
HAL Id: hal-03699721
https://hal.science/hal-03699721

Preprint submitted on 23 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Partitioning of Directed Graphs Using
Graphlets

Luce Le Gorrec, Philip A. Knight

To cite this version:
Luce Le Gorrec, Philip A. Knight. Scalable Partitioning of Directed Graphs Using Graphlets. 2022.
�hal-03699721�

https://hal.science/hal-03699721
https://hal.archives-ouvertes.fr


Scalable Partitioning of Directed Graphs Using
Graphlets

Luce le Gorrec and Philip Anthony Knight

Department of Mathematics and Statistics
University of Strathclyde, United Kingdom

{luce.le-gorrec,p.a.knight}@strath.ac.uk

Abstract. Community detection aims to partition a network into simi-
lar groups of nodes. Mainstream approaches focus on direct interactions
(i.e. edges), but these are limiting for many community structures met in
directed networks. Recently, analyses based on implicit interactions have
been investigated. In particular, those based on graphlets have been iden-
tified as a promising tool. In this study we propose an algorithm to par-
tition directed networks based on graphlets. Our method uses graphlets
to produce an undirected representation of the network, and partitions
this using the Louvain algorithm. It finally post-processes the resulting
partitioning to address nodes disconnected from the undirected represen-
tation. We propose an implementation of the algorithm that is versatile,
as it addresses a much larger set of graphlets than other existing meth-
ods. It is also numerically efficient, as it addresses networks with up
to a few millions of nodes. Finally, it is user-friendly, since it provides
the user with a large number of parameters and use cases that can be
manually tuned, or used as default. On these three points, to the best of
our knowledge, our proposed solution is the state-of-the-art.

Keywords: Community Detection · Directed Networks · Graphlets.

1 Introduction

Community detection is an essential tool in the analysis of complex networks. In
essence, it groups together nodes that are similar, while separating those that are
dissimilar. Community detection has proven useful in applications as diverse as
predicting protein functions [8]; uncovering terrorism-related Twitter users [9];
analysing the history of mathematics [7], etc.. In the case of undirected networks,
a simple and widely accepted definition of a community is that nodes within a
community are densely connected, and loosely connected to the nodes outside—
See Table 1.1 from [22]. Finding such communities has been an area of abundant
research, and an ever increasing number of algorithms to uncover community
structures have been proposed. Each makes its own interpretation of the meaning
of “densely’” and/or “loosely” connected (intra-community density [16], cut [19],
random walks [18], etc.), and the best way to reveal such a structure.

On the other hand, detecting communities when the network is directed is
a much more sparsely populated field, with no such consensus about what a
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community should look like. This is because the very nature of a community is
strongly application dependent. For instance, Figure 1 from [15] highlights com-
munity structures of different kinds: density-based, citation-based, and a flow-
based community structures (from the left to the right). Algorithms designed to

Fig. 1. Different kinds of community structures in directed networks (from [15]).

reveal communities within directed networks are thus dependent entirely on the
structure of choice and a particular structure may require a bespoke method. For
instance, InfoMap [18] aims to uncover flow-based community structures, while
the algorithm from [6] focuses on citation-based communities. Algorithms for
undirected networks have been retooled to cope with their directed counterparts
by symmetrising the edges of the network adjacency matrix. These are generally
better suited to uncover density-based community structures [15, Sections 4.1-2].
In summary, choosing the wrong algorithm can lead to inconsistent partitioning
and different algorithms need to be used to uncover different kinds of community
structures. This severely limits the utility of many existing methods.

