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In discontinuous Galerkin spectral element methods (DGSEM), the two most common approaches to

numerically integrate the terms of the weak form are either using Gauss-Legendre or Gauss-Lobatto

quadratures. The former yields more accurate results but at a higher computational cost, so that a priori it

is not clear whether one approach is more efficient that the other. In this paper, it is shown (theoretically

for a particular case and numerically for the general case) that using Gauss-Lobatto quadrature for the

convection matrix actually introduces a negligible error. In contrast, using Gauss-Lobatto quadratures for

the evaluation of the jump term in the element faces introduces a sizeable error. This leads to the proposal

of a new DG approach, where the convection matrix is evaluated using Gauss-Lobatto quadratures,

whereas the face mass matrices are integrated using Gauss-Legendre quadratures. For elements with

constant Jacobian and constant coefficients, a formal proof shows that no numerical integration error is

actually introduced in the evaluation of the residual, even though both the mass and the convection

matrices are not computed exactly with Gauss-Lobatto quadratures. For elements with non-constant

Jacobian and/or non-constant coefficients, the impact of numerical integration error on the overall error

is evaluated through a series of numerical tests, showing that this is also negligible. In addition, the

computational cost associated to the matrix-vector products required to evaluate the residual is evaluated

precisely for the different cases considered. The proposed approach is particularly attractive in the most

general case, since the use of Gauss-Lobatto quadratures significantly speeds-up the evaluation of the

residual.

Keywords discontinuous Galerkin method, spectral element method, high-order methods, wave propagation

1 Introduction
High-order discontinuous Galerkin (DG) methods (Bey et al. 1996; Hu et al. 1999; Warburton et al.

1999; Rasetarinera et al. 2000; Sherwin 2000; Houston et al. 2002; Ainsworth 2004a; Cockburn

et al. 2005) have proven very efficient to approximate the solution of wave propagation over

large complex media. They come in different flavours, depending in particular on the choice of

quadrature for integration, Gauss-Legendre (GLegQ) or Gauss-Lobatto (GLobQ), on whether the

interpolation and integrations points are the same or not, on whether the weak formulation is

integrated by parts once or twice, and on the choice of flux that weakly enforces the continuity

between elements.

When considering collocation approaches, using the nodes of either the GLegQ or the GLobQ,

the mass matrix becomes diagonal and very efficient strategies arise in combination with time

marching algorithms and fast matrix-vector products in the evaluation of the residual (Deville

et al. 2002) (see also Section 3.2). At first, using the GLegQ seems like a better option in terms of

accuracy because that quadrature can integrate exactly higher order polynomials. However, the

fluxes then need to be interpolated on the faces (Canuto et al. 2007), which induces an additional

cost at each time step to compute the residual (evaluated at 15% of the total simulation cost

in Kopriva et al. (2010)). These competing effects make it difficult to know which method is better

in terms of accuracy and cost, although most authors (Castel et al. 2009; Kopriva et al. 2010;

Gassner et al. 2011) seem to (slightly) prefer GLegQ over GLobQ, in particular with arguments of

stability (Castel et al. 2009; Gassner et al. 2011).
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Another flavour of the high-order DG method is the so-called nodal version (Giraldo et al.

2002; Hesthaven et al. 2008b; Giraldo et al. 2008), where the interpolation points are the nodes of

the GLobQ, but integration follows the GLegQ. In that version, a good accuracy is expected

because integrals are accurately evaluated, but the cost of computing the residual at each time

step is potentially high because the mass matrix is not diagonal. Here again, the combination of

these advantages and defects makes it very difficult to draw a definite conclusion on the interest

of this version in terms of accuracy and cost. In this paper, a comparison and an analysis is

provided of the nodal and the GLobQ versions discussed above, where the GLobQ is used for both

integration and interpolation. These two versions will be referred as the DG method with GLegQ

and GLobQ respectively because the only difference lies in the quadrature formula used for

numerical integration. The interpolation polynomials are the same in both approaches and

defined using the nodes of the GLobQ.

The first objective of this paper consists of evaluating precisely the complexity of both DG

methods in terms of operation count required to perform the matrix-vector products required

when employing an explicit time marching scheme. Additionally, accuracy of both methods will

be evaluated by using a series of numerical simulations of increasing complexity. The second

objective of the paper is to propose a novel version of the high-order DG method, bridging

the gap between the DG methods with GLegQ and GLobQ, where the convection part of the

residual is integrated with the GLobQ, while the face jump term is evaluated with the GLegQ. It

will be shown that this simple change allows to improve greatly the accuracy of the method,

while retaining its numerical efficiency. In particular, we show analytically that in the case of a

constant Jacobian, the use of GLobQ to integrate the convection part of the residual induces

absolutely no error with respect to the GLegQ. In the non-constant Jacobian case, a series of

numerical examples illustrate that this property is approximately conserved.

The remainder of the paper is organised as follows. Section 2 introduces the classical DG

formulation for a linear conservation law, its computational complexity in the most general

case for tensor-product elements and a brief discussion on the different choices to perform the

numerical integration. Note that the discussion throughout the paper is limited to tensorial

elements (quadrilaterals and hexaedra). Section 3 presents alternative formulations of the residual

for the general case and for the particular case when constant coefficients and meshes with affine

elements (i.e., constant Jacobian of the isoparametric mapping) are considered. It also provides

the formulation of the residual for the DG method with GLobQ. In all cases the cost required

to compute the matrix-vector products required during the explicit time marching process is

detailed. In Section 4, the new DG method with mixed quadratures is proposed. First, a formal

proof is provided showing that, under certain hypotheses, the contribution to the residual given

by the convection term is identical if GLegQ or GLobQ are used. This motivates the introduction

of the new method that bridges the gap between the DG methods with GLegQ and GLobQ.

Section 5 shows a series of numerical examples to evaluate the accuracy of the DG approaches

considered in this work. The examples involve problems with constant and non-constant velocity

fields both in two and three dimensions. In addition, the use of Cartesian and non-Cartesian

grids is also studied, to evaluate the influence of having elements with non-constant Jacobian of

the isoparametric mapping. The discussion also considers the computational cost of the DG

approaches considered. Finally, Section 6 presents the conclusions of the work.

2 DG formulation for conservation laws

This section introduces the DG formulation of a scalar conservation law and the spatial and

temporal discretisations. The particular choice considered here of tensor product elements is

recalled and the cost of evaluating the residual of the semi-discrete system is presented. Finally

the different choices for the numerical integration of the terms appearing in the weak form are

briefly discussed.
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2.1 Model problem
Let us consider the general linear conservation law in a open bounded domain Ω ⊂ Rnsd

with

boundary ∂Ω, where nsd denotes the number of spatial dimensions,

∂u

∂t
+ ∇ · f (x ,u) = 0, on Ω × (0,T ]. (1)

where u(x , t) is the conserved variable, f (x ,u) is the hyperbolic flux vector and T is the final

time.

It is often convenient to write the hyperbolic flux vector as

f (x ,u) = a(x)u, (2)

where the velocity field vector a = (a1, . . . ,ansd) ∈ [L∞(Ω)]nsd
is assumed to be divergence free.

The boundary of the domain is assumed to be partitioned as ∂Ω = Γin ∪ Γout where Γin and
Γout are the inflow and outflow parts of the boundary respectively, defined as

Γin = {x ∈ ∂Ω | an(x) < 0} , Γout = {x ∈ ∂Ω | an(x) > 0} , (3)

where an(x) = a(x) ·n(x) is the normal component of the velocity vector andn(x) is the outward
unit normal vector at x ∈ ∂Ω.

As usual for hyperbolic problems, boundary conditions can only be imposed on the inflow

part of the boundary (LeVeque 2002). Here a Dirichlet boundary condition is considered, namely

u(x , t) = uD (x , t) on Γin × (0,T ]. (4)

Finally, the strong form of the problem must be completed with an initial condition

u(x , t0) = u0(x) in Ω. (5)

2.2 DG weak formulation
The domain is partitioned in nel disjoint elements Ωe such that

Ω =
nel⋃
e=1

Ωe . (6)

The weak formulation for a generic element Ωe is obtained after multiplying Eq. (1) by a test

function, v and integrating in Ωe∫
Ωe

v
∂u

∂t
dΩ −

∫
Ωe

∇v · f (x ,u)dΩ +

∫
∂Ωe

v ˆfn(x ,u,u
out)dΓ = 0, (7)

where the integration by parts has been already performed on the divergence term and the

boundary term features the numerical normal flux,
ˆfn .

A natural choice to define the numerical flux, for the linear hyperbolic equation considered

here, is to employ a flux splitting technique (Hesthaven et al. 2008a). First, the physical normal

flux fn(x ,u) = f (x ,u) · n(x) is split as

fn(x ,u) = f −n (x ,u) + f +n (x ,u), (8)

where

f −n (x ,u) = a−n (x)u, f +n (x ,u) = a+n (x)u, (9)

are the inflow and outflow normal fluxes, respectively, and

a+n (x) :=
1

2

(
an(x) + |an(x)|

)
, a−n (x) :=

1

2

(
an(x) − |an(x)|

)
. (10)
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The numerical normal flux, evaluated in terms of the trace of the solution on element Ωe and

the trace of the solution uout on the neighbouring element, is then defined as

ˆfn(x ,u,u
out) = f +n (x ,u) + f −n (x ,u

out) = a+n (x)u + a
−
n (x)u

out. (11)

The DG weak formulation of Eq. (1) with flux splitting can be written as∫
Ωe

v
∂u

∂t
dΩ +

∫
Ωe

v (a(x) · ∇u)dΩ +
∫
∂Ωe

va−n (x)⟦u⟧dΓ = 0. (12)

where a second integration by parts has been performed after introducing the numerical normal

flux and the operator ⟦u⟧ := uout −u denotes the jump of the trace of the solution on the element

boundary.

2.3 Spatial and temporal discretisations
The semi-discrete formulation is obtained by approximating the solution u as

u(ξ , t) ≃ uh(ξ , t) =
nen∑
J=1

u J (t)N J (ξ ) (13)

on a reference element, with local coordinates ξ = (ξ1, . . . , ξnsd). Here u J (t) denotes the value of
the solution at node x J at time t , N J is the shape function associated with the J -th node and nen

is the total number of nodes on the element. The shape functions considered here are standard

Lagrange polynomials of order p, in each direction, defined on the nodes of the GLobQ.

The isoparametric mapping is employed to link the reference element Ω̂ and a physical

element Ωe , namely

φ : Ω̂ ⊂ Rnsd −→ Ωe ⊂ Rnsd

ξ 7−→ φ(ξ ) :=
nen∑
J=1

x JN J (ξ ),
(14)

where {x J }J=1, ...,nen are the nodal coordinates of the physical element Ωe (Zienkiewicz et al.

