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Abstract

Motivation: Many techniques have been developed to infer Boolean regulations from a prior knowledge network
(PKN) and experimental data. Existing methods are able to reverse-engineer Boolean regulations for transcriptional
and signaling networks, but they fail to infer regulations that control metabolic networks.

Results: We present a novel approach to infer Boolean rules for metabolic regulation from time-series data and a
PKN. Our method is based on a combination of answer set programming and linear programming. By solving both
combinatorial and linear arithmetic constraints, we generate candidate Boolean regulations that can reproduce the
given data when coupled to the metabolic network. We evaluate our approach on a core regulated metabolic net-
work and show how the quality of the predictions depends on the available kinetic, fluxomics or transcriptomics
time-series data.

Availability and implementation: Software available at https://github.com/bioasp/merrin.

Contact: kerian.thuillier@irisa.fr or anne.siegel@irisa.fr

Supplementary information: Supplementary data are available at https://doi.org/10.5281/zenodo.6670164.

1 Introduction

The regulation of metabolic gene expression is essential for an or-
ganism to respond appropriately to changes in its environment. For
three decades now, methods have been developed to model, simulate
and infer gene regulatory networks (Bernot et al., 2004; Chaves
et al., 2010; de Jong, 2002). Even with the advances of next gener-
ation -omics, such networks remain largely incomplete and unable
to accurately predict complex responses of organisms submitted to
changes in diverse environments.

The methods developed so far to infer Boolean dynamics of regu-
latory and signaling networks only rely on information on the regu-
latory layer of the cell, mainly transcriptomics, proteomics and
phosphoproteomics (Chevalier et al., 2019; Razzaq et al., 2018;
Saez-Rodriguez et al., 2009; Tsiantis et al., 2018; Videla et al.,
2017). However, studying the metabolic layer could help to better
infer the regulatory rules. Catabolic repression is a good illustration
of how metabolism can highlight regulations inside the cell. This
happens when the cell first consumes one substrate (e.g. hexose)
until it is exhausted before starting to consume other substrates pre-
sent in the environment (Monod, 1942). Looking only at the metab-
olites in the environment, we can infer that a regulation takes place
inside the cell, probably on transporters.

Up to now, very few approaches exploited the metabolic layer of
the organism to obtain regulatory information. In Tournier et al.
(2017), resource balance analysis (RBA) (Goelzer et al., 2015) is
used to infer logical rules governing the activation of metabolic
fluxes in response to diverse extracellular media. However, the

authors assume that no feedback from metabolism to regulation
occurs, which does not correspond to the biological functioning of
the cell in most cases.

The fact that metabolic and regulatory layers are of different na-
ture, and thus formalized differently, makes the inference of regula-
tions challenging. The metabolic layer is usually modeled by a
metabolic network consisting of a weighted hypergraph with metab-
olites as nodes, reactions as hyperarcs and stoichiometry as weights.
The (dynamic) response of the metabolism to the environment is
usually modeled by flux balance analysis (FBA) (Orth et al., 2010),
respectively, dynamic FBA (dFBA) (Mahadevan et al., 2002). This
approach assumes that the metabolism of the cell is at quasi steady-
state and that the cellular behavior is optimal with respect to some
objective (usually growth). FBA and dFBA require solving linear
programming problems; the output is the prediction of metabolic
fluxes and the concentrations of environmental metabolites and bio-
mass, which are all continuous quantitative data. On the contrary,
the dynamics of the regulatory layer is often modeled by Boolean
networks (BNs). Combining both layers to infer regulations of the
cell and taking into account feedbacks between them thus requires
to use a hybrid discrete-continuous modeling and inference frame-
work, such as satisfiability modulo theories (SMTs), which was used
in Frioux et al. (2019) to solve a metabolic network completion
problem.

In this study, we present a hybrid discrete-continuous approach
to infer metabolic regulations, which combine linear programming
for metabolism with answer set programming (ASP) for regulations.
The input consists of a metabolic network, a prior knowledge
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regulatory network with potential regulations and time-series data.
These can be metabolomics data (kinetics of environmental metabo-
lites/biomass and/or fluxomics) and/or expression data from proteo-
mics or transcriptomics. The output is a set of Boolean regulatory
networks that best explain the available data. We tested our method
on data generated from a dynamic regulatory FBA (d-rFBA) model
of a core regulated metabolic network (RMN) (Covert et al., 2001;
Marmiesse et al., 2015), by simulating both the regulatory and the
metabolic layer in five environments. In order to assess its robust-
ness, the method was also evaluated with noisy and partial data, for
example, transcriptomics and kinetics of environmental metabolites
only.

