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Abstract

The concepts of self- and cross-correlation plays a key role in several areas, including signal processing and analysis,

pattern recognition, multivariate statistics, as well as physics in general, as these operations underly several real-world

structures and dynamics. In the present work, the concept of multiset similarity, more specifically the coincidence

similarity index, is used as the basis for defining two operations between a same network, or two distinct networks,

which will be respectively called autorrelation and cross-relation. In analogous manner to the self-correlation and cross-

correlation counterparts, which are defined in terms of inner products between signals, the two operations suggested

here allow the comparison of the similarity of graphs respectively to successive displacements along the neighborhoods

of the constituent nodes, which therefore implements a role that is analogue to the lag in the class correlation. In

addition to presenting these approaches, this work also illustrates their potential respectively to applications to the

characterization of several model-theoretic and real world networks, providing a rich description of the specific properties

of each analyzed structure. The possibility of analyzing the obtained individual autorrelation signatures in terms of

their respective coincidence networks is also addressed and illustrated.

1 Introduction

Thanks to continuing advances from graph theory (e.g. [1,

2]) and network science (e.g. [3, 4, 5, 6]), graphs and com-

plex networks now underly a wide range of concepts and

applications, extending from systems biology to trans-

portation systems. In this work, we will understand com-

plex networks, or networks for short, as corresponding to

particularly intricate types of graphs (e.g. [7, 8]).

One of the most interesting characteristics of graphs

and complex networks is their ability to represent vir-

tually every discrete system and phenomenon. Indeed,

from the point of view of data structures (e.g. [9, 10, 11]),

graphs can be understood as providing the most general

possible manner to represent other structures, including

lists, trees, lattices, etc.

The intrinsic representational generality of graphs and

networks has motivated a directly related interesting is-

sue, namely how to mathematically handle, combine and

compare the represented structures. This bears a direct

analogy with the manipulation of mathematical struc-

tures such as functions, fields, vectors and matrices by

using arithmetic and algebraic concepts and methods in-

cluding addition, product, correlation, etc.

Among the several applications operations between

mathematical structures underlain by respective data

structures (e.g. vectors and matrices), the operations of

self- and cross-correlation, as well as the closely related

self- and cross-convolution counterparts (e.g. [12, 13, 14,

15, 16]), play a key role in several important areas, in-

cluding signal and image processing and analysis, mathe-

matical physics, computer vision, control theory, and elec-

tronic engineering, to name but a few possibilities. For in-

stance, the blurring of an image is frequently obtained by

convolving the image with a gaussian kernel (e.g. [13, 17]),

and the recognition of an instance of a pattern within a

signal can be approached in terms of the respective cross-

correlation (i.e. template matching, e.g. [13, 18, 19]).

While self- and cross-correlations are well defined re-

spectively to vectors and matrices, their extension to

graphs and networks is not so straightforward. Related

approaches include the concept of graph Fourier trans-

form, which involves the spectral analysis (eigenvalues

and eigenvectors) of the Laplacian matrix of a given graph

or network (e.g. [20, 21, 22]). The term Fourier transform

here is used as an analogy, not literally. Another approach

related to the relationship between portions of a graph is

correlation clustering, aimed at finding cuts that optimize

the allocation of edges with large weights to result within

respective clusters (e.g. [23, 24, 25]). Statistical-based

approaches to correlation between graphs have also been

suggested (e.g. [26, 27]).
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The present work sets out at investigating the possi-

bility to use multiset similarities, in particular the coin-

cidence similarity index [28, 29, 30], as a means for ob-

taining analogues of the self- and cross-correlation oper-

ations respectively to graphs and networks. The main

justification for this approach is the fact that the coin-

cidence similarity provides a selective, sensitive, and sta-

ble/robust means for comparing any mathematical struc-

tures (e.g. [29, 31, 32, 30]).

In particular, the coincidence operation is here em-

ployed in direct analogy to the inner product between

two signals as the means for gauging the similarity be-

tween two graphs or networks. Then, in order to imple-

ment the operation analogous to the relative shifting of

one signal respectively to the other, we consider the mean

coincidence similarity between each node of the networks

and the nodes belonging to successively respective neigh-

borhoods, or hierarchies (e.g. [33, 34, 35]), at topological

distance δ from the reference node. Thus, in this work

the variable d plays an analogous role to the lag variable

in traditional correlation analysis.