2000).

Similarly, an isoparametric mapping is used to link the reference face Γ̂ and a physical face

Γ
f
e ⊂ ∂Ωe

ψ : Γ̂ ⊂ Rnsd−1 −→ Γ
f
e ⊂ Rnsd

η 7−→ψ(η) :=
nfn∑
J=1

x
f
JN

f
J (η),

(15)

where {x
f
J }J=1, ...,nfn are the nodal coordinates of the subset of nodes that belong to the physical

face Γ
f
e and N

f
J is the shape function associated to J -th face node, defined in local coordinates

η = (η1, . . . ,ηnsd−1).

Introducing the approximation of the solution in the weak formulation of Eq. (12) and

selecting the space of the weighting functions to be the same as the space of the interpolation

functions, leads to the following system of ordinary differential equations (ODEs)

M
dU
dt
+ CU +

ne
fa∑

f =1

Mf ⟦Uf ⟧ = 0, (16)

where ne
fa is the number of faces of the element Ωe . It is worth noting that Uf

is obtained by

restricting U to the degrees of freedom associated to the nodes of the faces of Ωe .

The elemental mass and convection matrices are given, respectively, by

MI J =

∫
Ω̂
NIN J |J|dΩ, CI J =

nsd∑
ℓ=1

∫
Ω̂
NIGℓ

∂N J

∂ξℓ
dΩ, (17)
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for I , J = 1, . . . ,nen, where

Gℓ(ξ ) = |J(ξ )|
nsd∑
k=1

ak (φ(ξ )) J
−1
kl (ξ ) =

nsd∑
k=1

ak (φ(ξ ))Hkl (ξ ), (18)

for ℓ = 1, . . . ,nsd, J = ∂φ/∂ξ denotes the Jacobian of the isoparametric mapping and H = adj(J)
is the adjoint of J.

Similarly, the face mass matrix is given by

Mf
I J =


∫
Γ̂
a−nN

f
I N

f
J ∥J

f ∥dΓ, if x I ∈ Γ
f
e

0 otherwise,

(19)

for I = 1, . . . ,nen and J = 1, . . . ,nfn, where Jf is the Jacobian of the restriction of the

isoparametric mapping to an element face. In two dimensions Jf = ∂ψ/∂η1 and in three

dimensions Jf = ∂ψ/∂η1 × ∂ψ/∂η2.

Remark 1 The size of the mass and convection matrices is nen × nen, whereas the face mass

matrixMf
is defined as a rectangular matrix of size nen × nfn only to ensure consistency in

Eq. (16). Therefore, when analysing the cost of the different approaches presented in this work

(in Sections 2.5, 3.1.3 and 3.2.3), non necessary operations are not accounted for.

When the system of ODEs given by Eq. (16) is advanced in time using an explicit time

marching algorithm, the scheme requires the solution of a linear system of equations element by

element at each time step, avoiding the assembly and solution of a large sparse linear system in

each time step. Here a classical fourth order explicit Runge-Kutta scheme is considered, namely

Un+1 = Un +
∆t

6

(
R(1) + 2R(2) + 2R(3) + R(4)

)
. (20)

The four stages are given by

R(1) = R(Un , tn)

R(2) = R(Un + R(1)∆t/2, tn + ∆t/2)

R(3) = R(Un + R(2)∆t/2, tn + ∆t/2)

R(4) = R(Un + R(3)∆t , tn + ∆t).

(21)

where R denotes the residual of the system of ODEs

R := −

CU +
ne
fa∑

f =1

Mf ⟦Uf ⟧
 . (22)

where C := M−1C andMf
:= M−1Mf

.

This time marching algorithm is known to be conditionally stable, so the time step must be

selected below the stability limit (Hairer et al. 2006). In all the numerical examples the time step

is chosen small enough so that the error is dominated by the spatial discretisation. However, as

the stability can influence the overall complexity by changing the number of time steps necessary

to reach a final time, some comments and numerical tests will be provided in Section 5.

Remark 2 Although the discussion presented in this work is based on this particular fourth

order explicit Runge-Kutta scheme, the conclusions of the paper apply to any explicit time

integrator.
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2.4 Tensorial basis and tensor products
This work focuses on tensor-product elements, namely quadrilateral and hexahedral elements in

two and three dimensions, respectively. The reference element is taken as Ω̂ = [−1, 1]nsd
and the

reference face is Γ̂ = [−1, 1]nsd−1
. Assuming for simplicity that the interpolation polynomials

have the same order p in each direction, the number of element nodes is nen = (p + 1)nsd
and the

number of face nodes are nfn = (p + 1)nsd−1
, for each face. Throughout the document, lowercase

(both for matrices and indices) denotes one dimensional quantities whereas uppercase is used for

multi-dimensional quantities.

In this scenario, the shape functions {N J }J=1, ...,nen are defined as a product of one-dimensional

shape functions, denoted by {nj }j=1, ...,p+1. Using the lexicographic order, multi-dimensional

shape functions are defined as

N J (ξ ) =
nsd∏
k=1

njk (ξk ), with J = 1 +

nsd∑
k=1

(jk − 1)(p + 1)k−1. (23)

2.5 Operations count to evaluate the residual
Once the elemental matrix C, of size nen × nen is computed for an element, the evaluation of the

term of the residual in Eq. (22) associated to an element requires ne
op = (2nen − 1)nen operations

to perform the matrix-vector product. The leading term in this evaluation is thus of the order of

O(2n2en).
Similarly, once the matrixMf

is computed for a face, the evaluation of the term of the residual

in Eq. (22) associated to an internal face reduces to the evaluation of a matrix-vector product.

Since eachMf
is a matrix of size nen×nfn, the evaluation requires a total of nf

op = (2nfn−1)nen

operations. The leading term in this evaluation is of the order of O(2nfnnen).

The overall cost of evaluating the residual, once the matricesMf
and C are computed, is

nop = nel(2nen − 1)nen + nfa(2nfn − 1)nen, where nel is the number of mesh elements and nfa

is the total number of mesh edges or faces in two or three dimensions respectively.

For a regular mesh of tensor-product elements, i.e. quadrilateral or hexahedral elements,

in two and three dimensions respectively, the number of mesh edges/faces can be written in

terms of the total number of mesh elements, namely nfa = nsdnel, by assuming that the mesh is

large enough so that the number of exterior faces can be neglected. This leads to the following

expression for the total number of operations, only in terms of the number of elements, nel, and

the degree of approximation, p,

nop = nel(p + 1)
nsd

[
2(p + nsd + 1)(p + 1)

nsd−1 − nsd − 1

]
, (24)

with leading term O(2nelp
2nsd). As the number of elements can be factorised, in the remainder

of the paper the total number of operations per element will be considered. The number of

operations required to compute the matrix-vector products in Eq. (22) for a tensor-product

element are given in Table 1 for future reference.

Operations Leading term

ne
op [2(p + 1)nsd − 1] (p + 1)nsd O(2p2nsd )

nf
op

[
2(p + 1)nsd−1 − 1

]
(p + 1)nsd O(2p2nsd−1)

Table 1: Number of operations required (per element) to compute the matrix-vector products in Eq. (22)

using the GLegQ for numerical integration.

Remark 3 This approach requires to store the matrices C and Mf
. The cost to assemble these

matrices and the memory requirements are thus both of the order of O(nelp
2nsd). Depending on

the available resources, it can be interesting to save these matrices but that does not change the

main complexity of the algorithm.

version of June 15, 2022 6



S. Chaillat et al. A high-order DG method with mixed quadratures

2.6 Choices of quadrature for integration
The computation of the elemental mass and convection matricesM and C in Eq. (17) is performed

using a numerical quadrature defined on the reference element Ω̂, with nip points

{
ξG

}
G=1, ...,nip

and weights {ωG }G=1, ...,nip , namely

MI J ≃

nip∑
G=1

NI (ξG )N J (ξG )|J(ξG )|ωG ,

CI J ≃

nip∑
G=1

NI (ξG )ωG

nsd∑
ℓ=1

Gℓ(ξG )
∂N J (ξG )

∂ξℓ
.

(25)

Similarly the face mass matrix Mf
in Eq. (19) is computed by using a numerical quadrature

defined on the reference face Γ̂, with nf
ip points

{
ηG

}
G=1, ...,nf

ip
and weights {ϖG }G=1, ...,nf

ip
,

namely

Mf
I J ≃



nf
ip∑

G=1

a−n
(
ψ(ηG )

)
NI (ηG )N J (ηG )∥J

f (ηG )∥ϖG if x I ∈ Γ
f
e

0 otherwise,

(26)

In this work two numerical quadratures, namely Gauss-Legendre (GLegQ) and Gauss-Lobatto

(GLobQ) quadratures, are considered and compared. For integration over the interval [−1, 1],

GLegQ are based on the roots of the Legendre polynomials, of order p + 1, and they integrate

exactly polynomials of order 2p + 1. In contrast, GLobQ are based on the extremes of the segment

and the roots of the derivative of the Legendre polynomials, of order p − 1, (for a total of p + 1
nodes) and integrates exactly polynomials of order 2p − 1.

In general, i.e. even when the Jacobian is not constant, it is possible to select the number

of integration points to integrate exactly the terms of the elemental mass matrix. For an

approximation with polynomials of degree p, the entries of the mass matrix require the integration

of a polynomial of degree (nsd + 2)p − 1, which can be computed exactly with a GLegQ with

2p − 1 points. The convection matrix can be computed exactly only if the convection velocity is a

polynomial. For instance, if the convection velocity is a polynomial of degree q, the entries of the
mass matrix require the integration of a polynomial of degree (nsd + q + 1)p − 1. Finally, the face

mass matrix cannot be computed exactly in general due to the non-polynomial nature of the

norm of Jf (Sevilla et al. 2011).

3 Alternative formulations of the residual
This section presents an efficient strategy to evaluate the residual of the ODE system of Eq. (22)

for tensor-product elements. First, the particular case involving a constant velocity field and

meshes with elements with constant Jacobian is considered. The more general case, where the

velocity is not constant and/or the Jacobian of the isoparametric mapping is not constant is later

discussed.

The main property used in the following is that the tensor product C = a ⊗ b of two matrices

of size na ×ma and nb ×mb is a matrix of size (nanb ) × (mamb ) given by

CI J = ai1 j1bi2 j2 , with I = i2 + (i1 − 1)nb , J = j2 + (j1 − 1)mb . (27)

In addition, the derivations presented in this section use the following properties of matrix

multiplication, assuming compatible sizes,

(a ⊗ b)(f ⊗ g) = af ⊗ bg, (28)

and inversion, assuming compatible sizes and that a and b are invertible,

(a ⊗ b)−1(f ⊗ g) = a−1f ⊗ b−1g. (29)
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These properties also apply to tensor products in higher dimensions (see Deville et al. 2002, for

more details).