Related Work. Recently, a framework has been proposed that builds a higher-
order representations of networks based graphlets and partitions it using main-
stream partitioning methods. This offers an attractive route to community detec-
tion, and has already given meaningful results in divers applications [13,20,1,21].
In large part, this is due to the fact that, with a judicious choice of graphlets,
these higher-order representations should exhibit community structures which
are groups of densely connected nodes. Yet, because of the novelty of this frame-
work, there are only a few solutions that implement it, with room for improve-
ment. Namely, the solution from [20] addresses uniquely undirected networks.
Three related implementations for directed networks are proposed in [21,1,25].
They all use spectral algorithms to partition the networks, for which it is nec-
essary to prescribe the number of clusters to find. The first cited of these can
be used on all possible 3-node graphlets, and can deal with weighted networks,
too. One can also use it to return the higher-order representation of the network.
However, it is not suitable for large-scale networks. The two other methods can
deal efficiently with all 3-node graphlets, even for very large networks. They can
also address a single 4-node graphlet, known as the BiFan, but only for networks
of moderate size. In both, the user has no access to the higher-order represen-
tation. None of these four methods is designed to deal with nodes that do not
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appear in the higher-order representation but it is not uncommon for such nodes
to account for a large proportion of the node set.

Contributions. In this study, we present a solution—named MARGOT as in
Motif-based pARtitioning of Graph with OrienTed edges—with three notable
features. 1)Versatility. MARGOT addresses all 3-node and quadrangle graphlets,
that is 142 graphlets overall. Moreover, it can produce interesting partial higher-
order representations. 2)Numerical efficiency. MARGOT is parallelisable and
able to address networks with millions of nodes, for both 3-node and quadran-
gles graphlets. 3) User-friendliness. MARGOT can be used end-to-end with
default parameters, requiring only the path to the input graph and the destina-
tion of where to save the details of the output partitioning. But many parameters
can be manually tuned to produce bespoke results.

The remainder of this paper is divided as follows: Section 2 presents defini-
tions and concepts. These are used in Section 3 where we describe our method. In
particular, Section 3.2 explores the numerical efficiency of the software. Finally,
in Section 4 we use our software to analyse a real-world network.

2 Useful Objects and Concepts

2.1 Graphlets, Orbits, and Motif Adjacency Matrices

In this study, we investigate directed, unweighted graphs (also called networks),
denoted by G = (V,E), with V ⊂ N the set of nodes, and E ⊂ V × V the set of
edges. Graphs are assumed to be without self-loops. Our method first builds a
higher-order representation of a graph G based on a graphlet (synonymous to a
motif in this study) that is called a Motif Adjacency Matrix (MAM) [1,21].

Definition 1. A graphlet (motif) is a small connected graph M = ({1, ..., k}, H).
A graphlet M with k nodes is called a k-node graphlet.

Definition 2. Given a network G = (V,E) and a graphlet M = ({1, ..., k}, H),
we say that S ⊂ V is an occurrence of M in G if GS = (S,E ∩ S × S) is
isomorphic to M. This is denoted S ∼ M, in which case IM,G(S) is the set
that contains all the isomorphisms from GS to M.

Graphlet occurrences are exemplified in the left panel of Figure 2.

Definition 3. The Motif Adjacency Matrix of the graph G = (V,E) built
on graphlet M is the weighted undirected graph GM = (V,EM) whose adja-
cency matrix M ∈ R|V |×|V | is defined as:

M(i, j) = | {S ⊂ V : i, j ∈ S and S ∼ M} |,∀i ̸= j.
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Graphlet Occurrences: Motif Adjacency Matrix:

in

a b
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de

⇓
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Fig. 2. Left: Red subgraph is not an occurrence of the blue graphlet in the network;
Green subgraph is. Right: Occurrences of the blue graphlet in the network are {a, c, b},
{a, c, e}, and {d, c, b}, which result in the bottom MAM.

We note that in the literature it is common practice to use the term Motif
Adjacency Matrix to denote both the adjacency matrix M and the associated
graph GM.

