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Macroscopic and microscopic properties of dense granular layers flowing down inclined planes
are obtained from Discrete-Element-Method simulations for both frictionless and frictional grains.
Linear dilatancy laws with the inertial number I are observed. They do not depend on the frictional
nature of the grains besides the value of the jamming packing fraction. In sharp contrast, for
the friction law relating the effective, macroscopic friction coefficient µ to the inertial number,
two distinct behaviors are observed: a linear relationship with I for frictional grains and a square
root evolution for frictionless ones. Regarding the microscopic properties of the flowing grains,
a temperature is defined from the velocity fluctuations, and related to the diffusion coefficient
along the direction perpendicular to the flow. A correlation length emerges from the dimensionless
fluctuations. The microscopic description of the granular system allows us to propose a theoretical
foundation for the macroscopic laws and to recover the Bagnold velocity profile and the µ(I) rheology
observed for frictionless systems.

Despite several decades of intense research, the mech-
anisms underlying dense granular flows remain largely
misunderstood. A universal framework allowing one to
describe the numerous configurations and observations
studied in the laboratory is still lacking [1]. Most models
remain semi-empirical and are not supported by strong
microscopic justifications [2–7]. The global flow prop-
erties are usually described from the popular µ(I) rhe-
ology. This approach consists in two empirical relations
between the macroscopic friction coefficient µ (defined as
the ratio between the shear stress and the pressure) or
the volume fraction φ on one hand, and the inertial num-
ber I = γ̇d

√
ρp/P on the other hand, involving the shear

rate γ̇, the grain size d, the mass density ρp ∼ m/d3 of the
grains, their individual mass m, and the pressure P [2, 8].
Essentially, in this Amontons-Coulomb-like description,
a granular layer starts to flow when the applied shear
stress overcomes a critical frictional stress µcP . Never-
theless, this description fails to properly rationalize some
important observable features, such as the presence of a
metastable region [9, 10] and the layer-thickness depen-
dence of the angle at which the flow stops [11–14].

In this Letter, using a combination of Discrete-
Element-Method (DEM) simulations and a model based
on microscopic arguments, we address the rheology of
dense granular matter from the canonical setting of a
layer flowing down an inclined plane. Therein, the in-
clination angle θ and the layer thickness H are the
two external control parameters. Previous experimen-
tal and numerical studies have shown that the local av-
erage velocity profile of a thick granular layer flowing
over an inclined plane exhibits a so-called Bagnold pro-
file [1, 15, 16], i.e. 〈v(z, t)−v(0, t)〉 ∼ H3/2− (H− z)3/2,
where v(z, t) is the local velocity field along the flow di-
rection, at normal coordinate z and time t. As a remark,
we have the relation γ̇(z) = d〈v(z, t)〉/dz. The averages

〈〉 are performed over time and realizations, at fixed z.
Besides, it has been suggested that nonlocal cooperative
effects are essential to describe the layer-thickness depen-
dance of the stop angle [17, 18], i.e. the smallest angle
for which a stationary flow is observed. We will see here
that cooperative effects are also of prime importance in
order to understand the velocity profiles of dense granu-
lar flows, as well as the two empirical relations, µ(I) and
φ(I), commonly used to fit experimental and numerical
data [2, 8].

The numerical simulations were performed with the
software LIGGGHTS [19]. The system consists in a layer
of identical grains, with diameter d = 1 mm and mass
m = 4

3πρpd
3, placed on an inclined plane with an inclina-

tion angle θ (see Fig. 1a). We focus here on thick-enough
layers, in order to avoid the thickness dependence of the
stop angle observed for thin layers [11–14]. The mechani-
cal properties of the simulated grains are set to be exactly
the same as in our previous study [17], and correspond
to glass beads [11]. In particular, the microscopic coef-
ficients µs and µr of sliding and rolling frictions are set
to 0.5 and 0.01 (different friction coefficients have also
been studied, see SI [20]), respectively. In addition, fric-
tionless grains (i.e., µs=µr=0) are also simulated. The
substrate is made of immobile grains to mimic the glued
grains in inclined-plane experiments. We impose periodic
boundary conditions in the x and y directions to get rid
of side-wall effects [21]. The size of the base has been
carefully chosen in order to be large enough to avoid au-
tocorrelations due to periodicity. We stress that similar
setups have already been reported [9, 15, 16].