Finally, let us introduce the one dimensional mass and convection elemental matrices

m̂i j =

∫
1

−1

ni (ξ )nj (ξ )dξ , ĉi j =
∫

1

−1

ni (ξ )
∂nj

∂ξ
(ξ )dξ . (30)

3.1 Case of constant Jacobian and velocity field
When the isoparametric mapping of Eq. (14) is affine, its Jacobian becomes constant for each

element. If, additionally, the vector field a(x) is constant on the element, this can be used to

accelerate the code substantially by adopting a quadrature-free implementation of the DG

method (Atkins et al. 1998a; Sevilla et al. 2014). In this situation, the elemental matrices are

computed as

M = |J|M̂, C =
nsd∑
l=1

GℓĈℓ, Mf = a−n ∥J
f ∥M̂f , (31)

where the functions Gℓ , given in Eq. (18), become constant in each element. The elemental

matrices

M̂I J =

∫
Ω̂
NIN JdΩ, Ĉℓ

I J =

∫
Ω̂
NI
∂N J

∂ξℓ
dΩ, (32)

for I , J = 1, . . . ,nen, are computed only once, in the reference element and stored. Similarly, the

face matrix

M̂f
I J =


∫
Γ̂
N

f
I N

f
J dΓ, if x I ∈ Γ

f
e

0 otherwise,

(33)

for I = 1, . . . ,nen and J = 1, . . . ,nfn is computed only once, in the reference face and stored.

This strategy leads to a very efficient implementation of the DG method where, at each time

step, the evaluation of the residual of the system of ODEs, given by Eq. (22), reduces to a matrix

scaling and matrix-vector product operations. It is also worth noting that in this situation, it is

possible to compute the integrals of all the matrices in Eq. (32) exactly by using a numerical

quadrature of order 2p, for instance using a GLegQ.

3.1.1 Residual evaluation for quadrilateral elements
Using the tensor product nature of the shape functions described in Section 2.4, the mass and

convection matrices of the reference element given in Eq. (32) can be written as

M̂ = m̂ ⊗ m̂, Ĉ1 = ĉ ⊗ m̂, Ĉ2 = m̂ ⊗ ĉ. (34)

Using these tensorised expressions of the elemental mass and convection matrices, the

contribution of the convection term to the residual in Eq. (22) can be evaluated as

C = G1

(
m̂−1ĉ

)
⊗ i +G2i ⊗

(
m̂−1ĉ

)
, (35)

where i is the identity matrix of size (p + 1) × (p + 1).
The mass matrices corresponding to the four edges of a quadrilateral can be written as

M̂1 = e1 ⊗ m̂, M̂2 = e2 ⊗ m̂, M̂3 = m̂ ⊗ e1, M̂4 = m̂ ⊗ e2, (36)

where the vectors e1 = [1, 0, . . . , 0]T and e2 = [0, . . . , 0, 1]T are of dimension p + 1.
Figure 1 shows the reference quadrilateral element with the assumed local numbering of the

nodes for the particular case of p = 2. The numbering of the edges assumed is such that the first

edge contains vertices 1 and 3, the second edge contains vertices 7 and 9, the third face contains

vertices 1 and 7 and the fourth face contains vertices 3 and 9.
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Figure 1: Reference quadrilateral element, showing the local numbering of the nodes for p = 2.

The contribution to the residual corresponding to the four edges of a quadrilateral can then

be written in tensorised form as

M1 = a−n
∥J1∥
|J|

(m̂−1e1) ⊗ i, M2 = a−n
∥J2∥
|J|

(m̂−1e2) ⊗ i,

M3 = a−n
∥J3∥
|J|

i ⊗ (m̂−1e1), M4 = a−n
∥J4∥
|J|

i ⊗ (m̂−1e2),
(37)

3.1.2 Residual evaluation for hexahedral elements
The tensorial decompositions described above generalize to hexahedral elements in 3D. The mass

and convection matrices of the reference element given in Eq. (32) can be written as

M̂ = m̂ ⊗ m̂ ⊗ m̂, Ĉ1 = ĉ ⊗ m̂ ⊗ m̂, Ĉ2 = m̂ ⊗ ĉ ⊗ m̂, Ĉ3 = m̂ ⊗ m̂ ⊗ ĉ, (38)

and the contribution of the convection term to the residual in Eq. (22) can be evaluated as

C = G1

(
m̂−1ĉ

)
⊗ i ⊗ i +G2i ⊗

(
m̂−1ĉ

)
⊗ i +G3i ⊗ i ⊗

(
m̂−1ĉ

)
. (39)

The mass matrices corresponding to the six faces of a hexahedral element can be written as

M̂1 = e1 ⊗ m̂ ⊗ m̂, M̂2 = e2 ⊗ m̂ ⊗ m̂, M̂3 = m̂ ⊗ e1 ⊗ m̂

M̂4 = m̂ ⊗ e2 ⊗ m̂, M̂5 = m̂ ⊗ m̂ ⊗ e1, M̂6 = m̂ ⊗ m̂ ⊗ e2,
(40)

leading to the following tensorised expressions for the face contributions to the residual:

M1 = a−n
∥J1∥
|J|

(m̂−1e1) ⊗ i ⊗ i, M2 = a−n
∥J2∥
|J|

(m̂−1e2) ⊗ i ⊗ i,

M3 = a−n
∥J2∥
|J|

i ⊗ (m̂−1e1) ⊗ i, M4 = a−n
∥J2∥
|J|

i ⊗ (m̂−1e2) ⊗ i,

M5 = a−n
∥J2∥
|J|

i ⊗ i ⊗ (m̂−1e1), M6 = a−n
∥J2∥
|J|

i ⊗ i ⊗ (m̂−1e2).

(41)

Figure 2 shows the reference hexahedral element with the assumed local numbering of the

nodes for the particular case of p = 2. The numbering of the faces assumed is such that the first

face contains vertices 1, 3, 9 and 7, the second face contains vertices 19, 21, 27 and 25, the third

face contains vertices 7, 9, 27 and 25, the fourth face contains vertices 1, 3, 21 and 19, the fifth face

contains vertices 1, 7, 25 and 19 and the sixth face contains vertices 3, 9, 27 and 21.

3.1.3 Operations count to evaluate the residual
Using the tensorisation proposed above, the cost to compute the residual term is re-evaluated. We

recall that the cost to compute the action on a vector of the tensorised matrix B = i ⊗ a, where a
is a matrix of size n × n and i is the identity matrix of sizem ×m, ismn(2n − 1). We also recall

that i ⊗ i is just the identity matrix of sizem2 ×m2
, and that the action of i ⊗ a ⊗ i has the same

complexity as the action of i ⊗ i ⊗ a on that same vector.

It follows that, once the elemental matricesGℓ

(
m̂−1ĉ

)
, of size (p + 1) × (p + 1), are computed

for an element, the evaluation of the term of the residual in Eq. (22) associated to such an
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Figure 2: Reference hexahedral element, showing the local numbering of the nodes for p = 2.

elemental matrix requires (p + 1)nsd[2(p + 1) − 1] operations to perform the matrix-vector product.

There are nsd such matrix-vector products to perform leading to ne
op = nsd(p + 1)

nsd[2(p + 1) − 1].

The leading term in this evaluation is thus of the order of O(2nsdp
nsd+1).

Considering vectors now, the general cost to compute the action on a vector of the tensorised

matrix B = i⊗w, wherew is a vector of size n and i is still the identity matrix of sizem×m, ismn.
The cost to evaluate the term of the residual in Eq. (22) associated to an internal face now reduces

to the application of nsd tensorised matrices per element (as explained in Section 2.5). The vector(
m̂−1ei

)
of size (p + 1) is tensorised with an identity matrix of size (p + 1)nsd−1 × (p + 1)nsd−1

, so

the cost to apply a matrixMi
is thus nf

op = (p + 1)nsd
.

These numbers of operations are summarized in Table 2.

Operations Leading term

ne
op nsd(p + 1)

nsd [2(p + 1) − 1] O(2nsdp
nsd+1)

nf
op nsd(p + 1)

nsd O(nsdp
nsd )

Table 2: Number of operations required (per element) to compute the matrix-vector products in Eq. (22)

using the GLegQ for numerical integration, assuming a constant Jacobian and a constant velocity field.

Remark 4 The use of a tensorized version of the operators drastically reduces the memory

requirements. It is thus necessary in this context to save only the the nsd elemental matrices

Gℓ

(
m̂−1ĉ

)
of size (p + 1) × (p + 1) and the nsd vectors

(
m̂−1ei

)
of size (p + 1). The total memory

requirements are thus of the order of O(nelp
2) advocating in favor of an approach where these

matrices are precomputed.

3.2 General case using Gauss-Lobatto quadratures
This sections considers the general case, where the Jacobian and/or the velocity field are not

constant. Despite the tensorised expressions obtained in the previous section are no longer valid

in the general case, it is still possible to obtain efficient formulas for estimating the residual, but

only when using the GLobQ for numerical integration. In order to simplify the comparisons in

the next section, the mass, convection, and face mass matrices will be denoted byM, C andMf
,

respectively, when they have been integrated using GLobQ.

Using the delta Kronecker property of the shape functions, that is NI (ξ J ) = δI J , along with

the GLobQ numerical quadrature, simplified expressions for the elemental and face matrices in

Eqs. (25) and (26) can be obtained. Indeed, the elemental mass matrix can be written as

MI J ≃

nip∑
G=1

NI (ξG )N J (ξG )|J(ξG )|ωG = δI J |J(ξ I )|ωI , (42)
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with the trivial expression for the inverse

M−1
I J =

δI J

|J(ξ I )|ωI
. (43)

Similarly, the elemental convection matrix can be written as

CI J ≃

nip∑
G=1

NI (ξG )ωG

nsd∑
ℓ=1

Gℓ(ξG )
∂N J (ξG )

∂ξℓ
=

nsd∑
ℓ=1

Gℓ(ξ I )
∂N J

∂ξℓ
(ξ I )ωI . (44)

Finally, the face mass matrix can be written as

M
f
I J ≃



nf
ip∑

G=1

a−n (ζG )NI (ζG )N J (ζG )∥J
f (ζG )∥ϖG = δI Ja

−
n (ζ I )∥J

f (ζ I )∥ϖI if x I ∈ Γ
f
e

0 otherwise.