2 Methods and implementation

2.1 d-rFBA: coupling metabolic and regulatory networks
2.1.1 RMNs and influence graph

A RMN consists of (i) a metabolic layer characterized by linear con-
straints on metabolic fluxes and (ii) a regulatory layer specified by a
BN which models the interplay between metabolic fluxes, input
metabolites and regulatory proteins.

Formally, a RMN is a quadruple ðN ; Inp;P; f Þ composed of (i) a
metabolic network N ¼ ðInt;Ext;R; SÞ with a set of internal metab-
olites Int, a set of external metabolites Ext, a set of irreversible reac-
tions R and a stoichiometric matrix S 2 R

ðjIntjþjExtjÞ�jRj. Each
reaction r 2 R is associated with flux bounds
lr; ur 2 R;0 � lr � ur; (ii) a set of input metabolites Inp � Ext; (iii)
a set of regulatory proteins P and (iv) a BN f : Bn ! B

n;B ¼ f0; 1g;
of dimension n ¼ jInpj þ jRj þ jPj. We call fi : Bn ! B the local
function of component i.

The influence graph G(f) summarizes the regulatory dependen-
cies. It is a signed directed graph with node set Inp [R [ P and a
positive (respectively, negative) edge from j to i if there exists x 2 B

n

such that an increase of xj leads to an increase (respectively, de-
crease) of fiðxÞ. We assume that f is locally monotone, that is, there
exists at most one edge from j to i, but our method does not rely on
this assumption. In RMNs, the regulation of reactions has to be
mediated by regulatory proteins P. Therefore, there is no edge from
j to i in G(f) where both i; j 2 Inp [R. Edges between regulatory
proteins i; j 2 P, however, are possible.

2.1.2 Regulatory-metabolic steady states

d-rFBA (Covert et al., 2001) extends FBA to derive a discrete time ser-
ies of steady states optimal for a linear objective. In d-rFBA, a regula-
tory-metabolic steady state (RMSS) of a RMNðN ; Inp;P; f Þ is a triple
(v, c, x) associating reaction fluxes v at steady state, concentrations c
of external metabolites and the state x of the BN, which comprises the
Boolean regulatory state of reactions and regulatory proteins, and the
binarization of the concentration of input metabolites. The reaction
fluxes v are constrained by both the regulatory variables x, which can
force reaction fluxes to be zero and by the concentration of external
metabolites c, which set upper bounds on uptake fluxes. Formally, a
RMSS is a triple ðv; c;xÞ 2 R

jRj �R
jExtj � B

jInpjþjRjþjPj such that

SInt;R � v ¼ 0; (1.a)

8r 2 R; lr � xr � vr � ur � xr (1.b)

8m 2 Inp; r 2 R; Smr < 0) vr � uptake boundðcmÞ; (1.c)

where SInt;R is the submatrix of S whose rows correspond to internal
metabolites and uptake boundðcmÞ is the maximum flux through
uptake reaction r for input metabolite concentration cm (Varma and
Palsson, 1994).

2.1.3 Dynamics of RMNs and admissible time series

The d-rFBA models are executed at two time scales: the metabolic
network, considered as a fast system, depending on the activity of
input metabolites and regulatory proteins, rapidly converges to a

steady state and the regulatory network, considered as a slow sys-
tem, gets updated once the metabolic network is in steady state. The
overall dynamics is guided by the objective of maximizing the flux
through reaction Growth, assumed to reflect the growth of the cell
(Feist and Palsson, 2010).

Let b : Rn
�0 ! B

n be a binarization function such that 8s 2
R

n
�0; 8i 2 f1; . . . ;ng; bðsÞi ¼ 1 if and only if si > 0, else bðsÞi ¼ 0.

Given a RMSS ðvk; ck; xkÞ at time tk, a successor
RMSSðvkþ1; ckþ1; xkþ1Þ at time tkþ1 is computed as follows:

1. The external metabolite concentrations ckþ1 are computed from

the previous concentrations ck by considering constant uptake/

secretion fluxes vk for the whole time period ½tk; tkþ1�.
2. The Boolean state xkþ1 is computed by applying the regulatory

function f to the binarized input metabolites concentrations

x0Inp ¼ bðckþ1
Inp Þ at time tkþ1, together with the binarized reaction

fluxes x0R ¼ bðvkÞ and the Boolean values x0P ¼ xk
P of the regula-

tory proteins at time tk, that is, xkþ1 ¼ f ðx0Þ.
3. ðvkþ1; ckþ1; xkþ1Þ is a RMSS maximizing the flux through the

Growth reaction, that is, there is no RMSS ðv0; ckþ1; xkþ1Þ such

that v0Growth > vkþ1
Growth.

