,

which satisfies criterion (ii). The general form of the relaxation terms is determined by imposing

a positive dissipation, thus satisfying criterion (iii). Finally, criterion (iv) is satisfied by choosing

particular forms of specific internal energy (Section 3-3.4).

3.2 Governing equations

The conservation equations (4) are unchanged. However, we introduce new kinematic variables

denoted Fℓ. These variable can be seen as the elastic part in the multiplicative decomposition if

only one mechanism is considered. Thus, the kinematic equations (5) reads:











d

dt
F−⊤

0 = −grad⊤(v).F−⊤

0 , (8a)

d

dt
F−⊤

ℓ = −grad⊤(v).F−⊤

ℓ +Rℓ.F
−⊤

ℓ , ℓ = 1, · · · , N. (8b)

Here Rℓ are symmetric second-order tensors. These relaxation terms will be determined later. A

similar approach is used to model viscoplasticity in [9] or incompressible viscoelasticity in [18, 27].

Equation (8a) describes the elastic part of the behaviour. It can be merged with (8b) by setting

R0 = 0, as done from now. Based on (8b), the time derivative of C−1

ℓ = F−1

ℓ .F−⊤

ℓ writes:

d

dt
C−1

ℓ = −2F−1

ℓ .D.F−⊤

ℓ + 2F−1

ℓ .Rℓ.F
−⊤

ℓ , ℓ = 1, · · · , N, (9)

where D = sym(grad(v)) is the strain rate.

Dissipation of energy. The total specific energy is

E =
v2

2
+
∑

0

eℓ
(

η,C−1

ℓ

)

. (10)

The Cauchy stress

σ =

N
∑

ℓ=0

σℓ (11)
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is deduced from the Gibbs identity and the second principle of thermodynamics: using (9), (10)

and the symmetry of D and Rℓ, the dissipation D writes

D =
N
∑

ℓ=0

(

σℓ : D− ρ
∂eℓ

∂C−1

ℓ

:
d

dt
C−1

ℓ

)

,

=
N
∑

ℓ=0

(

σℓ : D− ρ
∂eℓ

∂C−1

ℓ

:
(

−2F−1

ℓ .D.F−⊤

ℓ + 2F−1

ℓ .Rℓ.F
−⊤

ℓ

)

)

,

=
N
∑

ℓ=0

((

σℓ + 2 ρF−⊤

ℓ .
∂eℓ

∂C−1

ℓ

.F−1

ℓ

)

: D− 2 ρF−⊤

ℓ .
∂eℓ

∂C−1

ℓ

.F−1

ℓ : Rℓ

)

,

≥ 0.

(12)

This inequality is satisfied whatever D, which implies

σℓ = −2 ρF−⊤

ℓ .
∂eℓ

∂C−1

ℓ

.F−1

ℓ , ℓ = 0, · · · , N, (13)

and
N
∑

ℓ=0

σℓ : Rℓ =

N
∑

ℓ=0

tr (σℓ.Rℓ) ≥ 0. (14)

Property 1 A sufficient condition to ensure (14) is to choose:

Rℓ = αℓ σℓ + βℓ tr(σℓ) I, ℓ = 1, · · · , N, (15)

where I is the second-order identity tensor, αℓ ≥ 0 and βℓ ≥ −αℓ/3.

The parameters αℓ and βℓ are scalar and may depend on any parameters such as temperature,

invariant of the stress, pressure, etc. In the following and for the sake of simplicity, we will consider

them as constant. Proof. The tensor σℓ is split into its spheric and deviatoric parts:

σℓ = −pℓ I+ Sℓ, with tr(Sℓ) = 0. (16)

Then one has:

tr (σℓ.Rℓ) = tr. ((−pℓ I+ Sℓ) (αℓ(−pℓ I+ Sℓ) + βℓ(−3 pℓ) I)) ,

= (αℓ + 3 βℓ) p
2
ℓ tr(I)− (2αℓ + 3 βℓ) pℓ tr(Sℓ) + αℓ tr(S

2
ℓ ),

= 3 (αℓ + 3 βℓ) p
2
ℓ + αℓ Sℓ : Sℓ,

≥ 0,

(17)

which concludes the proof.

Property 1 generalizes the analysis performed in [9] in the case of viscoplasticity. The de-

termination of αℓ and βℓ will be discussed in Section 3.3 to guaranty that, in the limit of small

deformation, the model recovers the generalized Zener model used in acoustics.