Before inclination of the plane, the layer has an initial
vertical thickness Hi ranging between 10 d and 60 d, with
a base of 20 d×20 d in the horizontal plane. The plane is
subsequently inclined briefly at 30◦ to initiate the flow.
Subsequently, the inclination is fixed at the desired angle
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FIG. 1. a) Typical snapshot of a DEM simulation, with ini-
tial layer thickness Hi = 30 d and inclination angle θ = 24◦.
The color code indicates the velocity v(z, t). b) Macro-
scopic friction coefficient µ as a function of inertial number
I = γ̇d

√
ρp/P for frictionless (diamonds) and frictional (cir-

cles) grains, as well as various inclination angles θ, initial layer
thicknesses Hi, and various setup configurations [1, 4, 16, 24–
26]. c) Difference µ − µc in friction coefficient as a function
inertial number I, where µc = µ(I → 0), for the same data as
in the previous panel. The solid and dashed lines indicate fit-
ted expressions, as provided in legend. d) Volume fraction φ
as a function of inertial number I for frictionless (diamonds)
and frictional (circles) grains. Data from [16, 24] are added
for comparison. The solid and dashed lines indicate fitted
expressions, as provided in legend. The inset shows the dif-
ference φc − φ in volume fraction as a function of I, where
φc = φ(I → 0), for the same data. The solid line corresponds
to φc − φ = 0.19 I.

θ, ranging between 20◦ and 40◦. For each value of Hi and
θ, the actual layer thickness H along z, and the mean
volume fraction φ of the whole layer (averaged over at
least 10 time steps in the steady state) are measured. The
average local velocity profiles 〈v(z, t)〉 and the inertial
number I are also computed.

In agreement with previous works [1, 9, 15, 16], we ob-
serve that: i) there is a critical stress to induce flow for
dense granular layers, corresponding to a macroscopic
friction coefficient µc ≈ 0.35 for frictional grains, and
0.1 for frictionless grains (Fig. 1b); ii) the local aver-
age velocity profile is well described by a Bagnold profile
(see Fig. S2a in SI [20]); iii) the volume fraction φ (see
Fig. S2b in [20]) and the inertial number I (see Fig. S2c
in SI [20]) remain mostly constant throughout the layer,
for all the studied inclination angles. As proposed in sev-

eral studies [8, 22, 23], dimensional analysis shows that
only a single dimensionless parameter is required to de-
scribe granular flows, i.e., the inertial number I (besides
the microscopic friction coefficient). The flow properties
are characterized through the frictional, µ = µ(I), and
the dilatancy, φ = φ(I) laws. The macroscopic friction
coefficient µ is determined by the shear to normal stress
ratio [2, 8, 23]. For the inclined-plane geometry consid-
ered here, both the macroscopic friction coefficient and
the pressure are prescribed through the inclination θ of
the plane and the height H of the flowing layer [23]. In a
continuum-limit approximation, the effective friction co-
efficient for this setup is thus fixed to a constant value,
µ = tan(θ) ' θ for the range of inclination angles of in-
terest. From dimensional analysis and since µ does not
depend on z/d, we can conclude that I and φ are con-
stant throughout the layer and fully determined by the
incline angle θ and the microscopic friction coefficient.

As previously shown, and up to moderate incline angles
(I <∼ 0.1), Fig. 1c confirms that µ(I) is well described by
µ − µc ∼ Iα, with α ≈ 0.4–0.5 for frictionless grains [4,
24], and α ≈ 1 for frictional ones [1, 16, 25, 26]. The
latter exponent does not depend on the (finite) values of
the microscopic friction coefficients (see Fig. S1a in [20]),
thus indicating the singularity of the frictionless limit.
In contrast, µc does depend on the microscopic friction
coefficients, but even for frictionless assemblies a non-zero
value close to 0.1 is observed [14, 20, 24]. The exact origin
of this residual macroscopic friction remains unclear, but
should be related to the steric contraints associated with
granular topography [27].