Such simulations can be computed with the FlexFlux implemen-
tation of d-rFBA (Marmiesse et al., 2015), which considers a fixed
time step s between successive RMSS, see Thuillier et al. (2021) for
details.

Let S be the set of all RMSSs of the RMN ðN ; Inp;P; f Þ. For in-
put metabolite concentrations c0 2 R

jExtj and the regulatory state
x0 2 B

jInpjþjPjþjRj, we denote by maxGrowthrMSSðc0; x0Þ ¼
maxfvGrowthjðv; c0; x0Þ 2 Sg the maximum growth flux given c0 and
x0. Given reaction fluxes v; v0 2 R

jRj, external metabolite concentra-
tions c; c0 2 R

jExtj and regulatory states x;x0 2 B
jInpjþjRjþjPj, d-rFBA

enables a transition from (v, c, x) to ðv0; c0;x0Þ if and only if the fol-
lowing constraints are satisfied:

c0 ¼ updateðc; vÞ; (2.a)

x0 ¼ f ðbðc0InpÞ;bðvÞ;xPÞ (2.b)

ðv0; c0; x0Þ 2 S; (2.c)

v0Growth ¼ maxGrowthrMSSðc0; x0Þ; (2.d)

where updateðc; vÞ updates the external metabolite concentrations c
according to reaction fluxes, stoichiometry and cell volume changes.
Equation (2.c) encompasses Equations (1.a–c). As shown in
Thuillier et al. (2021), one can derive a necessary Boolean condition
for these constraints (see Supplementary Section S2), which we de-
note by Equation (2.crelaxed).

2.2 The inference problem for regulatory rules
Next, we address the compatibility between the d-rFBA dynamics of
a RMN and given time-series data for reaction fluxes, regulatory
protein states and input metabolite concentrations.

2.2.1 Observed time series

An observation is a triple o ¼ ðvGrowth; c;xPÞ, where (i) vGrowth 2 R

denotes a Growth flux, (ii) c 2 R
jInpj the input metabolite concentra-

tions and (iii) xP 2 ðB [ f?gÞjPj represents regulatory protein states,
which can be either Boolean values or undefined (‘?’). An observed
time series is a sequence of observations TO ¼ ðo0; . . . ;omÞ;m � 0.

2.2.2 Compatibility between an observed time series and a RMN

A RMN and an observed time series TO ¼ ðo0; . . . ;omÞ, with oi ¼
ðvGrowthi

; ci; xPi
Þ; 0 � i � m; are said to be compatible with max-

imum distance K 2 N and noise rate 0 � � < 1 if there exists a d-
rFBA simulation TS ¼ ðŝ0; . . . ; ŝ lÞ; l � m; of the RMN, with RMSS
ŝ j ¼ ðv̂j; ĉ j; x̂jÞ; 0 � j � l; and a function g : f0; . . . ;mg ! f0; . . . ; lg
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associating each observation with a RMSS, such that the following
conditions are satisfied for 0 � i � m:

0 < gðiþ 1Þ � gðiÞ � K; (3.a)

x̂gðiÞInp
¼ bðciÞ; (3.b)

8p 2 P;xip 6¼ ? ) x̂gðiÞp ¼ xip ; (3.c)

vGrowthi

1þ � � max
Growth

rMSSðci; x̂gðiÞÞ �
vGrowthi

1� � : (3.d)

Equation (3.a) states that consecutive observations are separated
by at most K d-rFBA simulation steps. Equation (3.b) ensures the
complete match between the discretized values of the d-rFBA simu-
lation and the observed inputs. Equation (3.c) constrains the
Boolean states of proteins in the d-rFBA simulation to be equal to
the observed ones, when available. Equation (3.d) states that the
simulated growth is close (up to the allowed noise) to the observed
growth.

2.2.3 Inference problem

Equations (2) in Section 2.1.3 characterize the admissible sequences
of RMSSs w.r.t. a given RMN and Equations (3) the compatibility
between a RMN and an observed time series. The problem of infer-
ring regulatory rules compatible with a set of observed time series is

In practice, we focus on the smallest (subset-minimal) compat-
ible BNs by considering a partial ordering between BNs based on
the disjunctive normal form (DNF) of the local functions (Chevalier
et al., 2019). However, our approach can be used to enumerate all
compatible BNs, not only the subset-minimal ones.