(45)

3.2.1 Residual evaluation for quadrilateral elements
Observing in the 2D case that

∂N J

∂ξ1
(ξ ∗I ) = n

′
j1(ξi1)nj2(ξi2),

∂N J

∂ξ2
(ξ ∗I ) = nj1(ξi1)n

′
j2(ξi2), ωI = ωi1ωi2 , (46)

the matrices nℓj := ωℓnj (ξℓ) and dℓj := ωℓn
′
j (ξℓ), of size (p + 1) × (p + 1) are introduced. These

matrices are used to define the 2D derivative matrices, namely

D1 := d ⊗ n, D2 := n ⊗ d. (47)

Introducing the diagonal matrix Ĝℓ (of size nen × nen), whose elements are Gℓ(ξ I ), the
convection matrix can then be computed as

C = Ĝ1(d ⊗ n) + Ĝ2(n ⊗ d), (48)

and

M−1C = M−1Ĝ1(d ⊗ n) +M−1Ĝ2(n ⊗ d), (49)

whereM−1
is the diagonal matrix defined in Eq. (43). It is worth noting that each term in the sum

above is the product of a diagonal matrix (M−1Ĝi ) by a matrix that has a tensorised form.

For the evaluation of the part of the residual related to edges, the following diagonal formula

is obtained

M−1M
f
I J ≃


δI Ja

−
n (ζ I )

∥Jf (ζ I )∥ϖI

|J(ξ I )|ωI
if x I ∈ Γ

f
e

0 otherwise.

(50)

3.2.2 Residual evaluation for hexahedral elements
The decompositions described above generalize to 3D tensor-product elements in the following

way for the convection matrix,

C = Ĝ1(d ⊗ n ⊗ n) + Ĝ2(n ⊗ d ⊗ n) + Ĝ3(n ⊗ n ⊗ d), (51)

and the contribution of the convection matrices to the residual of the ODE system,

M−1C = M−1Ĝ1(d ⊗ n ⊗ n) +M−1Ĝ2(n ⊗ d ⊗ n) +M−1Ĝ3(n ⊗ n ⊗ d). (52)

Finally, the contribution of the face mass matrices to the ODE residual is the same as in Eq. (50).
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3.2.3 Operations count to evaluate the residual
To evaluate the cost of computing the action of the tensorised matrix a ⊗ b on a vector, where a
and b are matrices of size n × n, the decomposition a ⊗ b = (a ⊗ i)(i ⊗ b) is introduced, where i is
the identity matrix of size n × n. As previously shown, the cost of evaluating (i ⊗ b)u, which
is also the cost of (a ⊗ i)u, is equal to n2(2n − 1). The total cost to compute the action of the

tensorised matrix a ⊗ b on a vector is thus 2n2(2n − 1). Similarly, in 3D the decomposition

a ⊗ b ⊗ c = (a ⊗ i ⊗ i)(i ⊗ b ⊗ i)(i ⊗ i ⊗ c) is used to obtain that the cost to compute the action of

the tensorised matrix a ⊗ b ⊗ c on a vector is 3n3(2n − 1).

Using Eq. (49), the action of the matrix M−1C on a vector can be therefore decomposed

into: (i) the action of nsd tensorised matrices on that vector, with cost nsd(p + 1)nsd(2p + 1) per

matrix; and (ii) the action of nsd diagonal matrices of size (p + 1)nsd
, with a cost of nsd(p + 1)nsd

.

The total cost to evaluate the residual part associated with the convection is therefore of order

n2sd(p + 1)
nsd(2p + 1) + nsd(p + 1)

nsd
, with a leading order similar to the constant case.

The cost to evaluate the term of the residual in Eq. (22) associated to an internal face now

reduces to the application of nsd diagonal matrices of size (p + 1)nsd−1 × (p + 1)nsd−1
, with a cost

of nsd(p + 1)
nsd−1

.

These numbers of operations are summarized in Table 3.

Operations Leading term

ne
op n2sd(p + 1)

nsd (2p + 1) + nsd(p + 1)
nsd O(n2sdp

nsd+1)

nf
op nsd(p + 1)

nsd−1 O(nsdp
nsd−1)

Table 3: Number of operations required (per element) to compute the matrix-vector products in Eq. (22)

using the GLobQ for numerical integration.

Remark 5 Similarly to the case with a constant Jacobian and velocity the use of a tensorized

version of the operators drastically reduces the memory requirements. Due to the use of

Gauss-Lobatto quadrature rules, most of the matrices are diagonal ones. It is thus necessary in

this context to save only the matrices n and d of size (p + 1) × (p + 1), the nsd diagonal matrices

Ĝℓ of size (p + 1)nsd × (p + 1)nsd
, the diagonal matricesM−1

together with the diagonal matrices

Mf
of size (p + 1)nsd−1 × (p + 1)nsd−1

. The total memory requirements are thus of the order of

O(pnsd) advocating in favor of an approach where these matrices are precomputed.

4 A DG method with mixed quadratures
In the previous section, it was concluded that, in general, the most expensive part of the

computation of the residual of Eq. (22) corresponds to the convection contribution. In this section,

a formal proof is provided showing that under certain hypothesis (explained further down), the

contribution to the residual given by the convection term is identical if GLegQ or GLobQ are

used. This result is in principle not expected because the GLobQ does not provide an exact

integration for the entries of the mass matrix. Furthermore, numerical integration with GLobQ

does not provide exact integration for the convection matrix under the hypothesis considered. So

even if both the mass and convection matrices are not integrated exactly, the result provided here

shows that the contribution to the residual can be computed exactly.

This is the main motivation for proposing a new DG method using mixed quadratures (MixQ).

The proposed approach uses a GLobQ for computing the contribution to the residual due to

convection whereas a GLegQ is used to compute the face contribution. Numerical examples in

Section 5 will be used to numerically demonstrate that, in the most general case, it is indeed the

inaccurate integration of the face mass contribution (with the GLobQ) that influences accuracy

most drastically, rather than the inaccurate integration of the convection contribution. Therefore,

the proposed approach is considered attractive as it will improve the performance of the code by

reducing the cost of the most expensive part of the computation, i.e., the convection part of the

residual, whilst maintaining the overall accuracy of the standard DG method with GLegQ.
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4.1 A surprising equality for residual evaluation
This section formally proves that, somewhat surprisingly, the evaluation of the convection part of

the residual is exact (given an hypothesis that will be explained below) with GLobQ even when

both the convection and mass matrices contain errors due to the numerical integration.

Let us first consider the mass and convection matrices obtained by integration with the

GLobQ. Using Eqs. (43), (25) and (18), the expression for the elemental mass and convection

matrices can be written as

M−1
I J =

δI J

|J(ξ I )|ωI
, CI J = ωI |J(ξ I )|

nsd∑
k, ℓ=1

ak (φ(ξ I )) J
−1
kl (ξ I )

∂N J (ξ I )

∂ξℓ
, (53)

so that the convection part of the residual is given by

(M−1C)I J =

nsd∑
k, ℓ=1

ak (φ(ξ I )) J
−1
kl (ξ I )

∂N J (ξ I )

∂ξℓ
. (54)

We first note that any polynomial P(ξ ) over Ω̂, of order p in each direction, can be exactly

represented on the basis of functions NI (ξ ) in the following manner:

P(ξ ) =
nen∑
I=0

NI (ξ )

∫
Ω̂
NI (ξ )P(ξ )dΩ. (55)

Secondly, if the order of that polynomial is less than or equal to p − 1 in each direction, numerical

integration with the GLobQ is exact (because NI (ξ )P(ξ ) is then a polynomial of order less than

2p − 1), so that we further have

P(ξ ) =
nen∑
I=0

NI (ξ )P(ξ I ). (56)

Therefore, if, for any 1 ≤ I , J ≤ nen,
∑nsd

k, ℓ=1 ak (φ(ξ )) J
−1
kl (ξ )

∂N J
∂ξℓ

(ξ ) is a polynomial of order

less than p − 1 in each direction,

nsd∑
k, ℓ=1

ak (φ(ξ )) J
−1
kl (ξ )

∂N J

∂ξℓ
(ξ ) =

nen∑
I=0

NI (ξ )(M
−1C)I J . (57)

If we now consider the convection and mass matrices integrated exactly (for instance using

GLegQ with enough integration points), as in Eq. (17) and (18), we obtain, using also Eq. (57),

nen∑
J=1

MI J (M
−1C)JK =

∫
Ω̂
NI (ξ )|J(ξ )|

(
nen∑
J=1

N J (ξ )(M
−1C)JK

)
dΩ = CIK , (58)

or, equivalently,

M−1C = M−1C. (59)

Therefore, provided that for any 1 ≤ I , J ≤ nen,
∑nsd

k, ℓ=1 ak (φ(ξ )) J
−1
kl (ξ )

∂N J
∂ξℓ

(ξ ) is a polynomial

of order less than p − 1 in each direction, the productM−1C is evaluated exactly, even though

both the matricesM and C may be wrongly integrated. Since this product is the only quantity

required during the evaluation of the convective part of the residual, this means that using

GLobQ essentially brings no additional error with respect to GLegQ. Of course, this says nothing

of the face mass part or the evaluation of the residual.

Note that the constraint on the polynomial order is quite strong, but is at least verified for a

constant velocity field and a constant Jacobian.
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4.2 The DG method with mixed quadratures
Combined with the numerical tests of next section (in both cases when the polynomial hypothesis

is verified or not), the previous section essentially states that integration error bears little weight

in the evaluation of the convective part of the residual. Otherwise said, when aiming for a

certain overall accuracy, it is less important to integrate exactly the convective part of the

residual than the face mass part. This leads us to propose a novel DG method, with the following

characteristics:

• Interpolation points are the nodes of the GLobQ;

• Residual is evaluated using Eq. (22) where

– The convective part is CU = M−1CU, where the elements ofM−1C are integrated

using GLobQ, as in Eq. (54);

– The face mass part is

∑ne
fa

f =1M
f ⟦Uf ⟧ = ∑ne

fa
f =1M

−1Mf ⟦Uf ⟧ where the elements of

M−1Mf
are integrated exactly (for instance using GLegQ in Eq. (25) and (26) with

enough integration points).

The overall operations count for the evaluation of the residual is therefore [2(p + 1)nsd−1 +

n2sd(2p + 1) + nsd − 1](p + 1)nsd
, with leading order O(2p2nsd−1) or O(2n2sdp

nsd+1) depending on

the dimension nsd and p. It is interesting to note here that except for nsd = 3 and high order p,
the contributions of the two terms in the residual are on the same order. In the worst case, the

proposed method is therefore slightly more expensive than the full DGSEM, but next section will

show that it is also much more accurate. With respect to the DG method with exact integration,

the proposed method is more efficient, and the examples of next section will show that it is as

accurate.

Table 4 summarises the number of operations of the DG methods with GLegQ, GLobQ and

with the proposed MixQ.