The resulting operations between two graphs are here

called autorrelation and corss-relation so as to indi-

cate their analogy with the classic autocorrelation and

cross-correlation, but at the same time distinguishing the

counterparts because they are based on different con-

cepts: while the latter two are based on the inner prod-

uct between functions or vectors, the autorrelation and

corss-relation are founded on the coincidence similarity

between features representing the topological (or other

types) of characteristics of the considered network nodes.

In addition to presenting the thus motivated self- and

cross-relation between two graphs or network (a graph

with itself in the case of autorrelation), we illustrate the

potential of the suggested concepts and methods respec-

tively to the identification of lag-based relationships be-

tween model-theoretic and real-world networks. In ad-

dition, we also address the possibility to derive coinci-

dence networks from the individual autorrelation signa-

tures, with remarkable results that can reflect in a par-

ticularly effective manner the intricacy of the topology

around the nodes of the original networks.

The obtained results indicate that the autorrelation and

cross-relation between networks reflect several global and

local properties of the analyzed networks, therefore con-

stituting an interesting resource for network characteriza-

tion.

We start this work by presenting the several involved

concepts, presenting the suggested autorrelation and

cross-relation operations, and illustrating their potential

for the characterization of global and local properties of

several model-theoretical and real-world networks.

2 Basic Concepts

Given two vectors ~x and ~y with N elements, their inner

product can be expressed as:

〈~x, ~y〉 =

N∑
i=1

x[i][i] (1)

If the magnitudes |~x| and |~y| of the two vectors are

kept fixed, the respective inner product will provide a

measurement of the similarity between these two vectors.

The cross-correlation between two vectors (or signals)

~x and ~y with sizes N can be written as:

(~x⊗ ~y)[`] =

N−1∑
i=1

x[i] y[i− `] (2)

where vector ~y is suitably padded with zeros and ` =

0, 1, . . . , N − 1, so that the result has size N − 1.

The convolution between two vectors (or signals) ~x and

~y with sizes N can be written as:

(~x ∗ ~y)[`] =

N−1∑
i=1

x[i] y[`− i] (3)

where vector ~y is suitably padded with zeros and ` =

0, 1, . . . , N − 1, so that the result has size N − 1.

Let g(t) be a function, with respective Fourier trans-

form G(f). Its autocorrelation (e.g. [12, 13]) can be cal-

culated as:

g(t)⊗ g(t)⇐⇒ G(f)∗G(f) = |G(f)|2 (4)

where |G(f)|2 is often called the power spectrum of f(t).

Given a undirected graph g, the degree of each of its

nodes corresponds to the respective number of links. The

degree of node, in general, possibly corresponds to the

most important topological information about the local

topology around that node. The clustering coefficient or

transitivity of a node corresponds to the ratio between

the total number of links existing between the neighbors

of that node and the total maximum number of links that

would be possible (e.g. [5, 3, 4])

Given a graph (or network) g, and one of its nodes i,

the Nδ(i) neighborhood of i corresponds to the set of all

nodes that are at topological distance smaller or equal to

δ. These successive neighborhoods can be understood as

defining a respective hierarchy respectively to i.

Given two networks g and h with N nodes each, we

say they are aligned whenever for each node i of g there

corresponds an associated node i in h. Observe that the

two networks can have distinct interconnections.

The multiset coincidence index has been suggested as

a manner to generalize the Jaccard index (e.g. [36, 37,

38, 39, 40]) in order to take into account the interiority
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between the two compared mathematical structures [28],

being based on multiset theory (e.g. [41, 9, 42, 43, 44, 45]).

The real-valued coincidence has been found to provide

more strict comparison between two multisets than the

Jaccard or overlap indices taken separately, which has

paved the way to enhanced selectivity, sensitivity and ro-

bustness (e.g. [29, 31, 32]). More recently, the average of

the coincidence similarity established between each node

of the network and all the others was suggested [46] as an

feature that can be used to effectively complement to the

characterization of the topology around each node.

It is henceforth assumed that all network measurements

are non-negative. Otherwise, the real-valued version of

the coincidence index (e.g. [28, 29]) should be considered.

If ~x and ~y are two vectors taking non-negative real

values with size N , their multiset Jaccard similarity

(e.g [28, 29, 30]) can be defined as:

J (~x, ~y) =

∑N
i=1 min {x[i], y[i]}∑N
i=1 max {x[i], y[i]}

(5)

Observe that 0J (~x, ~y) ≤ 1.