In brief, the MAM of a graph G = (V,E) given a graphlet M is an undirected
weighted graph, built on V , and in which an edge between two nodes specifies the
number of times these nodes appear together in an occurrence of M. An example
is provided in the right panel of Figure 2. Alternatively, a MAM can be defined
along with a set of anchors [1], a subset of the graphlet set of nodes. When two
nodes appear together in a graphlet occurrence, an edge is drawn in the MAM if
these nodes can be mapped with nodes in the anchor set by an isomorphism. In
our solution, anchors are related to the so-called orbits. Definitions are provided
below, and an example of a MAM with anchors is provided in Figure 3.

Definition 4. Given a k-node graphlet M, we say that u, v ∈ {1, ..., k} have the
same orbit if there exists σ ∈ IM,M({1, ..., k}) s.t. v = σ(u). This is an equiv-
alence relation on {1, ..., k}, and we call the orbits of M a set of equivalence
classes representatives, denoted O(M).

Definition 5. The MAM of G built on M with anchors A ⊂ O(M) is the
graph GA

M = (V,EM) whose adjacency matrix M ∈ R|V |×|V | is:

M(i, j) = |{S ⊂ V : i, j ∈ S and ∃σ ∈ IM,G(S) : σ(i), σ(j) ∈ A}|,∀i ̸= j

We observe that a MAM with an anchor set that covers the orbit set is equivalent
to a MAM without anchor set as defined in Definition 3.

2.2 Modularity and The Louvain Algorithm.

In our method, we use the Louvain algorithm [2] to partition MAMs. Recent
studies show that it is still one of the most accurate and computationally ef-
ficient in discovering community structures within (weighted) undirected net-
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Fig. 3. MAMs of the yellow network built on a graphlet with 2 orbits (blue and red).

works [24,5]. The Louvain algorithm aims to maximise the so-called modular-
ity [16], which measures the consistency of a community structure on a network,
as defined below.

Definition 6. Given A ∈ Rn×n the adjacency matrix of a weighted undirected
graph G and a community structure C on G (that is a partitioning of V ), the
modularity of C on G is measured by

Qγ(A, C) = 1

2m

∑
C∈C

∑
u,v∈C

(au,v − γ
kukv
2m

), (1)

where kv =
n∑

w=1
av,w is the (weighted) degree of node v, m = 1

2

n∑
v=1

kv counts the

edges, and γ is the so-called resolution parameter that helps to prevent the
resolution limit [17].

The Louvain algorithm aims to maximise the modularity via a multi-level
heuristic. Starting with the trivial community structure in which each node
has its own community, it follows an iterative 2-step scheme. 1) Each node is
visited in turn and assigned to the community that produces the maximum
gain of modularity, until no gain can be achieved by moving one node; 2) A
meta-graph is built by merging nodes that belong to a same community into
meta-nodes. These two steps are repeated until the obtained meta-graph cannot
be simplified. It is possible to run Louvain from some initial partitioning: the
meta-graph corresponding to this partitioning is first built, and the process is
then run on this. We will use this idea in our post-processing step, to assign a
community to nodes disconnected from the MAM.

3 Our Solution

In this section, we describe our proposed method and analyse its complexity.
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3.1 The Algorithm

Fig. 4. Partitioning of the network using the 3-node loop. Node colours specify the
community structure.

Given a directed graph and a graphlet, our algorithm performs the following
steps: 1) The MAM of the graph is built based on the given graphlet; 2) The
MAM is partitioned using the Louvain algorithm; 3) Nodes that are disconnected
from the MAM are assigned to a community. This pipeline is illustrated in Fig-
ure 4. The three following paragraphs describe these stages. Our implementation
enables each stage to be run independently or all together. Parameters can be
tuned or used as default. The table in Figure 5 summarises this.