Constant Jacobian and velocity

nsd = 2 nsd = 3

ne
op nf

op ne
op nf

op

GLegQ O(4p3) O(2p2) O(6p4) O(3p3)

GLobQ O(4p3) O(2p) O(9p4) O(3p2)

MixQ O(4p3) O(2p2) O(9p4) O(3p3)

Non-constant Jacobian and/or velocity

nsd = 2 nsd = 3

ne
op nf

op ne
op nf

op

GLegQ O(2p4) O(2p3) O(2p6) O(2p5)

GLobQ O(4p3) O(2p) O(9p4) O(3p2)

MixQ O(4p3) O(2p3) O(9p4) O(2p5)

Table 4: Orders of magnitude of the numbers of operations required (per element) to compute the

matrix-vector products to evaluate the ODE residual in Eq. (16) for the different DG approaches considered.

The results, from Tables 1, 2 and 3, are particularised for two and three dimensions and displayed separately

for the particular case of constant velocity and constant Jacobian alongside the general case.

5 Numerical examples
This section presents a set of numerical tests to evaluate the accuracy of the DG approaches

considered in this work. The examples involve problems with constant and non-constant velocity

fields both in two and three dimensions. In addition, the use of Cartesian and non-Cartesian

grids is also studied, to evaluate the influence of having elements with non-constant Jacobian of

the isoparametric mapping. The discussion also considers the computational cost of the DG

approaches considered, as well as the impact of stability.

version of June 15, 2022 14



S. Chaillat et al. A high-order DG method with mixed quadratures

(a)M1 (b)M2 (c)M3 (d)M4

Figure 3: Cartesian meshes of quadrilateral elements.

p h ϵGLegQ = ϵMixQ rGLegQ = rMixQ ϵGLobQ rGLobQ
ϵGLobQ
ϵGLegQ

1 0.5000 4.5 × 10
−1

– 9.7 × 10
−1

– 2.1

1 0.2500 1.4 × 10
−1

1.7 6.0 × 10
−1

0.7 4.2

1 0.1250 3.3 × 10
−2

2.1 2.3 × 10
−1

1.4 6.9

1 0.0625 7.7 × 10
−3

2.1 6.6 × 10
−2

1.8 8.6

2 0.5000 8.8 × 10
−2

– 3.1 × 10
−1

– 3.5

2 0.2500 1.0 × 10
−2

3.1 4.9 × 10
−2

2.7 5.0

2 0.1250 1.2 × 10
−3

3.0 6.2 × 10
−3

3.0 5.1

2 0.0625 1.5 × 10
−4

3.0 7.6 × 10
−4

3.0 5.1

3 0.5000 1.3 × 10
−2

– 4.9 × 10
−2

– 4.0

3 0.2500 7.9 × 10
−4

4.0 3.4 × 10
−3

3.9 4.3

3 0.1250 4.8 × 10
−5

4.0 2.2 × 10
−4

4.0 4.5

3 0.0625 3.0 × 10
−6

4.0 1.4 × 10
−5

4.0 4.5

4 0.5000 1.7 × 10
−3

– 6.5 × 10
−3

– 3.9

4 0.2500 5.1 × 10
−5

5.0 2.1 × 10
−4

4.9 4.1

4 0.1250 1.6 × 10
−6

5.0 6.8 × 10
−6

5.0 4.2

4 0.0625 5.0 × 10
−8

5.0 2.1 × 10
−7

5.0 4.2

Table 5: Relative error in the L2(Ω) norm (ϵ), and rate of convergence (r ) for the DG methods with

GLegQ and GLobQ for the 2D problem with constant velocity using Cartesian meshes.

5.1 Two dimensional examples
The first two dimensional example considers the propagation of a sinusoidal wave with a constant

velocity field in a Cartesian mesh. The domain is Ω = [0, 1]2 and the velocity field is given by

a = [cos(π/6), sin(π/6)]. The exact solution of the problem is given by

u(x , t) = sin

(
2π (a · x − t)

)
. (60)

The final time for the simulations is taken as T = 1 and the time step is selected small enough so

that the error induced by the time marching scheme is negligible when compared to the error

induced by the spatial discretisation.

A set of Cartesian meshes is first utilised to test the optimal convergence properties of the

DG methods with Gauss-Legendre (GLegQ) and Gauss-Lobatto (GLobQ) quadratures. As detailed

in Section 4.1, the proposed approach with mixed quadratures (MixQ) leads to identical results

when compared to the DG method with GLegQ.

The mesh corresponding to the i-th level of refinement is denoted byMi
and contains 2

i × 2
i

quadrilateral elements with characteristic element size h = 2
−i
, as shown in figure 3.

Table 5 shows the relative error, measured in the L2(Ω) norm and denoted by ϵ , for the DG
methods with GLegQ and GLobQ for a polynomial approximation of order ranging from p = 1 up

to p = 4. The table also shows the rates of convergence, denoted by r and the ratio between the

error of both approaches.

The results show that both approaches provide an optimal rate of convergence, approximately

p + 1, in the L2(Ω) norm. The results also reveal the extra accuracy provided by the DG method
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Stability comparison

(a) Mesh 3 (b) Mesh 4

Figure 1: Constant velocity - constant Jacobian. Error as a function of the time step.

(a) Mesh 3 (b) Mesh 4

Figure 2: Constant velocity - Non-constant Jacobian. Error as a function of the time step.

(a) Mesh 3 (b) Mesh 4

Figure 3: Non-constant velocity - Non-constant Jacobian. Error as a function of the time
step.
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Figure 1: Constant velocity - constant Jacobian. Error as a function of the time step.
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Figure 2: Constant velocity - Non-constant Jacobian. Error as a function of the time step.
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Figure 3: Non-constant velocity - Non-constant Jacobian. Error as a function of the time
step.
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Figure 4: Influence, in the case of constant velocity and constant jacobian, of time step on the L2(Ω)-error
at T = 1 for different polynomial orders, meshes and method.

(a)M1 (b)M2 (c)M3 (d)M4

Figure 5: Non-Cartesian meshes of quadrilateral elements.

with GLegQ, when compared to the results of the DG method with GLobQ on the same mesh. It

is worth emphasising that the computation of the convection term in both cases is identical

because the velocity is constant and the Jacobian of the isoparametric mapping is constant for the

selected meshes. Therefore, the extra accuracy is due to the more accurate integration provided

by the GLegQ for the contribution to the residual of the face term. For the lowest order case, the

use of GLegQ provides an error nine times lower than that produced by the DG method with

GLobQ. For higher orders,the use of GLegQ consistently provides an accuracy between four to

five times higher than the DG method with GLobQ.

In terms of the computational cost, the DG method with GLegQ requires O(4p3) and O(2p2)
operations for computing the matrix-vector products corresponding to the convection and face

contributions to the residual, respectively. The DG method with GLobQ requires O(4p3) and
O(2p) operations for computing the matrix-vector products corresponding to the convection and

face contributions to the residual, respectively. Therefore, it is apparent that the approach with

GLegQ is beneficial as the dominant term, corresponding to the convection term, has the same

order of operations.

For completeness, we propose an additional series of numerical tests to try and evaluate the

influence of stability on this conclusion. In Fig. 4 is represented the influence of the time step on

the error (at T = 1) for all three methods, different polynomial orders, and the refined meshes

(M3
and M4

). The unstability appears as an explosion of the error above a given critical time

step. As already discussed, that time step is the same for GLegQ and MixQ. We observe that the

stability time is consistently twice as large for GLobQ that GLegQ/MixQ. This means that the

conclusion of the previous paragraph is somehow lessened as larger time steps can be considered

(and hence twice less computational effort) with GLobQ than the other two method. However,

MixQ remain the overall best method, with 2 to 4 times less error for the same computational

cost as GLobQ, and the same error for a smaller computational cost as GLegQ.

To evaluate the influence of having elements with non-constant Jacobian, the same problem

is now solved using the non-Cartesian meshes shown in Figure 5. The meshes have been obtained

by randomly perturbing the position of the interior nodes of the Cartesian meshes of Figure 3.

Table 6 shows the relative error, measured in the L2(Ω) norm, for the DG methods with

GLegQ, GLobQ and MixQ. The table also shows the rates of convergence and the ratio between
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the error of the DG methods with GLobQ and MixQ with respect to the GLegQ.

p h ϵGLegQ rGLegQ ϵGLobQ rGLobQ ϵMixQ rMixQ
ϵGLobQ
ϵGLegQ

ϵMixQ
ϵGLegQ

1 0.5737 4.7 × 10
−1

– 1.0 – 4.8 × 10
−1

– 2.1 1.0

1 0.2991 1.5 × 10
−1

1.8 6.7 × 10
−1

0.6 1.5 × 10
−1

1.8 4.4 1.0

1 0.1699 3.5 × 10
−2

2.6 2.8 × 10
−1

1.6 3.8 × 10
−2

2.4 7.9 1.1

1 0.0871 8.4 × 10
−3

2.1 7.8 × 10
−2

1.9 1.2 × 10
−2

1.8 9.3 1.4

2 0.5737 9.6 × 10
−2

– 2.6 × 10
−1

– 9.8 × 10
−2

– 2.7 1.0

2 0.2991 1.2 × 10
−2

3.1 3.9 × 10
−2

2.9 1.3 × 10
−2

3.1 3.1 1.0

2 0.1699 1.5 × 10
−3

3.7 5.3 × 10
−3

3.5 1.6 × 10
−3

3.7 3.5 1.0

2 0.0871 1.9 × 10
−4

3.1 6.2 × 10
−4

3.2 2.4 × 10
−4

2.8 3.3 1.3

3 0.5737 1.4 × 10
−2

– 4.2 × 10
−2

– 1.4 × 10
−2

– 3.0 1.0

3 0.2991 8.5 × 10
−4

4.3 2.4 × 10
−3

4.4 8.5 × 10
−4

4.3 2.9 1.0

3 0.1699 5.9 × 10
−5

4.7 1.7 × 10
−4

4.7 6.0 × 10
−5

4.7 2.9 1.0

3 0.0871 4.0 × 10
−6

4.0 1.2 × 10
−5

4.0 4.2 × 10
−6

4.0 2.9 1.1

4 0.5737 2.1 × 10
−3

– 5.3 × 10
−3

– 2.1 × 10
−3

– 2.6 1.0

4 0.2991 8.2 × 10
−5

4.9 2.1 × 10
−4

4.9 8.3 × 10
−5

5.0 2.6 1.0

4 0.1699 2.6 × 10
−6

6.1 7.2 × 10
−6

6.0 2.6 × 10
−6

6.1 2.7 1.0

4 0.0871 7.9 × 10
−8

5.2 2.2 × 10
−7

5.2 8.0 × 10
−8

5.2 2.7 1.0

Table 6: Relative error in the L2(Ω) norm (ϵ), and rate of convergence (r ) for the DG methods with

GLegQ, GLobQ and MixQ for the 2D problem with constant velocity using non-Cartesian meshes.