Evolution of |Fℓ|. For further calibration of the equation of state and numerical resolution of

the governing equations, the time derivative of Jℓ = |Cℓ| = |Fℓ|
2 is needed. Based on (9), it

follows that:
d

dt
Jℓ = 2Jℓ (div(v) − tr(Rℓ)) , ℓ = 1, · · · , N. (18)

Using (18) and J−1

ℓ = (J
−1/2
ℓ )2, one obtains

d

dt
J
−1/2
ℓ + J

−1/2
ℓ div(v) = J

−1/2
ℓ tr(Rℓ), ℓ = 1, · · · , N. (19)
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3.3 Small deformations

In the case of small deformations, the Lagrangian and Eulerian descriptions are identical and

C−1

ℓ ≈ I− 2 εℓ, where εℓ are second-order symmetric tensors. Using (9) leads to

∂εℓ
∂t

= D−Rℓ, ℓ = 1, · · · , N. (20)

The constitutive laws for linear isotropic solids write σℓ = λℓ tr(εℓ) I + 2µℓ εℓ, where λℓ and µℓ

are Lamé coefficients, to be determined. Time differentiating the constitutive laws and using (20)

gives
∂σℓ
∂t

= λℓ div(v) I + 2µℓD+ ξℓ, ℓ = 1, · · · , N, (21)

where the second-order symmetric tensors ξℓ write

ξℓ = − (λℓ tr(Rℓ) I+ 2µℓRℓ) , ℓ = 1, · · · , N, (22)

and ξ0 = 0. Introducing the unrelaxed moduli

πu =

N
∑

ℓ=0

(λℓ + 2µℓ) , µu =

N
∑

ℓ=0

µℓ, (23)

and summing (21) over ℓ, one obtains

∂σ

∂t
= (πu − 2µu) div(v) I + 2µuD+

N
∑

ℓ=1

ξℓ, (24)

which recovers the evolution of σ in the linear Zener model (3b). It remains to determine the time

evolution of ξℓ. From (21), it follows

∂

∂t
tr(σℓ) = (3λℓ + 2µℓ) div(v) + tr(ξℓ), ℓ = 1, · · · , N. (25)

Equations (15) and (22) yield

ξℓ = − (Aℓ σℓ +Bℓ tr(σℓ) I) , ℓ = 1, · · · , N, (26)

with

Aℓ = 2µℓ αℓ, Bℓ = λℓ αℓ + (3λℓ + 2µℓ) βℓ, ℓ = 1, · · · , N. (27)

From (21), (25) and (26), one deduces

∂ξℓ
∂t

= −Aℓ (λℓ div(v) I + 2µℓD+ ξℓ)−Bℓ ((3λℓ + 2µℓ) div(v) + tr(ξℓ)) I, ℓ = 1, · · · , N.

(28)

Identification with (3c), where no term tr(ξℓ) occurs, implies Bℓ = 0, and (27) gives

βℓ = −
λℓ

3λℓ + 2µℓ
αℓ, ℓ = 1, · · · , N. (29)

The equation (28) then recovers the evolution of ξℓ in the linear Zener model (3c) if the following

conditions are satisfied (ℓ = 1, · · · , N):

λℓ = πrκ
p
ℓ − 2µrκ

s
ℓ , µℓ = µrκ

s
ℓ , αℓ =

θℓ
2µℓ

=
θℓ

2µrκsℓ
. (30)

The parameters of the linear Zener model κpℓ , κ
s
ℓ and θℓ can be obtained from the attenuation of

linear P and S waves [3]. The elastic moduli λ0 and µ0 are determined by using (23):

λ0 = πu − µu −

N
∑

ℓ=1

λℓ, µ0 = µu −

N
∑

ℓ=1

µℓ. (31)
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3.4 Equations of state

One considers materials with a specific internal energy (10) in separable form:

eℓ(η,C
−1

ℓ ) = ehℓ (Jℓ) + eeℓ(Ĉ
−1

ℓ ), ℓ = 1, · · · , N, (32)

with the unimodular tensor Ĉ−1

ℓ = C−1

ℓ /
∣

∣C−1

ℓ

∣

∣

1/3
. The hydrodynamic part of the energy ehℓ

depends only on the volume change, whereas the shear part of the energy eeℓ is unaffected by the

volume change. For isotropic solids, eeℓ can be written as a function of only two invariants of Ĉ−1

ℓ :

eeℓ(Ĉ
−1

ℓ ) = eeℓ(j1ℓ, j2ℓ), jkℓ = tr

(

(

Ĉ−1

ℓ

)k
)

≡ tr

(

(

Ĝℓ

)k
)

, (33)

with the unimodular parts of the Finger tensors Ĝℓ = Gℓ/ |Gℓ|
1/3, where Gℓ = B−1

ℓ is the Finger

tensor and Bℓ = Fℓ.F
T
ℓ is the left Cauchy-Green deformation tensor. Based on the usual relations

of tensorial calculus

∂

∂A
tr (An) = n

(

AT
)n−1

,
∂

∂A
det(A) = det(A)A−⊤, (34)

the Cauchy stress in (13) writes (ℓ = 1, · · · , N):

σℓ = −2 ρF−⊤

ℓ

(

∂ehℓ
∂Jℓ

∂Jℓ

∂C−1

ℓ

+

2
∑

k=1

∂eeℓ
∂jkℓ

∂jkℓ

∂C−1

ℓ

)