Building the MAM of a 
directed network

Partitioning a network/a 
MAM with Louvain

Postprocessing a partition
Building a MAM and 

partitioning it with Louvain
Partitioning a MAM and 

postprocessing the partition

Building a MAM, partitioning 
it and postprocessing the 

partition

-ma -pa -po -mapa -papo
-igraph path to directed graph path to directed graph path to directed graph path to directed graph path to directed graph path to directed graph
-isym x path to MAM path to symmetrised graph* x path to symmetrised graph* x
-imam x x x x path to MAM x
-ipart x x path to partial partition. x x x
-omam path to MAM x x path to MAM (none ) x path to MAM (none )
-opart x path to partial partition. path to the final partition. path to partial partition. path to final partition. path to final partitiom.

-oppart
x x x x

path to partial partition. 
(none )

path to partial partition. 
(none )

-m graphlet (E2 ) x x graphlet (E2 ) x graphlet (E2 )
-orb anchors (all orbits ) x x anchors (all orbits ) x anchors (all orbits )
-nth number of threads (1 ) x x number of threads (1 ) x number of threads (1 )
-l x level from Louvain (coarse) x level from Louvain (coarse) level from Louvain (coarse) level from Louvain (coarse)
-c x γ in Louvain modu (1 )** x γ in Louvain modu (1 )** γ in Louvain modu (1 )** γ in Louvain modu (1 )**
-cc x x γ in postproc. modu (1e-3 )** x γ in postproc. modu (1e-3 )** γ in postproc. modu (1e-3 )**

-k
x x

max. size of metanodes to 
merge (1 )

x
max. size of metanodes to 
merge (1 )

max. size of metanodes to 
merge (1 )

* MAM built upon graphlet E2
** γ : resolution parameter from Eq (1)mandatory arguments

exactly one of these arguments is required
optional arguments (default values )

Legend:

Flags

Inputs

Outputs

Parameters

Fig. 5. Summary of the possible software use cases and parameters with default values.

Building Motif Adjacency Matrices. MAMs are extremely useful since they trans-
form directed networks into weighted undirected networks that highlight desired



Scalable Partitioning of Directed Graphs Using Graphlets 7

structural properties, as illustrated in Figure 6. Here, a directed network is built

Green Red
nodes nodes

5e−2 2e−1

1e−3 7.5e−2

Fig. 6. A network from a SBM and two of its MAMs (graphlets in green). MAM
visualisations are obtained using the Force Atlas algorithm from Gephi.

using the stochastic block model (SBM) shown at the top right panel. Two kinds
of structures could be of interest: the core-periphery structure with red nodes as
core and green nodes as periphery, and the two-block structure that separates
red from green nodes. For both targets, it is possible to pick a graphlet whose
associated MAM exhibits the desired structure, as illustrated in the bottom
part of the figure. But building the MAM is the bottleneck for our method, and
more generally for the framework evoked in Section 1, in terms of scalability [1].
The complexity of methods for enumerating graphlet occurrences generally grows
with the size of graphlets. Thus, we limit ourselves to 3-node graphlets, and quad-
rangles which are 4-node graphlets containing a 4-edge undirected cycle. Indeed,
two efficient algorithms to enumerate respectively closed 3-node graphlets (called
triangles) and quadrangles in undirected graphs were proposed in [3]. When the
graph is connected, they are both theoretically proven to be upper-bounded by
the same time complexity, namely O(m1.5) with m the number of edges. As this
is the best complexity we are aware of for the enumeration of occurrences of such
graphlets, we have adapted these algorithms to directed networks. For open 3-
node graphlets (called wedges), we use the algorithm proposed in [1]. The graph
datastructure used to implement those algorithms is from SNAP [14]. Further-
more, all of these algorithms can parallelised straightforwardly in a manner that
resembles the Node-Parallel version of [4]. We have done this using OpenMP.
Finally, for all the different graphlets addressed in the software, we adapted the
implemented methods so that orbit-based anchored MAMs can be built.

In the software, the graphlet used to build a MAM is specified by the param-
eter -m, and orbits to use as anchors by -orb. The list of all graphlet identifiers
with their orbits are listed in the file GraphletIdentifiersWithOrbits.pdf. Using
the default value -m E2, the representation of the input network G produced by
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the software is the undirected, weighted graph with adjacency matrix A+AT ,
where A is the adjacency matrix of G.