Their respective multiset interiority index (also over-

lap, e.g. [47]) can be expressed as;

I(~x, ~y) =

∑N
i=1 min {x[i], y[i]}

min {Sx, Sy}
(6)

with 0 ≤ I(~x, ~y) ≤ 1.

where:

Sx =

N∑
i=1

x[i]; Sy =

N∑
i=1

y[i] (7)

The multiset coincidence similarity between the vectors

~x and ~y corresponds to the product of the respective real-

valued Jaccard and interiority indices, i.e.: Their respec-

tive real-valued interiority index (also overlap, e.g. [47])

can be expressed as;

C(~x, ~y) = J (~x, ~y) I(~x, ~y) (8)

with 0 ≤ C(~x, ~y) ≤ 1.

The real-valued coincidence similarity between the two

vectors ~x and ~y can be understood as being analogous the

Pearson correlation coefficient between the two vectors.

3 Autorrelation and Cross-

Relation between Two Graphs

Having revised the main basic concepts, we are now in

position to mathematically formalize the concepts Autor-

relation and Cross-Relation between two graphs or net-

works.

Given two aligned networks g and h with N nodes, as

well as a set of M topological features xj , j = 1, 2, . . . ,M ,

we can associate each node i = 1, 2, . . . , N of those net-

works to the respective features, therefore obtaining the

following feature vectors:

~Xg,i = [xg,1[i] xg,2[i] . . . xg,M [i] ]
T

(9)

~Xh,i = [xh,1[i] xh,2[i] . . . xh,M [i] ]
T

(10)

where xg,j [i] means the value of the feature xj of node

i in graph g.

The respective cross-relation of those two aligned vec-

tors can now be defined as:

(g � h)[i, δ] =
1

|Nδ(i)|
∑

k∈Nδ(i)

C( ~Xg,i, ~Xh,k) (11)

where δ = 1, 2, . . . ,∆ and |Nδ(i)| is the number of

neighbors of node i at topological distance δ.

In case g = h, the above expression becomes the autor-

relation of a node i of the network g:

(g � g)[i, δ] =
1

|Nδ(i)|
∑

k∈Nδ(i)

C( ~Xg,i, ~Xg,k) (12)

Observe that (g � h)[i, δ] with δ = 1, 2, . . . ,∆ can be

understood as a kind of signature of each of the network

nodes i = 1, 2, . . . , N , corresponding to how much that

node is similar in the average, as far as the coincidence in-

dex is concerned, to the nodes at each successive neighbor-

hood Nδ(i). The basic underlying assumption is that the

system of progressive neighborhoods around each node i

can establish a coordinate axis associated to that node,

and with origin at that node when δ = 0. Therefore, N

coordinate axes are established in this manner, allowing

one of the networks to be shifted respectively to the other

in this highly dimensional space.

As such, the autorrelation of a network g can be un-

derstood in analogy to the autocorrelation of a function

or signal, while a similar relationship can be established

between the cross-relation between two networks g and h

and the cross-correlation between two signals or functions.

As defined above the autorrelation and cross-relation

between two graphs will involve the coincidence compar-

ison between the features of each node with those of suc-

cessive neighborhoods, which tend to increase steadily as

each node in the neighborhoods radiates more links, and

then decrease as a consequence of reaching the border of

the network. This implies that the average coincidence

is taken respectively to varying numbers of nodes in each

successive neighborhood. There are several ways in which

the autorrelation and cross-relation between two graphs

can be instantiated that can be used to keep this number

more commensurate or even constant.
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One such manner consists in comparing between each

node in one network and a walk along the nodes in the

other network. These walks can be specified in a vast

number of ways, including the more traditional random

walks and self-avoiding random walks (e.g. [48, 49]).

The autorrelation (cross-relation) presents potential for

characterizing how much one (two) graphs are similar re-

spectively to a sequence of respective topological lags δ. In

the remainder of this work, we illustrate the application of

the autorrelation and cross-relation concepts respectively

to several model-theoretical and real-world sections.