.F−1

ℓ ,

= −2 ρF−⊤

ℓ

(

−
∂ehℓ
∂Jℓ

Jℓ Cℓ +
2
∑

k=1

∂eeℓ
∂jkℓ

k

(

J
k/3
ℓ

(

C−1

ℓ

)k
−
jkℓ
3

I

)

Cℓ

)

.F−1

ℓ ,

≡ −pℓ I+ Sℓ,

(35)

with tr(Sℓ) = 0. The hydrodynamic part of the stress is thus

pℓ = −2ρ
∂ehℓ
∂Jℓ

Jℓ, (36)

whereas the deviatoric part of the stress writes

Sℓ = −2ρ

(

∂eeℓ
∂j1ℓ

(

J
1/3
ℓ F−⊤

ℓ .F−1

ℓ −
j1ℓ
3

I

)

+ 2
∂eeℓ
∂j2ℓ

(

J
2/3
ℓ

(

F−⊤

ℓ .F−1

ℓ

)2
−
j2ℓ
3

I

))

,

= −2ρ

(

∂eeℓ
∂j1ℓ

(

Ĝℓ −
j1ℓ
3

I

)

+ 2
∂eeℓ
∂j2ℓ

(

(

Ĝℓ

)2

−
j2ℓ
3

I

))

.

(37)

The last expression in (37) recovers the shear tensor given in [12, 15]: in the isotropic case, the

stress equations deduced from the Finger tensors and from C−1

ℓ are thus the same. Now we

determine the stresses induced by the internal energy (32).

Hydrodynamic stress. The hydrodynamic part of the energy is chosen in the form:

ehℓ (η, Jℓ) =
dℓ
ρ0

(

J
1/2
ℓ − 1

)2

, ℓ = 0, · · · , N, (38)

where ρ0 is a reference density. This convex energy ensures hyperbolicity of (8) in the absence of

shear energy. Using (36) and ρ = ρ0/J
1/2
0 yields the pressures

pℓ = 2 dℓ
ρ

ρ0
J
1/2
ℓ

(

1− J
1/2
ℓ

)

= 2 dℓ

(

Jℓ
J0

)1/2
(

1− J
1/2
ℓ

)

. (39)
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The hydrodynamic sound velocities are

c2hℓ = 2 Jℓ

(

∂ehℓ
∂Jℓ

+ 2Jℓ
∂2ehℓ
∂J2

ℓ

)

=
2dℓ
ρ0

Jℓ, ℓ = 0, · · · , N. (40)

The inequality Jℓ > 0 must always be satisfied to yield real hydrodynamic sound velocities. The

nonlinear parameter dℓ is determined in two steps, based on the limit-case of small deformations.

First, in the isentropic case, the differential of pℓ(η, ρ, Jℓ) writes

dpℓ
dt

=
dpℓ
dρ

dρ

dt
+
dpℓ
dJℓ

dJℓ
dt
. (41)

The latter is deployed based on (36), on the conservation of mass (4a) and on the transport of Jℓ

(18), leading to

dpℓ
dt

= −2ρ Jℓ

(

∂ehℓ
∂Jℓ

+ 2Jℓ
∂2ehℓ
∂J2

ℓ

)

div(v) + 4ρ Jℓ

(

∂ehℓ
∂Jℓ

+ 2Jℓ
∂2ehℓ
∂J2

ℓ

)

tr(Rℓ). (42)

Second, the decomposition (16) leads to pℓ = −1/3 tr(σℓ), which is then time differentiated in the

case of small deformations (25):

dpℓ
dt

≈
∂pℓ
∂t

= −

(

λℓ +
2

3
µℓ

)

div(v) −
1

3
tr(ξℓ). (43)

Identification between (42) and (43) gives

2ρ Jℓ

(

∂ehℓ
∂Jℓ

+ 2 Jℓ
∂2ehℓ
∂J2

ℓ

)

= λℓ +
2

3
µℓ. (44)

The left hand side of (44) is deduced from the hydrodynamic energy (38) and equals 2(ρ/ρ0)Jℓ dℓ.

For small deformations, ρ ≈ ρ0 and Jℓ ≈ 1. Using (44) yields the nonlinear parameter

dℓ =
1

2

(

λℓ +
2

3
µℓ

)

, ℓ = 0, · · · , N. (45)

Deviatoric stress. The shear part of the energy (33) is chosen in the form [12]:

eeℓ(j1ℓ, j2ℓ) =
µℓ

4ρ0

(

χℓ j2ℓ +
1− 2χℓ

3
j21ℓ + 3 (χℓ − 1)

)

, ℓ = 0, · · · , N. (46)

Here χℓ can be viewed as new nonlinear parameters. For small deformations and any χℓ, the

Hooke law is recovered. Thus, these parameters are important only in the case of large shear

deformations. They can be used to fit experimental data. The deviatoric part of the stress is

finally deduced from (37) and (46), through

∂eeℓ
∂j1ℓ

=
µℓ

6 ρ0
(1− 2χℓ) j1ℓ,

∂eeℓ
∂j2ℓ

=
µℓ

4 ρ0
χℓ, ℓ = 0, · · · , N. (47)

A theoretical analysis of (46) has been performed in hyperelasticity [15]. The unconditional

hyperbolicity was proven under the sufficient condition −1 ≤ χ ≤ 0.5. With such a choice for

each χℓ and following [24], one can prove that the nonlinear Zener model model is also hyperbolic

in the whole range of solutions. The limit case χℓ = −1 corresponds to Neo-Hookean solids.