Partitioning. After the first stage of the algorithm we have built a MAM that
represents an undirected weighted graph having the same set of nodes as the
input network. The second stage partitions this MAM using the Louvain algo-
rithm. The modularity function that Louvain aims to maximise suffers from the
so-called resolution limit that can cause it to overlook well-defined communities
if they are too small [17]. To circumvent this, the resolution parameter γ from
Definition 6 can be manually tuned in our implementation by means of the argu-
ment -c. Another way to avoid enormous communities is to force Louvain to stop
before its final pass, which can be done in our implementation using the argu-
ment -l. Our implementation is adapted from the Louvain software from https:

//sourceforge.net/projects/louvain/files/GenericLouvain/.
Finally, note that the MAMs returned by the software are textual edge lists:

a text file in which each a row indicates an edge by three numbers, namely its
source node, target node, and its weight. This is a classical format for graphs,
and it is thus possible to use other algorithms to partition the MAMs, indepen-
dently from our software. Our post-processing can then been applied using the
partitioning at hand.

Post-Processing. It is clear from Definition 3 that any nodes from the input
graph which are not involved in any graphlet occurrence will be disconnected
from the MAM. Such nodes can account for a large part of the node set, and
it may be important to assign a community to them afterwards. To this end,
we apply a home-brewed constrained version of Louvain on the input network
symmetrised as for -m E2, with the partial partitioning obtained after stage 2 as
a starting point. A meta-graph is built based on the input symmetrised graph
and the input partial partitioning: nodes that belong to the same community
are merged together to form meta-nodes. There is also one meta-node for each
node disconnected from the MAM, so that all the nodes from the initial graph
are taken into account in this meta-graph. Louvain is then applied on this meta-
graph, but with additional constraints to prevent mergers of some of the initial
partitions. Namely, the initial partitions are split onto two groups: those that can
be merged (free partitions), and those that cannot (constrained partitions). The
Louvain algorithm is then modified as follows: 1) In the modularity maximisation
procedure only the free meta-nodes (partitions) are visited, and they can only
be merged within constrained partitions; 2) When new meta-graphs are built,
the new meta-nodes are considered free only if all the nodes (partitions) that
they contain are free. From a software perspective, whether a partition is free
or constrained in the initial partitioning is dependent on the number of nodes
that it contains. This can be tuned using the parameter -k. Using the default
parameter, free partitions are disconnected nodes (partitions that contain at
most one node).

Furthermore, since the purpose of this stage is to assign disconnected nodes to
existing communities, the modularity to maximise in this constrained approach is

https://sourceforge.net/projects/louvain/files/GenericLouvain/
https://sourceforge.net/projects/louvain/files/GenericLouvain/
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tuned with a very low default resolution parameter (10−3). This can be changed
using the argument -cc.

3.2 Resource Consumption

Here, n is the number of nodes in the graph, m is the number of edges, and kv
is the (undirected) degree of a node v. Graphlets are denoted by their identifiers
as defined in [10].

Theoretical run-time complexity of building a MAM. The algorithms proposed
in [3] to list triangles and quadrangles in undirected networks have a proven
theoretical upper-bound of run-time complexity equal to O(m1.5) with ideal
data structures. When extended to directed networks and using the SNAP data
structure, the complexity becomes O(

∑
v k

2
v). To build MAMs of wedges, we

implemented the method proposed in [1], which also has complexity O(
∑

v k
2
v).

Theoretical run-time complexity of Louvain. A fine bound for the complexity
of the Louvain algorithm is unrealistic since the sizes of objects (number of
communities, number of (meta-)nodes in the graph) vary greatly from iteration
to iteration. An upper-bound proposed in [5] is O(n log(n)), where the authors
also find that in practice Louvain is the quickest algorithm from their benchmark,
even though others have lower upper-bounds.