An important aspect of the autorrelation and cross-

relation between graphs as suggested above concerns the

fact that these operations are relative to the set of adopted

node features, which can be of topological or complemen-

tary type. This flexibility to define specific set of features

allow the lag-based comparison of networks to be investi-

gated from the point of view of several choices of measure-

ments, aimed at reflecting network properties of specific

interest in each research program. For simplicity’s sake,

the measurements of node degree and clustering coeffi-

cient will be adopted henceforth.

4 Results and Discussion

In this section, the concepts of autorrelation and cross-

relation between two graphs are illustrates respectively

to model-theoretical and real-world examples. In all

cases, networks that happen to be directed are first sym-

metrized, and only the largest connected component is

taken into account. In addition, given that maximum au-

torrelation is always observed for δ = 0, these values are

not shown for simplicity’s sake. Observe that this prop-

erty does not hold for the cross-relation.

We start the study of the application of the autorrela-

tion and cross-relation concepts respective to three model-

theoretical complex networks (e.g. [5, 3, 4]), namely:

Erdős-Rényi – ER, Barabási-Albert – BA, and Watts-

Strogatz – WS in its ring configuration. Consequently,

we have the possibility to consider uniformly random in-

terconnectivity (ER), scale free degree distribution (BA),

as well as the model WS which varies, in terms of a respec-

tive rewiring probability, from a perfect lattice to an ER

configuration. The ER, BA and WS with high reconnec-

tion probability are all characterized by having relatively

small average shortest path distances.

Figure 1(a) presents the autorrelation obtained for an

ER network with N = 300 nodes and average degree

〈k〉 = 4, considering topological lags δ = 1, 2, . . . , 10.

Shown are the several autorrelation signatures obtained

for each of the 300 nodes (several random colors), as well

as the respective mean signature (shown in black). Inter-

estingly, the autorrelation function of this network can be

found to decrease monotonically with two negative slopes:

one smaller taking place from δ equal to 1 to 4, and an-

other steeper slope thereon. The autorrelation function

for this network can then be subdivided into two por-

tions, the latter starting when the neighborhoods reach

the border of the network. Indeed, the lower curves in

this figures correspond to some of the border nodes, im-

plying individual autorrelation that is initially small (the

border elements tend not to be similar to the inner nodes)

and then increases as the neighborhoods reach the core of

the network.

The autorrelation function of a BA network also with

N = 300 nodes and 〈k〉 = 4 is presented in Figure 1(b).

Compared to the ER case, a completely different result

has been obtained. Now, the autorrelation increases pro-

gressively, and then undergoes a steep decrease. Similar-

ity to the ER, though, the latter regime again coincides

with the neighborhoods hitting the network border. The

autorrelation increase, however, is a phenomenon specific

to this type of network. It follows from the fact that, in a

BA network, although only a few nodes are hubs, they are

soon reached by the neighborhood progressions starting

from the other nodes. Because the hubs are not similar to

the other nodes, while the other nodes are mutually simi-

lar, the autorrelation tends to increase emphafter hitting

the hubs, until the border is reached. The lower individ-

ual signatures are associated to the hubs of the network,

which have markedly distinct topological features respec-

tively to the other nodes.

Figure 1(c) depicts the autorrelation signatures ob-

tained for a WS network (ring) with similar parameters

as before, obtained by using a rewiring probability of

pw = 0.05. A third type of autorrelation function can be

observed for this type of network, characterized by an ini-

tial plateau, followed by the a steep decrease which again

is a consequence of the finite size of the network. The

obtained plateau derives from the intrinsic mutual simi-

larity between most nodes of this network. Interestingly,

the nodes corresponding to the shortcuts implemented by

the rewirings can be readily observed as corresponding to

the lower signatures in this figure.

In order to explore in more detail the autorrelation

structure of the WS networks, Figure 2 presents the re-

sults respectively obtained for WS networks with N = 300

nodes and rewiring probabilities pw = 0.01, 0.02, and 0.03.

It can be readily observed that the increase of the

rewiring probability not only reduces the range of lags

characterized by non-zero autorrelations, but also influ-

ences the sharpness of the transition from core to border,
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(a) (b) (c)

Figure 1: The autorrelation functions in terms of δ = 1, 2, . . . , 30 for ER, BA and WS networks with N = 300 nodes and 〈k〉 = 4. The WS

network was obtained by using rewiring probability pw = 0.05.