2.3 Resolution using hybrid ASP
The inference problem relies on hybrid optimization as it requires
exploring the combinatorial domain of putative regulatory BNs con-
strained by the PKN and checking both combinatorial constraints
linking consecutive states of regulatory proteins according to a given
observed time series [Equations (2.b) and (3.b) and (3.c)] and linear
arithmetic constraints related to the characterization of RMSSs and
vGrowth optimization [Equations (1), (2.c–d) and (3.d)]. To solve this
problem, we used SMT solving (Barrett and Tinelli, 2018; Janhunen

et al., 2017), by implementing a resolution framework relying on
constraint propagation: whenever a solution satisfying the combina-
torial part is found, the linear part is checked. If the linear check suc-
ceeds then the solution is accepted. If it fails then the solution is
rejected and new constraints are added to the combinatorial part to
avoid alternative solutions which would for sure fail the linear check
as well.

The inference from purely combinatorial constraints was formu-
lated using ASP (Baral, 2003; Gebser et al., 2012), a logic program-
ming framework for expressing symbolic satisfiability problems.
Modern solvers like Clingo (Gebser et al., 2017) support various
reasoning modes, including subset-minimal enumeration. The linear
arithmetic constraints were formulated in linear programming.

The constraint propagation exploits a monotonicity property of
the objective vGrowth of RMSSs: for fixed input metabolite concen-
trations, inhibiting (respectively, releasing an inhibition of) a reac-
tion cannot increase (respectively, decrease) the maximum value of
vGrowth. Thus, given input metabolite concentrations c0 2 R

jInpj and
an optimal RMSS ðv; c0;xÞ, we can characterize optimal RMSS
ðv0; c0;x

0Þ for which v0Growth � vGrowth [Equation (4)], respectively,
v0Growth � vGrowth [Equation (5)] by requiring

8r 2 R; x0r � xr resp: (4)

8r 2 R; x0r � xr: (5)

This allows performing constraint propagation during the com-
binatorial resolution and further reducing the number of linear pro-
gramming checks.

Problem statement tackled by MERRIN: Inferring regulatory

rules from observed time series

Input:

1: a set of observed time series fT1; . . . ;Tqg; q � 1;

2: a metabolic network N ¼ ðInt;Ext;R; SÞ;
3: a set of regulatory proteins P;

4: a prior knowledge network (PKN) G whose nodes belong

to Inp [ P [R and such that there is no i!s j 2 G with

i; j 2 Inp [R;

5: a noise parameter � 2 ½0; 1½;
6: a maximum distance K 2 N between observations.

Output: All BNs f 2 B
jInpjþjRjþjPj such that:

1: f is locally monotone;

2: Gðf Þ � G;

3: for each Ti the associated RMN ðN ; Inp;P; f Þ has a d-rFBA

simulation TS compatible with Ti [satisfying Equation (3)];

4: there is no BN f 0 2 F smaller than f considering the local

functions in disjunctive normal form (subset minimality

ordering).

Algorithm 1. Hybrid Resolution: T ¼ fT1; . . . ;Tqg;N ;P;G; �;K

1: Inp fm jm 2 Ext;9r 2 R; Smr > 0g
2: n jInpj þ jRj þ jPj
3: F ff j f 2 B

n ! B
n;Gðf Þ � G ^ f is locally monotoneg

[ASP solving]

4: select f̂ 2 F verifying (2.a), (2.b) and (2.crelaxed)

5: RMN  ðN ; Inp;P; f̂ Þ
6: for all Ti 2 T do

7: select a family of RMSS fŝ i
0; . . . ; ŝ i

li
g of the RMN satisfy-

ing constraints (3.a), (3.b) and (3.c)

8: end for

[Linear solving]

9: check with linear programming whether (2.c) and (3.d)

hold

10: if (2.c) and (3.d) hold then

11: f̂ is a solution

12: else

13: for all oi
j and its associated RMSS ŝ i

k do

14: oi
j ¼ ðvi

Growthj
; ci

j;x
i
jÞ and ŝ i

k ¼ ðv̂i
k; ĉ

i
k; x̂

i
kÞ

15: if v̂i
Growthk

> ðvi
Growthj

Þ=ð1� �Þ then

16: add Equation (4) with x ¼ x̂i
k

exclude any RMSS associated with oi
j that do not

verify Equation (4).