Other choices of equations of state are of course possible, for example the Mooney-Rivlin model

often used for elastomers, or the Murnaghan model widely used for non-destructive testing of

geomaterials [1]. However, hyperbolicity has not been proven for these models.
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3.5 Final system

The governing equations of the nonlinear Zener model are summarized in the following system of

14 + 10×N partial differential equations:















































∂ρ

∂t
+ div(ρv) = 0, (48a)

∂(ρv)

∂t
+ div(ρv ⊗ v − σ) = s, (48b)

∂eβℓ
∂t

+ grad(eβℓ ).v + eβℓ .grad(v) = Rℓ. e
β
ℓ , ℓ = 0, · · · , N, β = 1, 2, 3, (48c)

∂

∂t
J
−1/2
ℓ + div

(

J
−1/2
ℓ v

)

= φℓ, ℓ = 0, · · · , N. (48d)

In (48b), s is a bulk force term. The system (48) needs to be completed by initial conditions. In the

case of forcing by a source point s 6= 0, then the initial data are ρ(•, t = 0) = ρ0, v(•, t = 0) = 0,

F−⊤

ℓ (•, t = 0) = I and J
−1/2
ℓ (•, t = 0) = 1.

The conservation of energy (4c) is not recalled, since the internal energy does not depend on

entropy. The components of the Cauchy stress σ (11)-(35) are the hydrodynamic pressure pℓ (39)

and the shear stress Sℓ (37)-(46). In (48c), the covectors eβℓ are the columns of F−⊤

ℓ = (e1ℓ , e
2
ℓ , e

3
ℓ),

with eβℓ = (aβℓ , b
β
ℓ , c

β
ℓ )

⊤. Introducing aℓ = (a1ℓ , a
2
ℓ , a

3
ℓ)

⊤, bℓ = (b1ℓ , b
2
ℓ , b

3
ℓ)

⊤, cℓ = (c1ℓ , c
2
ℓ , c

3
ℓ )

⊤, then

the unimodular Finger tensors in (37) writes:

Ĝℓ =
1

|Gℓ|1/3







aℓ.aℓ aℓ.bℓ aℓ.cℓ

aℓ.bℓ bℓ.bℓ bℓ.cℓ

aℓ.cℓ bℓ.cℓ cℓ.cℓ






, ℓ = 0, · · · , N. (49)

In the right hand side of (48c), the relaxation tensors are deduced from (15), (29) and (30):

R0 = 0, Rℓ =
θℓ
2µℓ

(

σℓ −
λℓ

3λℓ + 2µℓ
tr(σℓ) I

)

, ℓ = 1, · · · , N. (50)

Lastly, the equation (48d) is redundant with (48c). However, it is useful from a numerical point

of view, to ensure that Jℓ > 0. Based on (19) and on (50), the scalars φℓ = J
−1/2
ℓ tr(Rℓ) in (48d)

are:

φ0 = 0, φℓ = J
−1/2
ℓ

θℓ
3λℓ + 2µℓ

tr(σℓ), ℓ = 1, · · · , N. (51)

Calibration. The parameters of the nonlinear Zener model are determined as follows:

1. the attenuation of the P- and S-wave is assumed to be known, for example via the quality

factors of the compressional waves Qp and the shear waves Qs. An optimization procedure

then provides the relaxation frequencies θℓ and the weights κp,sℓ ;

2. the phase velocities of the compressional waves cp(0) and shear waves cs(0) provide the

relaxed moduli πr and µr, and then the unrelaxed moduli πu and µu (23);

3. the Lamé coefficients (30)-(31) are deduced, and then the nonlinear parameter (45) involved

in the hydrodynamic pressure;

4. the only free parameters are the χℓ involved in the shear stress (46), with −1 ≤ χℓ ≤ 0.5 to

guarantee the hyperbolicity.
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In the case of null dissipation, the weights are κpℓ = κsℓ ≡ 0 for ℓ = 1, · · · , N . It follows πu = πr,

µu = µr (23), λℓ = µℓ ≡ 0 (30), and λ0 = πr, µ0 = µr (31). One has σℓ = 0 for ℓ = 1, · · · , N , and

the system (48) recovers the hyperelastic model (4).

4 Numerical scheme

The inhomogenous system with source term (48) is solved numerically by a splitting method. A

hyperbolic step solved by a Godunov-type scheme is followed by a relaxation step.