The results show the optimal rate of convergence for the three DG approaches. In terms of

the accuracy, the DG method with GLegQ and the proposed DG method with MixQ provide

almost identical results. This shows that the extra error present in the DG method with MixQ

that is induced by the numerical integration of the part of the residual corresponding to the

convection is almost negligible. In contrast when GLobQ are used for both the convection and

the face integrals, the error increases by a factor between 2.7 and 3.3 for p > 1.

When comparing the computational costs of the three approaches, the most expensive is the

DG method with GLegQ as the number of operations associated to the matrix-vector products of

the convection and face contributions to the residual are O(2p4) and O(2p3), respectively. For the
DG method with GLobQ the number of operations associated to the matrix-vector products of

the convection and face contributions to the residual are O(4p3) and O(2p), respectively. With

the proposed DG method with MixQ O(4p3) and O(2p3) operations are required to compute the

matrix-vector products of the convection and face contributions to the residual, respectively.

In all cases the cost is dominated by the convection term, which requires O(2p4), O(4p3), and
O(4p3) operations for the DG method with GLegQ, GLobQ and MixQ, respectively. In fact it is

worth noting that the cost of the approach with MixQ is only slightly higher than the cost of the

DG method with GLobQ, but as a result the accuracy is approximately three times higher. It is

also worth noting that the proposed DG method with MixQ is more efficient than the DG method

with GLegQ. In terms of accuracy both methods provide almost identical results but in terms of

the cost, the proposed method has a dominant cost of O(p3) whereas the DG method with GLegQ

has a dominant cost of O(p4).

As in the previous case, the conclusions are lessened when considering stability (see Fig. 6),

but the MixQ remains 1.5 to 3 times more efficient than the GLobQ, and as precise as the GLeqQ

for the same computational cost.

The next example considers a deformational flow, similar to the tests employed to assess the

accuracy of advection schemes for climate and weather applications (Kent 2019). The velocity

field is given by

a(x , t) = cos(πt/T )

[
0.1 sin2(πx1) sin(2πx2)

0.1 sin(2πx1) sin
2(πx2)

]T
(61)
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Stability comparison

(a) Mesh 3 (b) Mesh 4

Figure 1: Constant velocity - constant Jacobian. Error as a function of the time step.

(a) Mesh 3 (b) Mesh 4

Figure 2: Constant velocity - Non-constant Jacobian. Error as a function of the time step.

(a) Mesh 3 (b) Mesh 4

Figure 3: Non-constant velocity - Non-constant Jacobian. Error as a function of the time
step.
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Figure 2: Constant velocity - Non-constant Jacobian. Error as a function of the time step.
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Figure 3: Non-constant velocity - Non-constant Jacobian. Error as a function of the time
step.
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Figure 6: Influence, in the case of constant velocity and non-constant jacobian, of time step on the

L2(Ω)-error at T = 1 for different polynomial orders, meshes and method.

and the final time is T = 1.

The initial condition is given by u0(x) = 0.5 + 0.5 sin(2πx1) sin(2πx2) and periodic boundary

conditions are considered on the boundary of the domain ∂Ω. It is worth noting that the problem

has no known analytical solution but the cosine term in Eq. (61) ensures that the flow reverses at

time t = T /2 and reaches the same state as the initial condition at time t = T . This idea was
originally proposed in (Leveque 1996) to test the accuracy of numerical schemes in problems with

no known analytical solution.

Table 7 shows the relative error, measured in the L2(Ω) norm, for the three DG approaches

considered in the previous section using Cartesian meshes.

The results show that all methods achieve the optimal rate of convergence, but it is worth

noting that the DG method with GLobQ takes substantially longer to reach the asymptotic range

of convergence compared to the DG methods with GLegQ and MixQ. Once the asymptotic rate of

convergence is reached, the DG methods with GLegQ and MixQ provide between 2 and 2.5 times

more accurate results than the DG method with GLobQ for p > 1. The results also show that

in some cases the proposed DG method with MixQ is marginally more accurate than the DG

method with GLegQ. This is attributed to the non-exact integration of the convection term,

which involves a non-polynomial velocity field.

As the cost associated to the matrix-vector products when the velocity field or the Jacobian

are not constant, the conclusions are very similar to the ones obtained in the previous example.

The dominant cost, associated to the convection term, is O(2p4), O(4p3), and O(4p3) operations
for the DG method with GLegQ, GLobQ and MixQ, respectively. Therefore, the proposed DG

method with MixQ has the same dominant cost as the GLobQ with an accuracy more than two

times higher. The proposed DG method with MixQ is also more efficient than the DG method

with GLegQ because the accuracy is almost identical but the dominant cost is lower.

The last two dimensional example involves the solution of the deformational flow with

non-constant velocity by using non-Cartesian meshes. Table 8 shows the relative error, measured

in the L2(Ω) norm, for the three DG approaches considered.

The results are both, qualitatively and quantitatively, very similar to the ones obtained in

the previous example with a non-constant velocity field using Cartesian meshes. In all cases

the proposed DG method with MixQ produces almost identical results when compared to the

DG method with GLegQ, despite the extra accuracy of the numerical quadratures used for the

convection term in the DGmethod with GLegQ. This denotes that even if the velocity and Jacobian

are both not constant, the error induced by a numerical integration of the convection term by a

Gauss-Lobatto quadrature compared to the error induced by a Gauss-Legendre quadrature is

below the discretisation error.

This time however, the conclusions are not so clear when considering stability (see Fig. 7), as

the higher precision of the MixQ with respect to GLobQ is somewhat compensated by the higher

stability of the GlobQ, so that both methods seem equivalent in terms of efficiency in the case of

non-constant velocity.

As a conclusion for this series of 2D numerical tests, the MixQ method is an attractive

alternative to the DG methods with GLegQ and GLobQ. At least for constant velocity, the

version of June 15, 2022 18



S. Chaillat et al. A high-order DG method with mixed quadratures

p h ϵGLegQ rGLegQ ϵGLobQ rGLobQ ϵMixQ rMixQ
ϵGLobQ
ϵGLegQ

ϵMixQ
ϵGLegQ

1 0.5000 3.5 × 10
−1

– 3.5 × 10
−1

– 3.5 × 10
−1

– 1.0 1.0

1 0.2500 1.5 × 10
−1

1.2 1.5 × 10
−1

1.2 1.5 × 10
−1

1.2 1.0 1.0

1 0.1250 4.4 × 10
−2

1.8 4.4 × 10
−2

1.8 4.4 × 10
−2

1.8 1.0 1.0

1 0.0625 1.2 × 10
−2

1.9 1.2 × 10
−2

1.9 1.2 × 10
−2

1.9 1.0 1.0

1 0.0313 3.0 × 10
−3

2.0 3.2 × 10
−3

1.9 3.0 × 10
−3

2.0 1.1 1.0

1 0.0156 7.7 × 10
−4

2.0 9.2 × 10
−4

1.8 7.7 × 10
−4

2.0 1.2 1.0

1 0.0078 1.9 × 10
−4

2.0 2.6 × 10
−4

1.8 1.9 × 10
−4

2.0 1.3 1.0

2 0.5000 4.0 × 10
−2

– 4.0 × 10
−2

– 4.0 × 10
−2

– 1.0 1.0

2 0.2500 1.2 × 10
−2

1.7 1.2 × 10
−2

1.7 1.2 × 10
−2

1.7 1.0 1.0

2 0.1250 1.6 × 10
−3

2.9 1.7 × 10
−3

2.9 1.6 × 10
−3

2.9 1.0 1.0

2 0.0625 2.1 × 10
−4

2.9 2.3 × 10
−4

2.8 2.1 × 10
−4

2.9 1.1 1.0

2 0.0313 2.2 × 10
−5

3.2 4.6 × 10
−5

2.3 2.2 × 10
−5

3.2 2.0 1.0

2 0.0156 2.8 × 10
−6

3.0 5.6 × 10
−6

3.0 2.7 × 10
−6

3.0 2.0 1.0

2 0.0078 3.5 × 10
−7

3.0 7.3 × 10
−7

2.9 3.4 × 10
−7

3.0 2.1 1.0

3 0.5000 2.2 × 10
−2

– 2.2 × 10
−2

– 2.2 × 10
−2

– 1.0 1.0

3 0.2500 1.0 × 10
−3

4.4 1.1 × 10
−3

4.4 1.1 × 10
−3

4.4 1.0 1.0

3 0.1250 8.5 × 10
−5

3.6 9.1 × 10
−5

3.5 8.2 × 10
−5

3.7 1.1 1.0

3 0.0625 6.4 × 10
−6

3.7 8.7 × 10
−6

3.4 6.3 × 10
−6

3.7 1.4 1.0

3 0.0313 4.0 × 10
−7

4.0 8.0 × 10
−7

3.5 4.0 × 10
−7

4.0 2.0 1.0

3 0.0156 2.3 × 10
−8

4.2 5.2 × 10
−8

3.9 2.3 × 10
−8

4.1 2.3 1.0

3 0.0078 1.2 × 10
−9

4.2 2.9 × 10
−9

4.2 1.2 × 10
−9

4.2 2.3 1.0

4 0.5000 8.8 × 10
−4

– 7.5 × 10
−4

– 7.6 × 10
−4

– 0.8 0.9

4 0.2500 9.6 × 10
−5

3.2 9.5 × 10
−5

3.0 8.9 × 10
−5

3.1 1.0 0.9

4 0.1250 3.6 × 10
−6

4.7 3.9 × 10
−6

4.6 3.2 × 10
−6

4.8 1.1 0.9

4 0.0625 1.2 × 10
−7

4.9 1.9 × 10
−7

4.3 1.1 × 10
−7

4.9 1.6 0.9

4 0.0313 3.8 × 10
−9

5.0 8.0 × 10
−9

4.6 3.3 × 10
−9

5.0 2.1 0.9

4 0.0156 1.2 × 10
−10

5.0 2.6 × 10
−10

5.0 1.0 × 10
−10

5.0 2.2 0.9

4 0.0078 3.5 × 10
−12

5.1 8.4 × 10
−12

4.9 3.3 × 10
−12

5.0 2.4 0.9

Table 7: Relative error in the L2(Ω) norm (ϵ), and rate of convergence (r ) for the DG methods with

GLegQ, GLobQ and MixQ for the 2D problem with non-constant velocity using Cartesian meshes.
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Figure 1: Constant velocity - constant Jacobian. Error as a function of the time step.

(a) Mesh 3 (b) Mesh 4

Figure 2: Constant velocity - Non-constant Jacobian. Error as a function of the time step.