17: else if v̂i
Growthk

< ðvi
Growthj

Þ=ð1þ �Þ then

18: add Equation (5) with x ¼ x̂i
k

exclude any RMSS associated with oi
j that do not

verify Equation (5)

19: end if

20: end for

21: return to step 4

22: end if
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The hybrid resolution of the inference problem is detailed in
Algorithm 1. For the sake of simplicity, we explain the global solv-
ing scheme on the full time series T, although the software imple-

mentation extends this algorithm to incomplete time series. In
practice, Algorithm 1 is implemented by extending the Clingo solv-

er, using its Python API, with a linear constraint propagator, imple-
mented with the python PuLP library and the solver COIN (Forrest
et al., 2022). Each problem instance was executed on Fedora 34

with an 8 core processor i7-1165G7@2.80 GHz and 16GB of RAM.

3 Results

3.1 MERRIN workflow
The MEtabolic Regulation Rule Inference (MERRIN) software

implements the workflow in Figure 1a to infer regulatory rules of a
RMN from possibly incomplete and noisy observed time series

(Sections 2.2 and 3.2) using Algorithm 1.
MERRIN takes as input (i) a metabolic network N ¼

ðInt;Ext;R; SÞ in SBML format, (ii) a set of regulatory proteins P,

(iii) a set of observed time series T ¼ fT1; . . . ;Tqg with their type
[complete, kinetic-fluxomic (KF), kinetic-transcriptomic (KT) and
T] in CSV format and (iv) a PKN G in text format. To allow for in-
complete and noisy time series, two parameters can be set: (i) K 2 N

the maximum number of intermediate unobserved RMSSs for each
time series and (ii) � 2 ½0; 1½ the estimated noise rate. For the rest of
the paper, we will consider � ¼ 0:3 and K¼10.

The search space F consists of all BNs f of dimension n ¼
jInpj þ jRj þ jPj whose influence graph G(f) is a subgraph of the
PKN G. The size of F is doubly exponential in n. MERRIN returns
as output all subset-minimal locally monotone regulatory BNs f 2 F

such that the associated RMN ðN ; Inp;P; f Þ is compatible with the
observed time series T ¼ fT1; . . . ;Tqg.

3.2 Application to a core regulated metabolic model
3.2.1 Problem instance

To validate our approach, we applied MERRIN to synthetic data
generated for a core RMN originally proposed in Covert et al.
(2001), which we refer to as the gold standard. (i) The metabolic
layer of the gold standard (see Fig. 2a), also serving as input for
MERRIN, contains 20 reactions and 8 external metabolites, among
them the 5 inputs Carbon1, Carbon2, Oxygen, Fext and Hext. (ii)
The regulatory layer of the gold standard involves the four regula-
tory proteins RPcl, RPO2, RPb and RPh. (iii) In order to explore al-
ternative regulatory rules that could explain the observed time-series
data, we consider the PKN in Figure 2b, which includes for each
edge in the influence graph of the gold standard all possible combi-
nations of signs and directions. Moreover, two edges from Carbon2
to RPcl, and four edges between RPcl and Tc1 were added as pos-
sible alternative regulations to be explored. It follows that the search
space to be explored by MERRIN contains 	1:8� 1015 locally
monotone BNs, including the gold standard.

3.2.2 Degraded time-series generation

We used the workflow in Figure 1b to generate a benchmark of 240
time-series sets. First, FlexFlux (Marmiesse et al., 2015) was used to
generate complete KF-transcriptomic (KFT) d-rFBA simulation data for
the five environmental conditions of the core RMN (see Supplementary
Section S3.1), each yielding 301 RMSS (initial biomass ¼ 0:1 g L�1,
steps¼300, intervals ¼ 0:01 h). Then, for each complete KFT time ser-
ies, we generated (i) a KF time series by removing the values of the regu-
lated proteins, (ii) a KT time series by discretizing all fluxes to binary
values and (iii) a T time series by discretizing all fluxes and metabolite
concentrations to binary values. The resulting time series were further
compressed by removing redundant time points to emulate biological
experiments where only a few selected measurements are made. Finally,
for each of the five environmental conditions and each type of data
(KFT, KF, KT and T), we generated 60 random time series at different
noise rates (0%, 10%, 20%, 30%, 40% and 50%), by randomly delet-
ing time points and increasing or decreasing quantitative values.
Altogether, we obtained 240 sets of five incomplete and/or noisy time
series, each including 6–18 time points after the compression step.