4.1 Hyperbolic step

This Section describes the resolution of the homogeneous part of (48) without source term. For

the sake of simplicity, only 1D projections along x are described; the other projections are treated

similarly. Removing ∂y and ∂z dependencies, one writes (ℓ = 0, · · · , N , β = 1, 2, 3):






















































































































∂ρ

∂t
+
∂(ρu)

∂x
= 0, (52a)

∂

∂t
J
−1/2
ℓ +

∂

∂x
(J

−1/2
ℓ u) = 0, (52b)

∂(ρu)

∂t
+

∂

∂x

(

ρu2 − σ11
)

= 0, (52c)

∂(ρv)

∂t
+

∂

∂x
(ρuv − σ12) = 0, (52d)

∂(ρw)

∂t
+

∂

∂x
(ρuw − σ13) = 0, (52e)

∂aβℓ
∂t

+
∂

∂x

(

uaβℓ

)

+ bβℓ
∂v

∂x
+ cβℓ

∂w

∂x
= 0, (52f)

∂bβℓ
∂t

+ u
∂bβℓ
∂x

= 0, (52g)

∂cβℓ
∂t

+ u
∂cβℓ
∂x

= 0. (52h)

This system is non conservative due to the governing equations of the geometrical variables (52f)-

(52h). The resolution of (52) requires to determine the maximal sound velocities. In 3D, the

computation of waves speed is very expensive due to the third degree characteristic polynoma,

thus we will use an approximate expression of the maximum wave speed:

c2 = ζ

N
∑

ℓ=0

(

c2hℓ +
4

3

µℓ

ρ0

)

, (53)

where chℓ are the hydrodynamic sound velocities (40), and ζ ≥ 1 is a security parameter [12, 24].

In the linear case, one recovers the sound speed of longitudinal waves when ζ = 1.

We use the HLLC solver [30], because it preserves the positivity of the density and J
−1/2
ℓ , and

is able to deal with strong shock waves. Even if the equations of hyperelasticity contain 7 waves,

we will use the solver containing only 3 waves: 2 waves having the most rapid characteristics (they

correspond to longitudinal waves), and the contact characteristics. This simple solver is able to

capture both longitudinal and transverse waves [14]. With such a solver, each wave is considered as

a discontinuity and, consequently, jump relations are needed. The system being non-conservative,

the usual Rankine-Hugoniot relation cannot be use, and each jump relation needs to be defined

accross the waves, as done thereafter.
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Figure 1: HLLC approximate solver. In the star region, two constant states are separated by a

wave of speed SM .

HLLC Riemann solver. We follow the lines of [11, 12, 25]. Let us consider a cell boundary

separating a left state (L) and a right state (R), as sketched in Figure 1. The left and right facing

wave speeds are obtained following Davis estimates [6]:

SL = min (uL − cL, uR − cR) , SR = max (uL + cL, uR + cR) , (54)

where cL,R are the estimated maximal sound speeds (53). The speed of the contact discontinuity

is estimated under the HLLC approximation:

SM ≡ u∗ =

(

ρu2 − σ11
)

L
−
(

ρu2 − σ11
)

R
− SL (ρu)L + SR (ρu)R

(ρu)L − (ρu)R − ρLSL + ρRSR
. (55)

Based on [30, 12], the conservative state variables in the star region are estimated by:















































































































ρ∗L,R = ρL,R
SL,R − uL,R

SL,R − u∗
,

(

J
−1/2
ℓ

)∗

L,R
=
(

J
−1/2
ℓ

)

L,R

SL,R − uL,R

SL,R − u∗
, ℓ = 0, · · · , N,

σ∗

11 =
(uR − SR) ρR σ11L − (uL − SL) ρL σ11R + (uL − SL) ρL (uR − SR) ρR (uR − uL)

(uR − SR) ρR − (uL − SL) ρL
,

σ∗

12 =
(uR − SR) ρR σ12L − (uL − SL) ρL σ12R + (uL − SL) ρL (uR − SR) ρR (vR − vL)

(uR − SR) ρR − (uL − SL) ρL
,

σ∗

13 =
(uR − SR) ρR σ13L − (uL − SL) ρL σ13R + (uL − SL) ρL (uR − SR) ρR (wR − wL)

(uR − SR) ρR − (uL − SL) ρL
,

v∗ =
(ρuv − σ12)L − (ρuv − σ12)R − SL (ρv)L + SR (ρv)R

(ρv)L − (ρv)R − ρLSL + ρRSR
,

w∗ =
(ρuw − σ13)L − (ρuw − σ13)R − SL (ρw)L + SR (ρw)R

(ρw)L − (ρw)R − ρLSL + ρRSR
.

