The hydration of polycyclic aromatic compounds: the case of naphthaldehyde - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2022

The hydration of polycyclic aromatic compounds: the case of naphthaldehyde

Résumé

Polycyclic aromatic hydrocarbons (PAHs) and their oxygenated products (oxi-PAH) are considered as important pollutants of the Earth’s atmosphere since they are emitted by the combustion of fuels.[1] The study of their intermolecular interactions is essential to understand the formation of their aerosols. In this work, we have studied at molecular level the interactions present in the hydration of the oxi-PAH, α- and β-naphthaldehyde. This study has been performed using a supersonic jet Fourier transform microwave (FTMW) spectrometer in the 4-15 GHz range, with the support of theoretical calculations. Both isolated α- and β-naphthaldehyde species could present two possible structures: cis, the most stable one for α, and trans for β.[2] Our calculations show that there are three low energy monohydrates predicted for each conformer, cis/trans, in a range of 1500 cm-1. Experimentally, one conformer has been observed in gas phase for α and two for β, corresponding to the most stable structures. All species are stabilized by intermolecular H-bonds between the water molecule and the aldehyde group of naphthaldehyde: for the first case, the oxygen of the aldehyde acts as proton acceptor and the aldehyde hydrogen as proton donor; for the second case, the oxygen of the aldehyde acts as proton acceptor and one of the ring hydrogens as a proton donor.[3]

[1] Karavalakis G. et al. Sci. Tot. Environ., 409, 4, 738, 2011. [2] Goubet M., et al. J. Phys. Chem. A, 124, 4484, 2020. [3] This work is supported by the CaPPA project and by the CPER ClimiBio funded by the French National Research Agency (ANR) through the PIA 11-LABX-0005-01, the I-SITE ULNE/ANR-16-IDEX-0004 ULNE, the Regional Council Hauts-de-France and the European Funds for Regional Economic Development (FEDER).
Fichier non déposé

Dates et versions

hal-03696700 , version 1 (16-06-2022)

Identifiants

  • HAL Id : hal-03696700 , version 1

Citer

Jordan A. Claus, Celina Bermudez, Laurent Margules, Manuel Goubet. The hydration of polycyclic aromatic compounds: the case of naphthaldehyde. Journées plénières 2022 du GDR EMIE, Jun 2022, Dunkerque, France. ⟨hal-03696700⟩
64 Consultations
0 Téléchargements

Partager

Gmail Facebook X LinkedIn More