(a) (b) (c)

Figure 2: The autorrelation functions of an WS networks with N = 300 nodes, p = 4 and pw = 0.01(a), 0.02(b), and 0.03 (c), respectively

to topological lags δ = 1, 2, . . . , 30.

as well as the height and extent of the plateaux. Also of

interest are the lower signatures, which correspond to the

nodes corresponding to the network rewirings.

A noticeably interesting possibility is to illustrate the

autorrelations between the nodes in a given network in

terms of a respective coincidence network [30]. Examples

of this type of coincidence network – obtained for the

above ER, BA and WS networks, is shown in Figure 3 (a),

(b), and (c), respectively. The size of the nodes reflect the

degree of the nodes in the original network.

As could be expected, a relatively uniform autorrelation

network has been obtained for the ER network, other than

by statistical fluctuations. In addition, most of the nodes

are shown in cyan, reflecting the small transitivity of the

original respective reference nodes.

A more interesting structure can be observed in the

case of the BA structure, with the hubs either resulting

in one of the extremities of the larger connected compo-

nent, which are followed by nodes of signatures obtained

for medium and small degree original nodes. This type of

structure reflects the fact that, in a BA network, the hubs

are different from the other nodes regarding their topo-

logical properties along the successive neighborhoods, but

are mutually similar. As could be expected, most origi-

nal nodes have very small transitivity (most nodes are in

cyan).

A strongly uniform autorrelation network has been ob-

tained for the WS case, reflecting the predominant regu-

larity of the original network. Interestingly, some nodes

in cyan can be seen around the uniform mass of node,

most of which with significant transitivity values (in ma-

genta). The former nodes correspond to the nodes the
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nodes establishing shortcuts in the original network.

All in all, the autorrelation signatures obtained for the

three model-theoretical networks confirm the ability of

this function to reflect several of the critical properties of

the respective networks, as well as their parameter con-

figurations. The individual signatures also provide means

for identifying special types of nodes.

We now proceed to verifying the types of autorrelation

functions as obtained from some real-world networks.

Figure 4(a) presents the autorrelation signature ob-

tained for the Zachary karate club network [50, 51]. De-

spite the relatively small size of this network, the respec-

tive autorrelation signatures suggest that it has hubs,

possibly possessing a scale-free node distribution. The

obtained autorrelation signatures indicate similarity with

the ER model, being characterized by monotonically de-

creasing autorrelation values.

The autorrelation signatures obtained for the US air-

ports network [51] is presented in Figure 4(d). The av-

erage signature, which involves small values, indicates a

relatively more complex autorrelation structure for this

network, involving the three following regimes: (a) an

initial plateaux that indicates mutual similarity between

each node and those at the nearest respective neighbor-

hoods; (b) a following peak of autorrelation values, possi-

bly related to presence of hubs in this network; and (c) a

moderate decrease implied by the neighborhood progres-

sions hitting the border of this network. An impressive

variety of individual autorrelation signatures can be iden-

tified, some characterized by particularly small autorrela-

tion values, indicating the presence of several interesting

outlier nodes.

Figure 5 depicts the coincidence network obtained by

considering the individual autorrelation signatures ob-

tained for the US airports network as input to the co-

incidence methodology for transforming datasets into re-

spective networks [30]. The resulting coincidence network

has been thresholded at T = 0.87 for the sake of improved

visualization.

Several interesting aspects can be observed from the

obtained coincidence network. First, we have that the

signatures have been organized along a sequence of inter-

connections related to the degree of the original nodes.

The hubs, being most different from the other nodes, but

tending to be similar each other, resulted at one of the

extremities of the main obtained structure. As the de-

gree of the nodes becomes smaller, the observed structure

initially undergoes a kind of mostly sequential unfolding,

up to a point where several branching and more intricate

structures starts to emerge.

Of particular interest is the separation of this initially

string-like structure into two major branches, each of

which being presenting complex interconnections, includ-

ing ring-like substructures. At the same time, several

smaller disconnected components involving strongly inter-

connected nodes with smaller degree degree can be also

observed. Also of particular interest are the small string

component observed at the top left-hand side of the visu-

alization in Figure 5, as well as the nodes that remained

disconnected. These nodes, the vast majority of which

being characterized by low transitivity, can therefore be

understood as outliers in this network as far as their hier-

archical similarity structure is concerned respectively to

those of the other network nodes.