3.2.3 Inference scores

The quality of MERRIN predictions was evaluated on two different
levels. First, we measured the distance between the observed time
series, on which the inference was based, and the time series
obtained by simulating the inferred model. The distance between
two RMSS time series S ¼ fs0; . . . ; smg and Ŝ ¼ fŝ0; . . . ; ŝmg w.r.t. a
set of components A was computed as the residual sum of squares

(RSS): RSSA ¼
Pm

i¼0

P
a2A ðsi

a � ŝ i
aÞ

2. We used RSSP to measure the

accuracy of the prediction of the time series for the four regulatory
proteins (RPcl, RPO2, RPh and RPb) and RSSExt to measure the ac-
curacy of the prediction of the time series of the eight external
metabolites (Carbon1, Carbon2, Oxygen, Hext, Fext, Dext, Eext
and Biomass).

Second, we measured the ability of MERRIN to infer the
expected regulations using the recall and precision of the inferred
BN. Given BNs f and f̂ , the recall of Gðf̂ Þ w.r.t. G(f) is the fraction

Fig. 1. (a) Workflow of the MERRIN software for MERRIN. (b) Degraded time-ser-

ies generation procedure: generation of 240 time series for the RMN of Covert et al.

(2001), with different levels of incompleteness and noise
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of edges of G(f) in Gðf̂ Þ, that is, recall ¼ jGðf Þ \Gðf̂ Þj=jGðf Þj,
where jGðf Þj denotes the number of edges. The precision of Gðf̂ Þ
w.r.t. G(f) is the fraction of edges of Gðf̂ Þ in G(f), that is,
precision ¼ jGðf Þ \Gðf̂ Þj=jGðf̂ Þj.

3.3 Performance of MERRIN on complete data
MERRIN was first applied to the complete noise-free KFT time ser-
ies corresponding to the five different environmental conditions. On

this input, MERRIN inferred exactly one smallest regulatory BN in
6.95 s. The inferred regulatory rules are shown with yellow high-
lighted edges in Figure 2a. The BN contains seven regulatory rules

(for RPO2, RPcl, RPh, RPb, Tc2, R2a and R8a) of the gold stand-
ard, three of which regulate reaction activity. It has a precision of 1,
meaning that all seven regulatory rules are in the gold standard and

a recall of 0.64, because four of the regulatory rules of the gold
standard have not been retrieved (rules for R5a, R5b, R7 and Rres).
Both RSSs are equal to 0: although the recall is not 1, the d-rFBA

simulations of the five experiments with the inferred regulatory BN
(Fig. 2c) match exactly the complete noise-free time series. The unre-
covered regulatory rules of the gold standard are not necessary to

explain the observed time series.
This is consistent with the discussion in Covert et al. (2001) that

the regulation of Rres is not necessary for the optimal solution.

Biologically, this regulation is only present to ensure that unnecessary
respiratory enzymes decay in an anaerobic environment. However,
since enzyme amounts are not explicitly represented in the d-rFBA
framework, the time series do not reflect this biological behavior, ham-
pering the inference of the regulation. Similarly, R5a and R5b were
introduced in the RMN to model that aerobic and anaerobic carbon
synthesis is catalyzed by different enzymes. However, these enzymes
are not included in the model and both reactions are strictly equivalent.
It is therefore not surprising that MERRIN cannot infer the regulation
stating which of the two reactions should be selected. Finally, the miss-
ing regulation of R7 in the inferred RMN is explained by the fact that
R7 cannot be activated in d-rFBA simulations optimizing growth be-
cause its activation would consume carbon and energy, leading to a de-
crease in biomass synthesis. Therefore, regulating R7 is not necessary
to explain its activity in the simulations.

3.4 Impact of data incompleteness and noise
3.4.1 Range of application of MERRIN

When considering higher degradation rates (40% and 50%), 9 of
the 60 test instances reached the time limit of 600 s (see
Supplementary Section S3.2.1). The number of BNs also increased
drastically at 50% degradation, as well as the RSS scores, suggesting
that the degradation rate of 30% is the limit for the MERRIN ap-
proach. As shown in Supplementary Section S3.2.2, we also tested