(56)

In the case of a fluid-solid interface [25], the velocities v∗ and w∗ can be discontinuous in the

region star, so that one must define v∗L,R and w∗
L,R. In the case of a pure solid considered here,

these fields are on the contrary constant in the whole region star. Then, the geometric variables
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are (ℓ = 0, · · · , N , β = 1, 2, 3):







































(

aβℓ

)∗

L,R
=

(

aβℓ

)

L,R
(uL,R − SL,R) +

(

bβℓ

)

L,R
(vL,R − v∗) +

(

cβℓ

)

L,R
(wL,R − w∗)

u∗ − SL,R
,

(

bβℓ

)∗

L,R
=
(

bβℓ

)

L,R
,

(

cβℓ

)∗

L,R
=
(

cβℓ

)

L,R
.

(57)

With the jump relation presented previously, it is now possible to determine the flux at each cells

boundaries. From now on, we will denote with the star superscript ∗ the sampled flux obtained:

A⋆ =



















AL if SL ≥ 0,

AR if SR ≤ 0,

A⋆
R if SM ≤ 0 ≤ SR,

A⋆
L if SM ≥ 0 ≥ SL.

(58)

With these definition, we can now derive the numerical scheme

Godunov type scheme. The system (52) contains conservative and non-conservative equations,

which are solved successively. The conservative part of (52) reads as a 5 +N system

∂U

∂t
+
∂f

∂x
= 0, (59)

with the vector of conserved variables

U =
(

ρ, J
−1/2
ℓ , ρu, ρv, ρw

)⊤

, ℓ = 0, · · · , N, (60)

and the flux

f =
(

ρu, J
−1/2
ℓ u, ρu2 − σ11, ρuv − σ12, ρuw − σ13

)⊤

. (61)

Given a time step ∆t and and a mesh size ∆x, the usual Godunov scheme is applied [20]:

Un+1

i = Un
i −

∆t

∆x

(

f∗i+1/2 − f∗i−1/2

)

, (62)

where Un
i ≈ U(xi = i∆x, tn = tn−1 + ∆t). The numerical flux f∗i+1/2 = f∗(Un

i ,U
n
i+1) is given

by the star variables: f∗(UL,UR) = f(U∗). In practice, instead of calculating the density via

(60)-(62), we use the expression ρ = ρ0J
−1/2
0 . This saves an array of data.

The system for the non-conservative part of (52) reads as a 9× (N + 1) system:

∂Wβ
ℓ

∂t
+
∂gβ

ℓ

∂x
+ kβ

u,ℓ

∂u

∂x
+ kβ

v,ℓ

∂v

∂x
+ kβ

w,ℓ

∂w

∂x
= 0, (63)

with the vector of non-conserved variables

Wβ
ℓ =

(

aβℓ , b
β
ℓ , c

β
ℓ

)⊤

, ℓ = 0, · · · , N, β = 1, 2, 3, (64)

and the fluxes

gβ
ℓ =

(

uaβℓ , ub
β
ℓ , uc

β
ℓ

)⊤

, kβ
u,ℓ =

(

0, −bβℓ , −c
β
ℓ

)⊤

, kβ
v,ℓ =

(

bβℓ , 0, 0
)⊤

, kβ
w,ℓ =

(

cβℓ , 0, 0
)⊤

.

(65)
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The non-conservative equations are solved by the scheme:

(

Wβ
ℓ

)n+1

i
=

(

Wβ
ℓ

)n

i
−

∆t

∆x

[

(

gβ
ℓ

)∗

i+1/2
−
(

gβ
ℓ

)∗

i−1/2
+
(

kβ
u,ℓ

)n

i

(

u∗i+1/2 − u∗i−1/2

)

+
(

kβ
v,ℓ

)n

i

(

v∗i+1/2 − v∗i−1/2

)

+
(

kβ
w,ℓ

)n

i

(

w∗

i+1/2 − w∗

i−1/2

)]

.

(66)

The numerical flux
(

gβ
ℓ

)∗

i+1/2
=
(

gβ
ℓ

)∗
(

(

Wβ
ℓ

)n

i
,
(

Wβ
ℓ

)n

i+1

)

is given by the star variables:
(

gβ
ℓ

)∗

(WL,WR) = f2(W
∗). In (66), u∗i±1/2 are the normal velocity components at the cell

boundaries, v∗i−1/2 and w∗

i+1/2 are the corresponding tangential velocity components.

The conservative and non-conservative parts of the Godunov scheme are solved simultaneously.

As already pointed out, only 1D fluxes are written (62) and (66). For multidimensional problems,

these fluxes must be completed by the y and z dependencies. The CFL condition of stability of

this method is

CFL = max(c)
∆t

∆x
≤ 0.5, (67)

where max(c) denotes the maximal value of (53) over the computational domain.

4.2 Relaxation step

In the final system (48), the only equations that are changing during the relaxation step are















∂eβℓ
∂t

=
θℓ
2µℓ

(

σℓ −
λℓ

3λℓ + 2µℓ
tr(σℓ) I

)

. eβℓ , ℓ = 1, · · · , N, β = 1, 2, 3, (68a)

∂

∂t
J
−1/2
ℓ =

θℓ
3λℓ + 2µℓ

tr(σℓ)J
−1/2
ℓ , ℓ = 1, · · · , N. (68b)

This system of 10×N ordinary differential equations could be solved by any numerical integrator.