The dilatancy laws obtained from the DEM simula-
tions are shown in Fig. 1d and compared to data from
the literature. Despite other functional forms were pro-
posed [24], the evolution of the packing fraction with
I can be empirically described by the simple relation
φc − φ ∼ Iβ , where φc = φ(I → 0) is the volume frac-
tion at kinetic arrest, and with β ≈ 0.8–1, for both the
frictionless and frictional cases.

Hereafter, we investigate the microscopic origin of
these laws. As proposed by several authors, the veloc-
ity fluctuations and the diffusion coefficient of the grains
are strong indicators of their dynamics [28, 29]. A dense
granular flow is characterized by rapid collisions involving
sudden changes of the velocity direction and renewal of
the contact network. Assuming that all these events oc-
cur at high frequency compared to the evolution of mean-
field quantities, they can be described through a granular
temperature [22]. A reasonable assumption is to consider
that this temperature is related to the local velocity fluc-
tuations, through the proportionality relation kBT (z) ∼
mδv2(z), with δv2(z) = 〈|v(z, t) − 〈v(z, t)〉|2〉 the local
variance of the velocity field v(z, t) along the flow direc-
tion. Figure 2b shows the evolution of the dimensionless

standard deviation δv/(dγ̇), where A = 1
H

∫H
0

dz A(z)
represents the thickness average of A(z), as a function of
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FIG. 2. a) Thickness-averaged standard deviation δv of the
velocity field normalized by a typical shear velocity γ̇d, as
a function of the inertial number I, for frictionless (dia-
monds) and frictional (circles) grains. Results from previous
works [23, 24, 28] are also shown for comparison. The dashed

line indicates a ∼ I−1/2 power law as a guide to the eye. The
solid line corresponds to a(1 + b/

√
I) with a=0.25 and b=1.5.

b) Local variance δv2(z) = 〈|v(z, t)− 〈v(z, t)〉|2〉 of the veloc-
ity field v(z, t), as a function of rescaled normal coordinate
z/d, for a layer of frictional grains initially characterized by
Hi = 60 d and various inclination angles θ as indicated. An
affine solid line is added as a guide for the eye. c) Thickness-
averaged diffusion coefficient Dz along z as a function of the
thickness-averaged standard deviation δv of the velocity field
for fictional grains. The solid line corresponds to a linear fit.
d) Correlation time τ of the thickness-averaged velocity fluc-
tuations (see Fig. S3b in SI [20]) as a function the inertial
number I. The black solid line corresponds to 0.26 d/(lcγ̇),

with lc/d = a(1 + b/
√
I) with a=0.25 and b=1.5 found in

panel a.

the inertial number, for frictional and frictionless grains.
We stress that the dimensionless standard deviation is
independent of z due to the Bagnold profile satisfied by
〈v(z, t)〉 (see Fig. S2a in SI [20]) and the affine spatial
behaviour of the variance observed in Fig. 2a. Inter-
estingly, no matter the frictional nature of the grains,
all the data reported here and in the literature collapse
onto a single master curve showing a decrease of the rela-
tive velocity fluctuations with increasing inertial number.
For small I values, the dimensionless standard deviation
decreases as I−0.5, while it seems to saturate to a con-
stant value at large I [28]. Interpolating the two asymp-
totic behaviours through a simple crossover form, one
gets δv/(dγ̇) = a(1 + b/

√
I), that fits well the data.

Let us now investigate the impact of the effective ther-
mal energy on the grain dynamics. As shown by the
time evolution of their thickness-averaged mean-square
displacement along z (see Fig. S3a in SI [20]), the grains

globally diffuse perpendicularly to the flow direction, at
long time with an associated thickness-averaged diffusion
coefficient Dz increasing with the incline angle θ. Fur-
thermore, as shown in Fig. 2c, Dz increases linearly with
the thickness-averaged standard deviation δv of the ve-
locity field. This linear relation can be understood from
the thickness-averaged Kubo relation:

Dz =

∫
dt 〈w(z, t)w(z, 0)〉 ∼ τ(z)δv2(z) ∼ d δv , (1)

with w(z, t) the velocity field along z, at position z and
time t, and where we assumed isotropic local velocity cor-
relations of amplitude δv2(z) decaying in an exponential
fashion over a local characteristic time τ(z) ∼ d/δv(z).
In addition, given the affine trends in Fig. 2b, one can
show that τ ∼ d/δv. The thickness-averaged temporal
correlations functions 〈w(z, t)w(z, 0)〉 of the velocity field
along z, as calculated from the DEM trajectories (see Fig.
S3b in SI [20]), appear to decay faster with increasing θ.
Given the affine trends in Fig. 2b, and neglecting long-
time power-law tails, we can show that the exponential-
decay time of 〈w(z, t)w(z, 0)〉 is well approximated by
∼ τ . Besides, the velocity correlations suggest the exis-
tence of dynamic clusters that persist over the correlation
time. We thus hypothesize the existence of a character-
istic, mesoscopic and a priori z-dependent size lc(z) over
which dynamic clusters persist during the time τ(z). This
is reminiscent of the vortices discussed by Kharel and
Rognon [28]. As proposed by DeGiuli et al., these clus-
ters produce an amplification of the velocity fluctuations
that is estimated through a “lever” effect [30]. Specifi-
cally, one has lc(z) ∼ d/[τ(z)γ̇(z)], and, with the defini-
tion τ ∼ d/δv, one gets δv(z)/[dγ̇(z)] ∼ lc(z)/d where the
amplification factor appears clearly. Interestingly, since
the left-hand side of the latter relation is independent of
z, as discussed above, one gets that the dynamic-cluster
size lc is in fact independent of z for the inclined-plane
configuration. Finally, invoking the crossover relation be-
tween the two asymptotic regimes of δv/(dγ̇), one gets
lc/d ∼ 1+1.5/

√
I. For small I values, one has lc ∼ d/

√
I,

while for large I, lc ∼ d. Figure 2d shows τ , as estimated
from the thickness-averaged temporal correlations func-
tions (see Fig. S3b in SI [20]), as a function of I. The
data is in agreement with the relation derived from lc
above. Since the latter is based on the crossover ex-
pression between the two asymptotic regimes of Fig. 2a,
which is independent of the frictional nature of the grains,
this agreement suggests that the size of the dynamic
clusters is mainly determined by the collisions between
grains, but not by the microscopic friction between them.
Furthermore, from Fig. 2a this dynamic-cluster size is ex-
pected to diverge at kinetic arrest – which is reminiscent
of the hypothetical cooperative length associated with
the glass and jamming transitions. It should however be
noted that some influence of the microscopic friction co-
efficient has been observed by DeGiuli and Wyart [30],
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but for very small I values that are well below the range
accessed here.

In the following, we aim deriving the macroscopic rhe-
ological laws from the microscopic fluctuations and cor-
relations. From dimensional analysis, we have recalled
that a single parameter determines the flow properties.
In the inclined-plane geometry, all dimensionless pa-
rameters are uniquely determined by the incline angle
θ ' µ. Therefore, the dimensionless ratio Pd3/(kBT )
should be constant in the layer for inclined-plane exper-
iments. In a continuous mean-field approximation, the
pressure field is hydrostatic, i.e. P (z) = φρpg(H − z).
It thus follows that the effective temperature must vary
with the depth according to T (z) ∝ (H − z). As ob-
served in Fig. 2b, apart from slight boundary devia-
tions, the affine relation δv2(z) ∝ (H − z) is satis-
fied for all the tested inclination angles θ, which sup-
ports the definition of the effective temperature through
kBT (z) ∼ mδv2(z). Interestingly, the effective temper-
ature and the associated mechanical noise are maximal
near the substrate and vanish at the free interface. This
suggests that the collisions between mobile grains and
the glued ones at the substrate is the source of tem-
perature in the system. Furthermore, using the defini-
tion of the inertial number, the pressure can be written
as P (z) ∼ mγ̇(z)2/(dI2). Combining this relation with
δv(z) ∼ lcγ̇(z), and the definition of the effective tem-
perature, one gets Pd3/(kBT ) ∼ d2/(l2cI2). For small in-
ertial numbers, lc ∼ dI−1/2, and thus Pd3/(kBT ) ∼ 1/I.
By identifying the latter relation to the equation of state
(EOS) for hard-sphere fluids near the jamming transi-
tion [31, 32], i.e. Pd3/(kBT ) = φJ/(φJ−φ), one gets the
dilatancy law:

φJ − φ ∼ I . (2)

As shown in Fig. 1d, this law agrees with all the data
from our DEM simulation and the literature, for small in-
ertial numbers, provided that φJ is replaced by φc. The
universal agreement for both frictionless and frictional
grains can be related to the evolution of the cluster size
with inertial number, and reflects once again the dom-
inance of collisions over friction in the dynamics. The
validity of the hard-sphere-fluid EOS is probably lim-
ited to the intermediate range of inertial numbers, i.e.
0.01 <∼ I <∼ 0.5, where the granular system can be con-
sidered as a fluid and where the mechanical noise ensures
that no long-range correlations develop. For I <∼ 10−3,
the system should behave as an amorphous layer, and
deviations from the current dilatancy law might appear.

Let us finally propose a microscopic picture for the
µ(I) rheological law. To do so, we consider the steady-
state balance of driving and dissipated powers for a test
grain located in a slab of thickness d at height z. First,
to estimate the driving contribution, we consider that
the grain experiences the sum of gravitational and fric-
tion forces projected in the flow direction, and that θ

and θc are small, leading to an effective driving force
∼ ρpφg(H−z)d2(θ−θc). Since the grain moves over a dis-
tance d within a time γ̇(z)−1, the net local driving power
is Ẇd(z) ∼ ρpφg(H − z)d3(θ − θc)γ̇(z). Secondly, we as-
sume that the energy is mainly dissipated through the
collisions with other grains, characterized by the char-
acteristic decay time τ(z) ∼ d/[lcγ̇(z)]. The local power
dissipated by collisions can thus be estimated by Ẇc(z) ∼
mδv2(z)/τ(z). Balancing Ẇd(z) with Ẇc(z), and recall-
ing that δv ∼ γ̇lc leads to γ̇2 ∼ gdφ(H − z)(θ − θc)/l 3c .
At small angles, and thus small I, Fig. 2a shows that
lc ∼ d I−1/2. Inserting this expression in the previous
one, together with the definition of I, yields the general
relation:

γ̇ ∼
[
gφ(H − z)

d2

]1/2
(θ − θc)2 . (3)

First, this expression is compatible with the z-
dependency of the Bagnold velocity profile, 〈v(z, t) −
v(0, t)〉 ∝ H3/2 − (H − z)3/2. Secondly, recalling that
µ ' θ, as well as the definition of I, Eq. (3) yields the
friction law µ − µc ∼ I0.5, that is very close to the law
observed for frictionless grains in Fig. 1c.

One may naively expect Eq. (3) to also hold for fric-
tional systems, since the velocity fluctuations and cluster
size behave similarly with the inertial number for both
frictional and frictionless systems. However, it can not
explain the µ − µc ∼ I relation observed for frictional
grains in Fig. 1c. This disagreement is in fact not sur-
prising. In the derivation of Eq. (3), it is assumed that
all the energy dissipation arises from collisions between
grains. This is a very reasonable assumption for fric-
tionless systems, but an additional source of dissipation
is expected from the mobilization of frictional contacts.
Unfortunately, including frictional dissipation in a theo-
retical model for dense granular flows remains a highly
debated issue [25, 30]. Nevertheless, interestingly, Fig. 1c
shows that for large-enough inertial numbers, the data
obtained for frictional systems collapse onto the law of
frictionless systems. This observation suggests that, in
the limit of large I, the energy dissipation is universal
and of collisional origin.

In summary, from numerical simulations and inspec-
tion of the literature data, we show that the dilatancy
law is identical for frictionless and frictional assemblies.
This law can be further rationalized from a comparison
between: i) the equation of state constructed from the
hydrostatic pressure, an effective granular temperature
related to velocity fluctuations, as well as the inertial
number; and ii) the equation of state of hard-sphere flu-
ids near the jamming transition. In contrast, the macro-
scopic friction laws are observed to differ for frictionless
and frictional assemblies. In the former case, we can ra-
tionalize the observations from a power balance at the
grain level, involving gravity, effective friction, and col-
lisions. We recover as well the Bagnold profile for the
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local average velocity field. The derivation of a macro-
scopic friction law for frictional assemblies remains an
open question and should involve an additional dissipa-
tion term related to the formation of frictional contacts.
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