Fig. 2. (a) RMN from Covert et al. (2001). Lower part is the metabolic network. The nodes are metabolites and the black hyperedges are reactions. Upper part is the regulatory

network. The nodes are regulatory proteins. Edges represent the Boolean functions: green edges denote activation and red edges inhibition. Yellow highlighted edges are the

inferred regulation from the complete noise-free time series. (b) Set of permitted interactions use for the inference. Red edges, solid and dot, are inhibitions. Green edges, solid

and dot, are activations. The set of solid edges describes the influence graph of the regulatory network of (a). (c) FlexFlux simulations of the inferred RMN [yellow highlighted

regulations in (a)] using the experimental conditions of Covert et al. (2001). These simulations are identical to the simulations of the reference RMN
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the case of KF instances. Such instances do not contain any informa-
tion on the four regulatory protein states, making it difficult to infer
regulatory rules between proteins and reactions. As expected,

MERRIN is not able to correctly determine the regulatory rules con-
trolling them. This leads to time-consuming enumeration of a very

large number of BNs, all compatible with the observed time series,
but considering all the possible regulatory protein states. Based on
these results, we suggest to use MERRIN only on kinetics and T real

datasets. According to the design of MERRIN, proteomics data can
be viewed as alternative to T data if they are available. Therefore, in

the following, we focus only on the data types KFT, kinetics-T (KT)
and T with a degradation rate between 0% and 30%, which repre-
sents 120 instances.

3.4.2 Number of models inferred by MERRIN

Figure 3 shows the number of subset-minimal models inferred by

MERRIN in the given time limit for the 120 tested instances. When
a solution was reached in the time limit, MERRIN inferred at most
two subset-minimal models. In total, 134 BNs were inferred from

the 120 instances. Among these 134 BNs, there were only 15 differ-
ent BNs, see Supplementary Figure S2. For each of these models, we

computed the precision and recall (see Section 3.2) with respect to
the gold standard (see Supplementary Section S3.2.3 and Fig. 3). For
110 instances out of 120, the precision is equal to 1, meaning that

all the regulatory rules inferred in these BNs are present in the gold
standard. The maximum recall is equal to 0.64, while the minimum

recall is 0.55.

3.4.3 Performance

Among the 120 instances of our benchmark, only one has reached
the time limit (gray square in Fig. 3). For this instance, we do not
have any information whether or not there is a solution. In 3 out of
the 120 instances (Fig. 3), MERRIN reported that no BN satisfied
the constraints. This happens only at 30% noise rate. For the 116
other instances, the average inference time was 25.975 s.

3.4.4 Simulation scores

For each of the 134 BNs inferred, we compared the associated d-
rFBA time series of external metabolites and regulatory proteins to
the ones of the gold standard using the RSSExt score (Fig. 3a) and the
RSSP score (Fig. 3b). In Figure 3, green squares correspond to cases
where MERRIN inferred a unique BN whose associated RMN has
exactly the same r-dFBA simulations as the gold standard [RSSExt ¼
0 (Fig. 3a) and RSSP ¼ 0 (Fig. 3b)]. Interestingly, the same BN was
inferred for each green square and this BN is the same as the one
obtained on complete data (Fig. 2a) Yellow squares of Figure 3
stand for BNs reproducing the gold standard RMN simulations with
a very small error. These errors are due to missing regulatory rules.
For example, all the BNs with RSSExt < 1 and RSSP ¼ 1 are BNs for
which the regulatory rule of reaction R2a has not been inferred. Red
squares correspond to the worst possible RSSExt (> 1000), equiva-
lent to cases in which no regulatory rules were inferred. This hap-
pens twice among the 120 experiments.

3.4.5 Impact of degradation rate

A vertical bar of 10 green squares in Figure 3 means that MERRIN
inferred, for each of the 10 test instances, a unique BN that perfectly
matches the gold standard. This occurred only for KT and KFT
instances with no degradation in the input time series. RSSExt and
RSSP increased with the degradation rate, as one should expect.
However, most of the RSS scores are very small, emphasizing that
the inferred BNs can almost perfectly reproduce the gold standard
when the degradation rates is <30%.

3.4.6 Impact of the type of data

The results are identical for the complete (KFT) and the KT instan-
ces (except one KP at 30%, which reached the time limit of 600 s).
This could be expected since MERRIN reasons over binarized fluxo-
mics data, which once binarized are identical to the qualitative in-
formation provided by T data. In addition, the inferred BNs from
the KFT and KT time series reproduce the gold standard with good
precision most of the time, except in two cases (red squares).