(a) Mesh 3 (b) Mesh 4

Figure 3: Non-constant velocity - Non-constant Jacobian. Error as a function of the time
step.
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Figure 2: Constant velocity - Non-constant Jacobian. Error as a function of the time step.
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Figure 3: Non-constant velocity - Non-constant Jacobian. Error as a function of the time
step.
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Figure 7: Influence, in the case of non-constant velocity and non-constant jacobian, of time step on the

L2(Ω)-error at T = 1 for different polynomial orders, meshes and method.

proposed approach provides the same accuracy as the DG method with GLegQ, with a lower cost

induced by the matrix-vector products. In addition, the leading term of the cost for the DG

methods with GLegQ and MixQ is identical but the proposed approach provides results twice as

accurate. For non-constant velocity, the efficiency of GLobQ and MixQ seems to be equivalent,

because the improved stability of the GLobQ method compensates for the improved precision of
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p h ϵGLegQ rGLegQ ϵGLobQ rGLobQ ϵMixQ rMixQ
ϵGLobQ
ϵGLegQ

ϵMixQ
ϵGLegQ

1 0.5737 3.6 × 10
−1

– 3.6 × 10
−1

– 3.6 × 10
−1

– 1.0 1.0

1 0.2991 1.7 × 10
−1

1.2 1.7 × 10
−1

1.2 1.7 × 10
−1

1.2 1.0 1.0

1 0.1699 4.9 × 10
−2

2.2 4.9 × 10
−2

2.2 4.9 × 10
−2

2.2 1.0 1.0

1 0.0871 1.3 × 10
−2

2.0 1.3 × 10
−2

2.0 1.3 × 10
−2

2.0 1.0 1.0

1 0.0440 3.3 × 10
−3

2.0 3.5 × 10
−3

1.9 3.3 × 10
−3

2.0 1.1 1.0

1 0.0224 8.6 × 10
−4

2.0 1.0 × 10
−3

1.8 8.6 × 10
−4

2.0 1.2 1.0

1 0.0111 2.2 × 10
−4

2.0 3.2 × 10
−4

1.7 2.2 × 10
−4

1.9 1.5 1.0

2 0.5737 4.7 × 10
−2

– 4.7 × 10
−2

– 4.7 × 10
−2

– 1.0 1.0

2 0.2991 1.4 × 10
−2

1.9 1.4 × 10
−2

1.9 1.4 × 10
−2

1.9 1.0 1.0

2 0.1699 2.0 × 10
−3

3.4 2.1 × 10
−3

3.3 2.0 × 10
−3

3.4 1.0 1.0

2 0.0871 2.7 × 10
−4

3.0 2.9 × 10
−4

2.9 2.7 × 10
−4

3.0 1.1 1.0

2 0.0440 3.5 × 10
−5

3.0 6.0 × 10
−5

2.3 3.5 × 10
−5

3.0 1.7 1.0

2 0.0224 4.1 × 10
−6

3.2 8.2 × 10
−6

2.9 4.1 × 10
−6

3.2 2.0 1.0

2 0.0111 5.2 × 10
−7

2.9 1.1 × 10
−6

2.9 5.3 × 10
−7

2.9 2.0 1.0

3 0.5737 2.4 × 10
−2

– 2.4 × 10
−2

– 2.4 × 10
−2

– 1.0 1.0

3 0.2991 1.5 × 10
−3

4.3 1.5 × 10
−3

4.3 1.4 × 10
−3

4.3 1.0 1.0

3 0.1699 1.2 × 10
−4

4.5 1.2 × 10
−4

4.4 1.1 × 10
−4

4.5 1.1 1.0

3 0.0871 9.0 × 10
−6

3.8 1.2 × 10
−5

3.5 8.9 × 10
−6

3.8 1.3 1.0

3 0.0440 5.7 × 10
−7

4.0 1.0 × 10
−6

3.5 5.7 × 10
−7

4.0 1.8 1.0

3 0.0224 3.5 × 10
−8

4.1 7.5 × 10
−8

3.9 3.5 × 10
−8

4.1 2.1 1.0

3 0.0111 2.1 × 10
−9

4.0 4.4 × 10
−9

4.0 2.1 × 10
−9

4.0 2.1 1.0

4 0.5737 1.7 × 10
−3

– 1.5 × 10
−3

– 1.5 × 10
−3

– 0.9 0.9

4 0.2991 1.3 × 10
−4

4.0 1.2 × 10
−4

3.8 1.2 × 10
−4

3.9 1.0 0.9

4 0.1699 5.8 × 10
−6

5.4 6.5 × 10
−6

5.2 5.4 × 10
−6

5.4 1.1 0.9

4 0.0871 2.1 × 10
−7

5.0 2.9 × 10
−7

4.7 1.9 × 10
−7

5.0 1.4 0.9

4 0.0440 7.4 × 10
−9

4.9 1.4 × 10
−8

4.4 6.9 × 10
−9

4.8 1.9 0.9

4 0.0224 2.4 × 10
−10

5.1 4.5 × 10
−10

5.1 2.2 × 10
−10

5.1 1.9 0.9

4 0.0111 7.9 × 10
−12

4.9 1.5 × 10
−11

4.9 7.7 × 10
−12

4.8 1.9 1.0

Table 8: Relative error in the L2(Ω) norm (ϵ), and rate of convergence (r ) for the DG methods with

GLegQ, GLobQ and MixQ for the 2D problem with non-constant velocity using non-Cartesian meshes.

the MixQ.

5.2 Three dimensional examples
The first three dimensional example considers the propagation of a sinusoidal wave at constant

velocity in a Cartesian mesh. The domain is Ω = [0, 1]3 and the velocity field is given by

a = [cos(π/6) sin(π/4), sin(π/6) sin(π/4), cos(π/4)]. As in the previous examples, the final time

isT = 1 and the time step is selected small enough so that the error induced by the time marching

scheme is negligible when compared to the error induced by the spatial discretisation.

A set of Cartesian meshes is utilised in three dimensions. The mesh corresponding to the

i-th level of refinement is denoted byMi
and contains 2

i × 2
i × 2

i
hexahedral elements with

characteristic element size h = 2
−i
, as shown in Figure 8.

Table 9 shows the relative error, measured in the L2(Ω) norm and denoted by ϵ , for the DG
methods with GLegQ and GLobQ for a polynomial approximation of order ranging from p = 1 up

to p = 4. The table also shows the rates of convergence, denoted by r and the ratio between the

error of both DG approaches.

The optimal rate of convergence is shown for both DG approaches, that is a rate of approxi-

mately p + 1, in the L2(Ω) norm. As in the two dimensional example, the extra accuracy provided

by the DG method with GLegQ is clearly observed. For the lowest order case, the use of GLegQ
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(a)M1 (b)M2 (c)M3 (d)M4

Figure 8: Cartesian meshes of hexahedral elements.

p h ϵGLegQ = ϵMixQ rGLegQ = rMixQ ϵGLobQ rGLobQ
ϵGLobQ
ϵGLegQ

1 0.5000 3.1 × 10
−1

– 8.6 × 10
−1

– 2.8

1 0.2500 9.8 × 10
−2

1.6 4.7 × 10
−1

0.9 4.8

1 0.1250 2.5 × 10
−2

2.0 1.6 × 10
−1

1.6 6.4

1 0.0625 6.1 × 10
−3

2.0 4.3 × 10
−2

1.9 7.1

2 0.5000 5.3 × 10
−2

– 2.1 × 10
−1

– 3.9

2 0.2500 6.2 × 10
−3

3.1 3.0 × 10
−2

2.8 4.9

2 0.1250 7.6 × 10
−4

3.0 3.8 × 10
−3

3.0 5.0

2 0.0625 9.5 × 10
−5

3.0 4.8 × 10
−4

3.0 5.1

3 0.5000 6.3 × 10
−3

– 2.6 × 10
−2

– 4.1

3 0.2500 3.9 × 10
−4

4.0 1.7 × 10
−3

3.9 4.4

3 0.1250 2.5 × 10
−5

4.0 1.1 × 10
−4

4.0 4.5

3 0.0625 1.5 × 10
−6

4.0 6.9 × 10
−6

4.0 4.5

4 0.5000 6.7 × 10
−4

– 2.6 × 10
−3

– 3.9

4 0.2500 2.1 × 10
−5

5.0 8.6 × 10
−5

4.9 4.2

4 0.1250 6.5 × 10
−7

5.0 2.7 × 10
−6

5.0 4.2

4 0.0625 2.0 × 10
−8

5.0 8.5 × 10
−8

5.0 4.2

Table 9: Relative error in the L2(Ω) norm (ϵ), and rate of convergence (r ) for the DG methods with

GLegQ and GLobQ for the 3D problem with constant velocity using Cartesian meshes.

provides an error almost nine times lower than that produced by the DG method with GLobQ.

For higher orders,the use of GLegQ consistently provides an accuracy between four to five times

higher than the DG method with GLobQ. It is worth noticing that for p > 1 the improvement due

to the use of GLegQ is the same as for the two dimensional example with constant velocity and

using Cartesian meshes.

In terms of the computational cost, the DG method with GLegQ requires O(6p4) and O(3p3)
operations for computing the matrix-vector products corresponding to the convection and face

contributions to the residual, respectively. The DG method with GLobQ requires O(9p4) and
O(3p2) operations for computing the matrix-vector products corresponding to the convection

and face contributions to the residual, respectively. Therefore, it is clear that the approach with

GLegQ is beneficial as the dominant term, corresponding to the convection term, has a lower

order of operations and provides more accurate results. As in two dimensions, note that stability

tests (not shown here because the results are very similar in three dimensions) indicate that part

of the efficiency of the DG method with GLegQ is lost because a time step twice smaller needs to

be used.

As done in two dimensions, the next three dimensional example considers a problem with

constant velocity by using non-Cartesian meshes. The meshes considered are shown in Figure 9

and are, again, generated by randomly perturbing the internal nodes of the Cartesian meshes

employed in the previous three dimensional example.
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(a)M1 (b)M2 (c)M3 (d)M4

Figure 9: Non-Cartesian meshes of hexahedral elements.