Practical resource consumption. To assess the scalability of the implemented
method, we first run it on a benchmark of randomly generated networks with
average degree 10 where the number of nodes varies from 100K to 1.6M. The
experiments were run on a desktop with an I9-7060X processor with 32 logical
cores and 128GB RAM. We terminate any process that needs more than 3 hours
of run-time. In Figure 7, we record the elapsed time and maximum resident
set size taken to build a MAM given a 3-node graphlet (left) or a quadrangle
(right) averaged over 2 random networks and a subset of graphlets. We observe
that it takes a bit longer to compute MAMs for wedges than for triangles but
the memory consumption is the same. For 3-node graphlets, MAMs of largest
networks can be built in less than 2 minutes with only one thread. For both
3-node and quadrangle graphlets we note the substantial reduction in elapsed
time provided by a parallelisation using up to 8 threads: with only one thread
(blue curve) it is not possible to compute quadrangle-based MAM of the largest
graphs within the time limit. For more than 8 threads, the elapsed time is not
reduced, though the memory used to build quadrangle based MAMs is increased.

It is well known that the performance of algorithms on random networks
may be unrepresentative of real-world performance. Thus we have assessed our
method on five large real-world networks from https://networks.skewed.de/

whose statistics are provided in Table 1. Elapsed time and memory consump-
tion for building MAMs are summarised in Figure 8. Processes were killed if
unfinished within 2 hours. We observe two substantial differences from random

https://networks.skewed.de/
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Fig. 7. Total elapsed time and maximum resident set size to build MAMs.

Network name Number of nodes Number of edges

Dallas Fortworth Arlingto 187K 466K
Stanford Web 282K 2.3M
MySpace Aminer 853K 5.6M
WikiTalk fr 1.4M 2.4M
Trec Web 1.6M 8.1M

Table 1. Statistics of real-world networks.

networks. First, it takes much longer to build MAMs for wedges. This is re-
lated to the high frequency of these graphlets. For Trec web and Stanford Web,
it takes more than 1GB of RAM to build the T74 MAM. Second, we observe
that the memory consumption distribution is uneven and can reach high val-
ues. Three networks require more than 20GB of RAM to build MAMs on Q204
(up to 50GB for the largest network). Apart from these specific differences, the
method behaves similarly for real-world and random networks. Elapsed times
for graphlets other than wedges are comparable, and using several threads cuts
the run-time deeply. Figure 9 shows how the elapsed time of the whole process is
distributed between the three stages of the method on real-world networks using
8 threads to build MAMs. The partitioning and post-processing steps were run
5 times for each case, and the time shown here is averaged. We observed that
when our method is applied on quadrangles and on wedges generally more than
half of the total time is spent building the MAM.

Finally, we compare the complexity of building MAMs in MARGOT using 8
threads, and in the solutions proposed in [21] (denoted ORFE) and in [1,25] (de-
noted SNAP). We use the Python version of ORFE, and SNAP is implemented
in C++, as is our solution. Ours is the only parallel method. The times taken
into account include reading the graph, building the MAM, and writing it into a
text file. Elapsed times and maximum resident set sizes are indicated in Table 2
for some of the random and real-world networks presented earlier. To push the
methods to their limits, wedges are chosen among those that usually produce
very dense MAMs in real-world networks. The quadrangle tested is the only one
for which SNAP is capable of building a network’s MAM. Apart for graphlet
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Fig. 8. Elapsed time and memory consumption for real-world networks, for 3-node
graphlets (top) and quadrangles (bottom). Killed processes are highlighted with a red
slash on the x-axis.

in Trec Web, MARGOT always outperforms the two other solutions in

terms of elapsed time, significantly for the most complex cases. It is also the only
one which can return the MAM for every pair network/graphlet tested here. On

the other hand, it may need a huge amount of RAM (up to 107GB for on

Trec Web). Generally though, it tends to use less RAM than ORFE, and more
than SNAP. Lastly we remark that while our solution uses 8 threads, it is a long
way from being 8 times faster than SNAP for 3-node graphlets. We hypothesise
that this is due to our node-oriented parallelisation which may quickly lead to
several idling threads as observed in [4].
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Fig. 9. Proportion of time spent in each step. A black slash on the x-axis indicates
that a graphlet does not occur in a network. Total times are indicated by the bars.