However, a naive resolution of (68) would not ensure |Fℓ| > 0, which is essential when computing

the energy (37).

An alternative approach is followed here to ensure the positivity of |Fℓ| and Jℓ. Assuming that

σℓ is constant during the relaxation step, then (68) can be integrated exactly:















(

eβℓ

)n+1

= exp

(

θℓ∆t

2µℓ

(

σℓ −
λℓ

3λℓ + 2µℓ
tr(σℓ) I

))

.
(

eβℓ

)n

, ℓ = 1, · · · , N, β = 1, 2, 3,(69a)

(

J
−1/2
ℓ

)n+1

= exp

(

θℓ∆t

3λℓ + 2µℓ
tr(σℓ)

)

(

J
−1/2
ℓ

)n

, ℓ = 1, · · · , N. (69b)

The computation of the matrix exponential (69a) is done by a (6, 6) Padé approximation of the

“scaling and squaring method” [23]. The equation on J
−1/2
ℓ is used only in the hydrodynamic

pressure (39). Doing so provides an easy mean to guarantee that isochoric transformations do not

modify the hydrodynamic energy (38).

5 Numerical examples

5.1 Shear Riemann problem

A domain [0, 1] of length L = 1 m is discretized on 2000 points. The medium is hyperelastic, with

reference density ρ0 = 1200 kg.m−3, compressional wave velocity cp(0) = 2800 m/s, and shear
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Figure 2: Shear Riemann problem in hyperelasticity. Initially a discontinuous tangential velocity

is imposed (dashed line). Various values of the nonlinear parameter χ are considered, leading to

different amplitudes of v1.

wave velocity cs(0) = 1400 m/s. The fields are initially zero, excep the tangential velocity which

is discontinuous at x0 = 0.5 m: v2 = 1 m/s for x < x0, and v2 = −1 m/s for x > x0.

Figure 2-left represents the longitudinal and tangential velocities at t = 2 10−4 s. In linear

regime, v1 would remain identically zero. On the contrary, one observes here that longitudinal

waves are generated, which is the signature of a nonlinear coupling. The amplitude of these

longitudinal waves depends on the nonlinear parameter χ0 ≡ χ. The tangential component of the

velocity v2 has right-going and left-going shock waves, and is independent of χ for the amplitude

considered here. From now on, we will consider χℓ = 0.

5.2 Impact Riemann problem

θℓ κℓ θℓ κℓ

ℓ = 1 1652 0.386 1372 0.0874

ℓ = 2 14153 0.399 11885 0.0723

ℓ = 3 123603 0.726 103368 0.1025

Table 1: Optimized parameters of viscoelasticity for the impact Riemann problem. The range of

optimization is [1.12 103, 1.12 105] Hz. Left part: Q = 5; right part: Q = 20.

Given the same parameters as before, we now consider an impact with a longitudinal velocity

discontinuity: v1 = +1 m/s for x < x0, and v1 = −1 m/s for x > x0. The dissipation is

accounted for by N = 3 relaxation mechanisms, with the same quality factor for compressional

and longitudinal waves: Qp = Qs ≡ Q. The value Q = 20 corresponds to low dissipation,

while Q = 5 corresponds to high dissipation. The Zener model parameters are optimised over a

frequency band [fmin, fmax], with fmin = fc/10 and fmax = 10 × fc [3]. The central frequency is
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chosen so that fc = cp/λ, where λ is a characteristic length. Here λ = L/4 = 0.25 is chosen, so

that fc = 11.2 kHz. The optimized parameters are given in Table 1.

(a) (b)
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Figure 3: Impact Riemann problem. Initially a discontinuous longitudinal velocity is imposed

(dashed line). Various values of attenuation are considered: null (hyperelasticity), weak (Q = 20)

and large (Q = 5). Left: v1; right: −σ11.

Figure 3 shows the longitudinal velocity v1 and the total stress component −σ11 at t = 8 10−5

s. In the absence of dissipation (hyperelastic medium), shock waves propagate in both directions.

As the attenuation increases, the sharp fronts are smoother, and the amplitude of σ11 decreases.

5.3 Compressive source point in 1D

We consider a 1D problem with a source point at xs = 0.5 m, which emits a compressive sine

wave from t = 0. In (48b), the source term is then s(x, t) = A sin(ωct)H(t) δ(x − xs) (1, 0)
⊤ with

ωc = 2π fc, and an amplitude A = 2 107. The central frequency is fc = 20 kHz; the parameters

of the Zener model (N = 3 relaxation mechanisms) are optimised accordingly. The optimized

parameters are given in the left part of Table 2.