Table 10 shows the relative error, measured in the L2(Ω) norm, for the DG methods with

GLegQ, GLobQ and MixQ. The table also shows the rates of convergence and the ratio between

the error of the DG methods with GLobQ and MixQ with respect to the GLegQ.

p h ϵGLegQ rGLegQ ϵGLobQ rGLobQ ϵMixQ rMixQ
ϵGLobQ
ϵGLegQ

ϵMixQ
ϵGLegQ

1 0.5750 3.1 × 10
−1

– 8.6 × 10
−1

– 3.1 × 10
−1

– 2.8 1.0

1 0.3482 1.0 × 10
−1

2.2 4.9 × 10
−1

1.1 1.1 × 10
−1

2.0 4.8 1.1

1 0.1758 2.7 × 10
−2

1.9 1.9 × 10
−1

1.4 3.6 × 10
−2

1.6 6.8 1.3

1 0.0897 6.8 × 10
−3

2.1 5.5 × 10
−2

1.8 1.3 × 10
−2

1.5 8.1 1.9

2 0.5750 6.5 × 10
−2

– 2.4 × 10
−1

– 6.8 × 10
−2

– 3.6 1.0

2 0.3482 7.4 × 10
−3

4.3 3.4 × 10
−2

3.9 7.8 × 10
−3

4.3 4.6 1.1

2 0.1758 9.9 × 10
−4

2.9 4.8 × 10
−3

2.9 1.1 × 10
−3

2.8 4.9 1.1

2 0.0897 1.2 × 10
−4

3.1 6.0 × 10
−4

3.1 1.5 × 10
−4

2.9 4.9 1.2

3 0.5750 6.5 × 10
−3

– 2.6 × 10
−2

– 6.5 × 10
−3

– 4.0 1.0

3 0.3482 4.6 × 10
−4

5.3 2.0 × 10
−3

5.1 4.8 × 10
−4

5.2 4.3 1.0

3 0.1758 3.3 × 10
−5

3.9 1.5 × 10
−4

3.8 3.6 × 10
−5

3.8 4.5 1.1

3 0.0897 2.2 × 10
−6

4.0 1.0 × 10
−5

4.0 2.6 × 10
−6

3.9 4.6 1.2

4 0.5750 7.9 × 10
−4

– 3.2 × 10
−3

– 8.0 × 10
−4

– 4.0 1.0

4 0.3482 2.8 × 10
−5

6.6 1.2 × 10
−4

6.6 2.9 × 10
−5

6.6 4.2 1.0

4 0.1758 9.9 × 10
−7

4.9 4.2 × 10
−6

4.9 1.0 × 10
−6

4.9 4.2 1.0

4 0.0897 3.4 × 10
−8

5.0 1.4 × 10
−7

5.0 3.6 × 10
−8

5.0 4.2 1.1

Table 10: Relative error in the L2(Ω) norm (ϵ), and rate of convergence (r ) for the DG methods with

GLegQ, GLobQ and MixQ for the 3D problem with constant velocity using non-Cartesian meshes.

The results reveal that the proposed DG method with MixQ offers again almost identical

results when compared to the DG method with GLegQ. This indicates that the numerical

integration error introduced by the MixQ approach is below the discretisation error even when

three dimensional elements with non-constant Jacobian are considered. In addition, the results in

Table 10 indicate that the DG methods with GLegQ and MixQ offer between four and five times

more accurate results when compared to the approach with GLobQ. This indicates a higher gain

than what was observed in the two dimensional example.

In terms of the computational cost, the DG method with GLegQ requires O(2p6) and O(2p5)
operations for computing the matrix-vector products corresponding to the convection and face

contributions to the residual, respectively. The DG method with GLobQ requires O(9p4) and
O(3p2) operations for computing the matrix-vector products corresponding to the convection and

face contributions to the residual, respectively. With the proposed DG method with MixQ O(9p4)
and O(2p5) operations are required to compute the matrix-vector products of the convection and

face contributions to the residual, respectively. It is worth noting that contrary to the observations

made in two dimensions, for the DG method with MixQ the dominant term is now associated

to the face term. However, when compared to the DG method with GLegQ, the proposed DG
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method still has a leading cost lower and provides the same accuracy. As in two dimensions,

larger time steps need to be used so that the method is overall two to three times more efficient.

The last example considers a deformational flow in three dimensions. The non-constant

velocity field is given by

a(x , t) = cos(πt/T )


0.1 sin2(πx1) sin(2πx2) sin(πx3) cos(πx3)

0.2 sin(2πx1) sin
2(πx2) sin(πx3) cos(πx3)

0.05π sin(2πx1) sin(2πx2) sin
2(πx3)


T

(62)

and the final time is T = 1.

The initial condition is given by u0(x) = 0.5 + 0.5 sin(2πx1) sin(2πx2) sin(2πx3) and periodic

boundary conditions are considered on the boundary of the domain ∂Ω. Analogously to the two

dimensional deformation flow considered in Section 5.1, the cosine term in Eq. (62) ensures that

the flow reverses at time t = T /2 and reaches the same state as the initial condition at time t = T .
Table 11 shows the relative error, measured in the L2(Ω) norm, for the three DG approaches

considered using Cartesian meshes.

p h ϵGLegQ rGLegQ ϵGLobQ rGLobQ ϵMixQ rMixQ
ϵGLobQ
ϵGLegQ

ϵMixQ
ϵGLegQ

1 0.5000 2.3 × 10
−1

– 2.3 × 10
−1

– 2.3 × 10
−1

– 1.0 1.0

1 0.2500 1.5 × 10
−1

0.6 1.5 × 10
−1

0.6 1.5 × 10
−1

0.6 1.0 1.0

1 0.1250 4.8 × 10
−2

1.7 4.8 × 10
−2

1.7 4.8 × 10
−2

1.7 1.0 1.0

1 0.0625 1.3 × 10
−2

1.9 1.3 × 10
−2

1.9 1.3 × 10
−2

1.9 1.0 1.0

1 0.0313 3.3 × 10
−3

2.0 3.4 × 10
−3

1.9 3.3 × 10
−3

2.0 1.0 1.0

1 0.0156 8.4 × 10
−4

2.0 9.3 × 10
−4

1.9 8.4 × 10
−4

2.0 1.1 1.0

1 0.0078 2.1 × 10
−4

2.0 2.5 × 10
−4

1.9 2.1 × 10
−4

2.0 1.2 1.0

2 0.5000 3.8 × 10
−2

– 3.8 × 10
−2

– 3.8 × 10
−2

– 1.0 1.0

2 0.2500 1.2 × 10
−2

1.7 1.2 × 10
−2

1.7 1.2 × 10
−2

1.7 1.0 1.0

2 0.1250 1.5 × 10
−3

3.0 1.5 × 10
−3

3.0 1.5 × 10
−3

3.0 1.0 1.0

2 0.0625 1.9 × 10
−4

3.0 2.2 × 10
−4

2.8 1.8 × 10
−4

3.0 1.2 1.0

2 0.0313 2.2 × 10
−5

3.1 3.6 × 10
−5

2.6 2.2 × 10
−5

3.1 1.6 1.0

2 0.0156 2.6 × 10
−6

3.1 5.1 × 10
−6

2.8 2.6 × 10
−6

3.1 1.9 1.0

2 0.0078 3.2 × 10
−7

3.0 6.7 × 10
−7

2.9 3.1 × 10
−7

3.0 2.1 1.0

3 0.5000 2.2 × 10
−2

– 2.2 × 10
−2

– 2.2 × 10
−2

– 1.0 1.0

3 0.2500 9.6 × 10
−4

4.5 9.7 × 10
−4

4.5 9.6 × 10
−4

4.5 1.0 1.0

3 0.1250 7.6 × 10
−5

3.7 8.2 × 10
−5

3.6 7.3 × 10
−5

3.7 1.1 1.0

3 0.0625 5.4 × 10
−6

3.8 7.6 × 10
−6

3.4 5.4 × 10
−6

3.8 1.4 1.0

3 0.0313 3.6 × 10
−7

3.9 6.6 × 10
−7

3.5 3.6 × 10
−7

3.9 1.8 1.0

3 0.0156 2.2 × 10
−8

4.0 4.6 × 10
−8

3.8 2.2 × 10
−8

4.0 2.1 1.0

3 0.0078 1.2 × 10
−9

4.1 2.8 × 10
−9

4.1 1.2 × 10
−9

4.1 2.2 1.0

4 0.5000 8.2 × 10
−4

– 7.1 × 10
−4

– 7.2 × 10
−4

– 0.9 0.9

4 0.2500 8.9 × 10
−5

3.2 9.0 × 10
−5

3.0 8.3 × 10
−5

3.1 1.0 0.9

4 0.1250 3.3 × 10
−6

4.7 3.7 × 10
−6

4.6 2.9 × 10
−6

4.9 1.1 0.9

4 0.0625 1.2 × 10
−7

4.8 1.7 × 10
−7

4.4 1.0 × 10
−7

4.8 1.4 0.8

4 0.0313 3.8 × 10
−9

5.0 6.9 × 10
−9

4.7 3.2 × 10
−9

5.0 1.8 0.8

4 0.0156 1.2 × 10
−10

5.0 2.5 × 10
−10

4.8 1.0 × 10
−10

5.0 2.1 0.9

Table 11: Relative error in the L2(Ω) norm (ϵ), and rate of convergence (r ) for the DG methods with

GLegQ, GLobQ and MixQ for the 3D problem with non-constant velocity using Cartesian meshes.

As observed in previous examples, all methods show the optimal rate of convergence but the

DG method with GLobQ requires very fine meshes to exhibit the asymptotic convergence. In

this example the DG methods with GLegQ and MixQ offer an error two times lower than the
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DG method with GLobQ. The results of the proposed approach, with MixQ, are in some cases

marginally more accurate than the DG method with GLegQ, but this is attributed by the inexact

integration of the complex velocity field considered.

It is worth noting that in three dimensions the dominant cost associated to the proposed

approach is of lower order when compared to the DG method with GLegQ but the accuracy is

almost identical. When comparing the proposed DG method with MixQ and GLobQ, the cost of

the MixQ is only slightly higher but the extra accuracy is clearly observed. However, as in two

dimensions, for non-constant velocity, it seems that the overall efficiency is the same for DG

methods with MixQ and GLegQ because the weaker stability compensates for the lower cost for

computing matrix-vector products.

6 Concluding remarks
A novel DG method for the solution of linear conservation laws has been presented. The

approach uses a Gauss-Lobatto distribution of nodes to define the polynomial approximation and

a mixture of Gauss-Lobatto and Gauss-Legendre quadratures for the numerical integration. The

convection part of the residual of the system of ordinary differential equations is evaluated using

Gauss-Lobatto quadratures, whereas the term corresponding to the face integrals is evaluated

using Gauss-Legendre quadratures.

A formal proof is provided to show that in the case of constant Jacobian and constant

coefficients (i.e., velocity field), the proposed method provides exactly the same results as a

standard DG method with Gauss-Legendre quadratures, despite both the mass and convection

matrices are underintegrated. For the general case, the numerical results show that the accuracy

is also preserved, meaning that the numerical integration error is below the spatial discretisation

error. This brings the advantages of both commonly used DG methods with Gauss-Lobatto and

Gauss-Legendre quadratures. The proposed approach is as accurate as the standard DG method

with Gauss-Legendre quadratures but at a lower cost, which is only slightly more expensive than

the DG method with Gauss-Lobatto quadratures in three dimensions and as expensive in two

dimensions. This conclusion remains generally correct when adding stability to the discussion,

but, in some cases, the improved stability of the DG method with Gauss-Lobatto quadratures

compensates for the improved precision of the method with mixed quadratures.
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