Random Networks Real-World Networks

Elapsed time Max. Res. Set Size Elapsed time Max. Res. Set Size

Margot Orfe Snap Margot Orfe Snap Margot Orfe Snap Margot Orfe Snap

1
0
0
K

3s 15s 3s 0.39 0.36 0.11 3m29s ♢ 9m18s 0.86 ♢ 0.27

S
ta

n
fo
rd

W
e
b

2s 10s 2s 0.24 0.29 0.08 3m14s ♢ 7m8s 0.58 ♢ 0.19

<1s 4s <1s 0.04 0.15 0.03 3s ♢ 7s 0.32 ♢ 0.12

<1s 4s <1s 0.04 0.15 0.03 2s 15s 5s 0.15 0.34 0.12

3s ♣ 1h23m 0.06 ♣ 0.03 23m33s ♣ † 25 ♣ †

1
.6
M

49s 3m53s 55s 5.8 4.2 1.7 3m48s 2m29s 16m19s 2.1 58 0.77

T
re
c
W

e
b

34s 2m40s 40s 3.6 2.6 1.2 17m13s 1h 18m50s 107 82 27

7s 59s 10s 0.59 1.6 0.48 9s 2m1s 12s 1.1 58 0.48

7s 51s 10s 0.59 1.6 0.48 5s 49s 7s 0.62 0.7 0.47

52m50s ♣ † 0.89 ♣ † 47m51s ♣ † 45 ♣ †

Table 2. Elapsed time and Memory peak (in GB) to build and save MAMs. Legend:
♣: Not implemented. ⋄: Runtime error: “nnz too large”. †: Killed after 2hours.

4 Analysis of a citation network

Here we use our software to analyse a citation network that contains 27,770
manuscripts published on arXiv between January 1992 and April 2003 whose
main category is High Energy Physics Theory. An edge from manuscript a to
manuscript b indicates that a cites b. We downloaded this network (cit-HepTh)
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from https://snap.stanford.edu/data/. Nodes are labelled via their arXiv
identifiers, enabling calls to arXiv API.

4.1 An Unexpected Graphlet

In a citation network, edges are expected to point backwards in time. But if a was
submitted before b an edge could point the other way if: 1) a was revised, and its
last revision occurs after b was published; 2) Authors of a are aware of b before
its submission, e.g. they are also authors of b, or collaborators of b’s authors.

Given this, occurrences of graphlet T238 = are highly unexpected. Yet,

36 papers are involved in T238 occurrences. The MAM they form is provided in
Figure 10. It is composed of 11 cliques. A deeper investigation highlights that

Fig. 10. MAM of cit-HepTh given graphlet T238.

cliques A, B, C, D, I, J and K are due to co-authorship among the clique papers.
Cliques E and F are due to collaborations (visits and exchanges mentioned in
acknowledgements), and also co-authorship for F. Cliques G and H are due partly
to co-authorship and partly to revisions (discussions about other papers from
the cliques added in the article bodies after the first submission).

