Single beam acoustical tweezers based on focused beams: A numerical analysis of 2D and 3D trapping capabilities - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2022

Single beam acoustical tweezers based on focused beams: A numerical analysis of 2D and 3D trapping capabilities

Résumé

Selective single beam tweezers open tremendous perspectives in microfluidics and microbiology for the micromanipulation, assembly and mechanical properties testing of microparticles, cells and microorganisms. In optics, single beam optical tweezers rely on tightly focused laser beams, generating a three-dimensional (3D) trap at the focal point. In acoustics, 3D traps have so-far only been reported experimentally with specific wavefields called acoustical vortices. Indeed, many types of particles are expelled (not attracted to) the center of a focused beam. Yet the trapping capabilities of focused beams have so-far only been partially explored. In this paper, we explore numerically with an angular spectrum code the trapping capabilities of focused beams on a wide range of parameters (size over wavelength ratio and type of particles). We demonstrate (i) that 3D trapping of particles, droplets and microorganisms more compressible than the surrounding fluid is possible in and beyond Rayleigh regime (e.g. polydimethylsiloxane, olive oil, benzene, and lipid sphere) and (ii) that 2D trapping (without axial trap) of particles with positive contrast factor can be achieved by using the particles resonances.
Fichier principal
Vignette du fichier
2205.10033.pdf (4.14 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03694321 , version 1 (13-06-2022)

Licence

Paternité

Identifiants

Citer

Zhixiong Gong, Michael Baudoin. Single beam acoustical tweezers based on focused beams: A numerical analysis of 2D and 3D trapping capabilities. 2022. ⟨hal-03694321⟩
25 Consultations
10 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More