θℓ κℓ θℓ κℓ

ℓ = 1 2950 0.386 1475 0.386

ℓ = 2 25271 0.399 12637 0.399

ℓ = 3 220716 0.726 110359 0.726

Table 2: Optimized parameters of viscoelasticity for the source point problems. The quality factor

is Q = 5. Left part: 1D case, with optimization range [2 103, 2 105] Hz. Right part: 2D case, with

optimization range [103, 105] Hz.

Figure 4 displays a snapshot of v1 at t = 1.5 10−4 s. In the hyperelastic case, we observe the

asymmetry of the waves with respect to the source point. Another signature of nonlinearities is

the appearance of shocks. In the case of the Zener model (right), the fields are still asymmetric.
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Figure 4: Snapshot of v1 and v2 at t = 1.5 10−4 s. A monochromatic source at xs = 0.5 emits

compressive monochromatic waves with an amplitude A = 2 107 and a central frequency fc = 20

kHz. Right: viscoelastic medium, with Q = 5 (N = 3 relaxation mechanisms).

However, the dissipation is sufficient to smooth the sharp fronts and to prevent the occurrence of

shocks.

5.4 Shear source point in 1D

We consider a 1D problem with a point source at xs = 0.5 m, which emits a shear sine wave

from t = 0. In (48b), the source term is then s(x, t) = A sin(ωct)H(t) δ(x − xs) (0, 1)
⊤. All

the parameters are the same as in the previous test with compressive source. In particular, the

amplitude of the forcing is A = 2 107, and the central frequency is fc = 20 kHz.

Figure 5 displays a snapshot of v1 and v2 at t = 1.5 10−4 s. In linear regime, no compressional

wave would be emitted. On the contrary, one observes clearly in (a-c) a v1 component, whose

amplitude is roughly 20% of the amplitude of v2 (b-d). The latter shear wave propagates slower.

For both components, the effect of viscoelasticity is clearly seen through the damping of waves..

5.5 Source point in 2D

As a last example, we consider a 2D domain [−0.5, 0.5]2, discretized on 3002 points in space. The

parameters of the viscoelastic medium are the same as before, with Qp = Qs = 5. The optimized

parameters are given in the right part of Table 2. A source is placed in the center of the domain.

The forcing (48b) is s(x, t) = Ar(x) g(t) (1, 0)⊤. The spatial distribution r is a Gaussian of radius

0.08 m and standard deviation 0.04 m. By regularising the Dirac in this way, singularities in the

solution and spurious oscillations at the source are avoided. The time evolution g(t) is a Ricker

[3], of central frequency fc = 10 kHz. Two forcing amplitudes are considered: A = 107 (low

amplitude) and A = 109 (large amplitude). A receiver in (xr = 0.05, yr = 0.05) records the field

at each iteration. It is denoted by a yellow cross on the carts of Figure 6.

The maps in Figure 6 show v1 and v2 at t = 1.9 10−4 s. At low amplitude (a-b), we observe the
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Figure 5: Snapshot of v1 (left row) and v2 (right row) at t = 1.5 10−4 s. A monochromatic source

at xs = 0.5 emits shear monochromatic waves with an amplitude A = 2 107 and a central frequency

fc = 20 kHz. Top (a-b): hyperelastic medium. Bottom (c-d): viscoelastic medium, with Q = 5

(N = 3 relaxation mechanisms).
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Figure 6: Two dimensional fields emitted by a source point (denoted by a yellow cross). The carts

represent v1 (left) and v2 at t = 1.9 10−3 s, for low amplitudes (a-b) and large amplitudes (c-d).

The curves display the time evolution of the normalizedv1 (e) and v2 (f) computed by the linear

Zener model and by the nonlinear Zener model, for two amplitudes. One can note that the figure

becomes non symmetric when amplitude becomes larger.
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expected properties of symmetry of v1 with respect to x = 0, and of central symmetry of v2. We

also observe on v2 the separation into compressional and shear waves. At high amplitudes (c-d),

the symmetry properties are lost, which is a signature of non-linear effects.

Figure 6 shows the time evolution of v1 and v2 measured at the receiver, up to t = 3 10−4 s.

The normalized signals obtained with the linear Zener model [21] and the nonlinear model are

superimposed. At low amplitude (A = 107), we note the good agreement between the linear model

and the nonlinear Zener model: the nonlinear effects are moderate. At large amplitude (A = 109),

the nonlinear effects distort the signals significantly.

6 Conclusion

We have proposed a nonlinear viscoelasticity model well adapted to the dynamic regime. This

model degenerates to two classical limiting cases: (i) hypelasticity when dissipation cancels; (ii)

to the linear Zener model in small deformations. The proposed model is dissipative and uncondi-

tionally hyperbolic, leading to explicit and reliable numerical schemes. Here a robust first-order

Godunov scheme is used, but more sophisticated schemes can obviously be implemented to reduce

the numerical diffusion [4].

A similar approach can be followed to describe a richer phenomenology. One thinks in partic-

ular of thermo-elastic solids, or of the study of waves in yield stresses fluids [26].
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