It is also interesting to compare the coincidence net-

work obtained for the US airports individual autorrela-

tion signatures with that of a BA network, as illustrated

in Figure 3(b). Though these two networks share some

important properties, such as the sequential connection in

terms of the degree of the original nodes, they also present

important differences, including the markedly more intri-

cate structure of the US airports network for smaller val-

ues of original node degree, possibly as a consequence of

the more local and geographical nature of the intercon-

nections between smaller airports, thus suggesting that

this network involves a mixture of structural organization

principles.

In order to verify the effect of the extension of the con-

sidered range of lags taken into account while building the

coincidence network from the individual autorrelation sig-

natures, we shown in Figure 6 this type of network derived

from the US airports individual signatures considering

successive lags. The effect of taking into account longer

lag extensions contributes to obtaining progressively more

detailed coincidence networks. Interestingly, the complex

topological structure of this network could not be dis-

cerned from the coincidence networks considering narrow

lag extensions. At the same time, the effect of incorpo-

rating additional lags tends to be larger for smaller lag

extensions, with progressively more similar coincidence

networks being obtained as the maximum lag approaches

the borders of the network. Interestingly, the enhanced

selectivity and sensitivity of the coincidence similarity in-

dex provides allows the intricate level of details of the

autorrelation networks to be effectively revealed.

The above example illustrates the potential of the au-

torrelation approach for revealing impressively detailed

information about the network being analyzed from the

perspective of its hierarchical similarity structure.

Examples of cross-relations between two graphs are de-
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(a) (b) (c)

Figure 3: The coincidence networks obtained from the individual autorrelation signatures of the ER (a), BA (b), and WS (c) networks,

shown after thresholding by T = 0.87 (T = 0.6 in the BA case) and α = 0.5. The size of the nodes corresponds to the degree of the original

network nodes providing the reference for the autorrelation analysis. The width of the edges is proportional to the respective coincidence

value between the respective individual autorrelation signatures. The colors (from cyan to magenta) indicate the transitivity of the original

nodes.

(a) (b) (c)

Figure 4: The average (in black) and individual (random colors) autorrelation signatures obtained for the Zachary karate club network [50,

51](a); macaque network [52, 51](b); and US airports network [51] (c).

picted in Figure 7, referring to the cross-relation between

original and rewired versions of a same network. First,

we have the ER network in Figure 1(a) before and af-

ter 500 rewirings. Interestingly, a noticeable effect on

the average signature can be observed, which is a conse-

quence of random fluctuations given the relatively small

size of this network. The individual and average autorre-

lation signatures obtained for the BA network are shown

in Figure 7(b). Interestingly, the obtained average cross-

relation signature is characterized by a less steep initial

increase, which is a direct consequence of the partial loss

of the scale free property, as a consequence of the hubs

being rewired into more uniform configurations, which is

corroborated by the associated reduction of the number

of lower individual signatures. The rewiring effects on the

US airports network, shown in Figure 7(c), included mak-

ing the intermediate peak less salient, reducing the extent

of the signatures at the same time as they became less dis-

persed, as well as making the final transition sharper.

The cross-relation between networks and their rewired

versions is strongly affected by the necessarily implied re-

duction of the average shortest path length, which sub-

stantially narrows the extent of the signatures along the

lag δ. Another interesting study of cross-relations be-

tween two graphs consists of considering the original

graph and a respective version with a given percentage

of hubs removed from the network. Figure 8 illustrates

this type of analysis respectively to the removal of 5% of

the nodes with the highest degrees respectively to the ER,
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Figure 5: The coincidence network obtained from the individual autorrelation signatures of the US airports network, shown after thresholding

by T = 0.87 and α = 0.5. The size of the nodes corresponds to the degree of the original network nodes providing the reference for

the autorrelation analysis. The width of the edges is proportional to the respective coincidence value between the respective individual

autorrelation signatures. The colors (from cyan to magenta) indicate the transitivity of the original nodes.

BA and US airports networks.

As could be expected, this modification had almost no

effect in the case of the ER network, which does not tend

to have nodes with substantially higher degrees (hubs)

except for statistical fluctuations. However, in the case of

the BA network, several alterations can be verified as a

consequence of the removal of only 5 hubs. We can ob-

serve a reduction of the extent of the signatures, as well as

a substantial shape of the average signature, which nows

corresponds mostly to a plateau instead of a peak. The

effects on the US airports network are also strong, imply-

ing longer signatures as well as a reduction of the peak

and change of the shape of most signatures. This result

indicates that the hubs in this network have a strong role

in defining its respective topological properties.

