Skip to Main content Skip to Navigation
Journal articles

Picosecond acoustics: a new way to access elastic properties of materials at pressure and temperature conditions of planetary interiors

Abstract : Picosecond acoustics is an optical pump-probe technique allowing to access thermoelastic properties and sound velocities of a large variety of materials under extreme conditions. Coupled with diamond anvil cells and laser heating, picosecond acoustics measurements offer the possibility to probe materials over a pressure and temperature range directly pertinent for the deep planetary interiors. In this paper we highlight the capabilities and versatility of this technique by presenting some recent applications on materials of geophysical interest. All the independent components of the elastic tensor of MgO are simultaneously determined by measurements on a single crystal at ambient conditions. Compressional sound velocity is measured at high pressure on an iron-carbon alloy and on polycrystalline argon. First laser heating test measurements performed on molybdenum at high pressure are also presented. These examples demonstrate that picosecond acoustics is a valuable alternative to already existing techniques for determining the physical properties of samples under extreme pressure and temperature conditions.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03697383
Contributor : INSPIRE HEP Connect in order to contact the contributor
Submitted on : Thursday, June 16, 2022 - 5:20:28 PM
Last modification on : Thursday, July 7, 2022 - 3:17:36 AM

Identifiers

Citation

Silvia Boccato, Michel Gauthier, Nicki C. Siersch, Paraskevas Parisiades, Yiuri Garino, et al.. Picosecond acoustics: a new way to access elastic properties of materials at pressure and temperature conditions of planetary interiors. Physics and Chemistry of Minerals, 2022, 49 (6), pp.20. ⟨10.1007/s00269-022-01194-6⟩. ⟨hal-03697383⟩

Share

Metrics

Record views

14