4.2 A Consistent and Explicable Partitioning of the Network

We use our software to find a consistent partitioning of cit-HepTh. In a citation
network, two papers sharing lots of in- and out-neighbours are expected to be
similar. Hence, the software is used to build a MAM-like graph based on graphlet

M = . The weight of an edge between a and b is the number of times

a and b play the role of the blue nodes in a subgraph isomorphic to a 6-node

https://snap.stanford.edu/data/
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graphlet that containsM1. Only edges with weight greater than 30 are kept. The
largest connected component of this graph is then partitioned within MARGOT,
resulting in the partitioning PM . We compare this to the partitioning obtained
by applying Louvain directly on the subgraph of cit-HepTh induced by this
largest component, which we denote PL. We first observe that PM is much more
consistent than PL: the modularity values being respectively 0.86 and 0.62. We
also use the Φ matrix from [11] to observe the clusterings: Φ(C,K) is the average
level to which nodes from community C belong to communityK. From Figure 11-
left, we see that intra-values of Φ for PM are always greater than those from PL,
while inter-values are generally lower. This confirms that PM is more consistent
than PL in terms of graph structure. We see from Figure 11-right that PM is
essentially a refinement of PL.

Fig. 11. Left: Φ’s diagonal versus off-diagonal values (summed over rows), for each
cluster from PM and PL. Right: Contingency table whose columns are normalised.

We also find that both PM and PL can be accurately recovered using papers’
lists of authors. Namely, given P = PM or PL, we create a new partitioning P∗

by assigning a paper x to the cluster C∗ such that

C∗ = argmax
C∈P

( max
a∈A(x)

P (x ∈ C|a ∈ A(x))),

withA(x) the list of x’s authors, and P (x ∈ C|a ∈ A(x))) =
|{y ∈ C : a ∈ A(y)}|

|{y : a ∈ A(y)}|
from Bayes’ theorem. The adjusted mutual information (AMI) [23] is equal to
0.49 when P = PM and 0.47 when P = PL (or respectively 0.43 and 0.41 if
we remove authors who wrote a unique paper). In any case these values are
far enough from 0, which means that P∗ is globally close to P. If we use key-
words from papers’ title and abstract instead of authors, the partitionings are
even closer: AMI are equal to 0.76 and 0.75 for PM and PL respectively (0.6
for both by removing words that appear in a unique paper). So authors and

1 Indicated edges must exist in the given direction only, or not at all for dotted ones.
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key-words explain the observed partitionings. Thus, analysing groups of authors
and key-words responsible for those clusters should provide insights about the
dataset.

5 Conclusions

In this study we presented our solution for detecting communities within large
directed networks. It relies upon a recently proposed framework that consists in
partitioning the MAM of an input network given a graphlet [1,21,20], and which
can address several kinds of pattern-based communities, with judicious choice of
graphlets. One novelty of our work lies in the range of graphlets that it addresses.
It is also more efficient than existing solutions, in terms of time complexity, for
building MAMs—which is the bottleneck of this framework. It is also the first
implementation to ensure that all nodes from the initial network are assigned to
a community. Finally, our software provides a wide range of tuneable parame-
ters and set-ups, giving the user the freedom to use all or parts of our solution.
Using our software to analyse a citation network, we were able to discover inter-
esting patterns, and to refine partitionings returned by another algorithm, thus
illustrating how useful this can be in analysing real-world datasets.

We envisage three major improvements to our current solution, one being
current work-in-progress: 1) We are working to decorrelate the anchor set from
the orbit set. Indeed, there are some cases in which this correlation can be limit-
ing, for instance in finding the bipartite sets in a (nearly) bipartite network [12];
2) Our parallelisation is not optimal and we would like to improve it by using
an edge-oriented approach, as proposed in [4]; 3) Our current solution partitions
the MAM using Louvain algorithm, but is designed for other partitioning meth-
ods to be easily used instead. We would like to include some other partitioning
algorithms directly within the software, enabling the user to choose among a
range of techniques that may be more suitable. Finally, the range of addressed
graphlets enabled by our solution leads to the difficulty of choosing the most
suitable one(s). We are currently working on providing guidance to help prac-
titioners in this choice, notably by automatically discovering graphlets able to
produce suitable partitionings.

MARGOT is available at https://github.com/acaen/MARGOT.
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