For T time-series instances, our results show that no inferred BN
was able to perfectly reproduce the gold standard. However, for
each inferred BN both RSSExt and RSSP are small: RSSP � 1 for all,
except for two instances, and RSSExt < 1. This suggests that with-
out information on external metabolite concentrations, it is harder
for MERRIN to explain if the observed RMSS is due to some regula-
tions or to a specific combination of external metabolite concentra-
tions. In this case, regulatory rules, such as the rule controlling the
reaction R2a, are missed.

4 Discussion and conclusion

We introduced MERRIN, a novel approach to infer rules for meta-
bolic regulation in changing environments. MERRIN is based on the
d-rFBA framework, which combines discrete simulations of BNs,
modeling the activity of regulatory proteins, with the prediction of
metabolic response, based on linear programming.

4.1 Advantages of using constraint propagators
A characteristic of the inference problem is that the set of BNs veri-
fying both combinatorial and linear constraints is small compared
with the set of BNs verifying only the combinatorial constraints. To
address this issue, our resolution implements a SMT approach with
a dedicated algorithm for combining Boolean satisfiability with

Fig. 3. RSS depending on data type and degradation level on the dynamics of the ex-

ternal (a) metabolic concentrations and (b) regulatory proteins. Each vertical bar

corresponds to the results of MERRIN on the 10 instances associated with a consid-

ered data type (KFT, FT and T) and degradation type (0%, 10%, 20% and 30%).

Each square corresponds to one solution and its color to RSS ranges (see legend). A

black edge separates the MERRIN results on the different instances
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linear programming: we designed a constraint propagation strategy
on top of the ASP solver Clingo by exploiting a monotonicity prop-
erty of the optimization objective in RMNs. This strategy reduced

substantially the number of candidate solutions to be validated, by
generalizing counterexamples satisfying the combinatorial con-

straints but not the linear ones encountered during the search.

4.2 Possible strategies to infer all regulatory rules
MERRIN infers regulations only when they improve the fitting be-

tween observations and simulations, which depends on the underly-
ing optimality principle (here optimizing growth). Since the presence
of some regulations from the gold standard does not affect the fit-

ting, it is not possible for MERRIN to infer them. Inferring more
regulations would require to introduce enzyme amounts and their

synthesis. Methods such as r-deFBA (Liu and Bockmayr, 2020)
should allow solving this issue.

4.3 Impact of the synchronous simulation assumption
The d-rFBA framework as defined in Covert et al. (2001) and
Marmiesse et al. (2015) uses synchronous simulation of BNs (the
state of all regulatory proteins is updated simultaneously). While

our implementation allows considering asynchronous simulation,
this results in a less constrained model. Indeed, the fact that a regula-

tory protein has the same state in two consecutive steady states
could be explained either with the application of a regulatory rule,
or by the absence of an update. Therefore, considering asynchronous

updates would probably require considering further time constraints
in order to match the experimental observations.

4.4 Use of synthetic data to validate network inference
The validation of methods related to the inference of regulatory rules
can be misleading since there is no reference multi-layer dataset or ref-

erence RMN allowing large-scale validations. As discussed in Covert
et al. (2001) and confirmed in Thuillier et al. (2021), even in the most
complete (small-scale) gold standard RMN introduced in Covert et al.
(2001), some regulatory rules introduced according to literature-based
knowledge have no impact on the RMN simulation. To address this

issue and to test our approach, we used a benchmark strategy consist-
ing in generating several types of data from the simulations of a gold
standard. This allowed testing the robustness of the MERRIN ap-

proach in different scenarios of data types (combinations of kinetics,
fluxomics and T data) and noise (up to 50% noise introduced in the

data). We argue that such a benchmark strategy could be used in a
similar way to test the robustness of any other dynamical network in-
ference method when only few reference data are available.

4.5 Impact of data types and quality
According to our results, the performance of MERRIN on kinetic
and T data is similar to complete data (kinetic, fluxomics and T).

This suggests that inferring regulatory rules of metabolic networks
actually would not require fluxomics data, which are most probably

the hardest data to obtain experimentally. In this direction, a per-
spective to extend the MERRIN approach would be to identify the
best experimental designs to discriminate the models associated with

the PKN. In addition, MERRIN seems to be sensitive to noise only
for single fluxomics data. In all other cases, up to 30% noise in the
data has few impact of the MERRIN performance.

4.6 Scalability
The computation times in this study are encouraging for inferring

regulations in larger networks. Handling linear constraints reduces
to FBA, which can be done efficiently on genome-scale networks.
However, this has to be done many times during combinatorial

search. Thus, for inferring large-scale RMNs, improved constraint
propagation techniques may become necessary to further prune the
combinatorial search space.
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