Figure 9 presents the cross-relation analysis of networks

under another type of modification, now involving the

complete permutation of the labels of all nodes respec-

tively to the original network. The effect of this alteration

was similar in the case of the ER, BA, and US airports

networks, consisting in making the signatures more sim-

ilar, therefore revealing the fact that the respective net-

works were perceived as being substantially more regular

when compared under nodes permutation.

The above cross-relation examples above illustrate the

potential of this approach for comparing between two net-

works while considering respective displacements along

the distance lags. The obtained results indicate that

the cross-relation average and individual signatures can

provide interesting comprehensive information about the

topological properties of the analyzed structures, espe-

cially regarding the presence of hubs and the uniformity

of the topology around the nodes at successive topological

scales.

To complement this section, we estimate an analogue of

the “power spectrum” (see Equation 4) of the mean au-
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Figure 6: The coincidence networks obtained from the individual autorrelation signatures of the US airports network considering successive

lags varying fro 1 to 9. By supplying additional information about the topology of the original network, networks derived from individual

signatures with larger lag values yield more detailed coincidence networks.

torrelation signature of the US airport network by using

. The magnitude of the Fourier transform of the aver-

age autorrelation function obtained for the US airports

network is shown in Figure 10.

5 Concluding Remarks

An important class of relationship between a pair of math-

ematical structures regards how much they are interre-

lated in terms of a relative displacement, controlled by

respective lags. The important of this type of relation-

ship is reflect in the key roles these operations play in

areas including signal and image processing and analysis,

control systems, computer vision, neuronal networks and

AI at large.

In the present work, we aimed at developing opera-

tions that are analogue to the autocorrelation and cross-

correlation between functions, fields, vectors and matri-

ces, but adapted to graphs and networks. In order to

do so, we resourced to the multiset coincidence similarity,

which implements a strict and stable quantification of the

similarity between any two mathematical structures.

More specifically, we defined the order of neighborhoods

around each network node as being analogous to the lag

parameter in the classic correlation. Therefore, it became

possible to compare the topological features each refer-

ence node with those of nodes in successive respective

neighorhoods. This operation yields a function of the dis-

tance from the successive neighborhoods, which acts as

the lag parameter. The possibility to chose among sev-
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(a) (b) (c)

Figure 7: The average (in black) and individual (random colors) cross-relation signatures obtained between the ER network in Fig. 1(b) and

the respectively network obtained by 500 edge rewirings (a), the original BA network and respective version after 4000 rewirings (b), as well

as the US airports network and respective network obtained for 3000 rewirings (c).

(a) (b) (c)

Figure 8: The cross-relation functions between the original ER, BA, and US airports networks and their respective versions after removal

of the 5% of nodes with the highest degree (hubs).

eral possible topological, or other types of features ac-

counts for additional flexibility in the implemented anal-

ysis, which can be customized to the aspects of specific

interest in each research approach. Once these measure-

ments have been obtained, the estimation of the autor-

relation and cross-relation involves relatively little com-

putational cost. In the case of the present work, which

adopted the node degree and transitivity as features, the

overall cost resulted particularly low given that these mea-

surements are local and easy to be calculated.

As with the traditional autocorrelation and cross-

correlation between two functions, the autorrelation and

cross-relation have their maximum value observed for lag

zero. As it has been indicated by several examples involv-

ing several model-theoretical and real-world networks, the

average and individual autorrelation and cross-relation

signatures reflect several aspects of the analyzed networks,

including the presence of hubs, communities, the overall

regularity, scale-free behavior, presence of outliers, as well

as the extent of topological scales along which the network

is more or less strongly mutually similar. Of particular in-

terest is the intricate coincidence similarity obtained from

the individual autorrelation signatures which, in the case

of the US airports network revealed highly intricate inter-

relationships between involved signatures, confirming the

particularly complex organization of this network.

The reported concepts and methods paves the way

to several interesting further developments, including

the consideration of other measurements, other model-

theoretical networks (especially heterogeneous modular

networks), the investigation of other parameter configu-

rations (e.g. average degree and number of nodes). Other

10



(a) (b) (c)

Figure 9: The cross-relation functions between the original ER, BA, and US airports networks and their respective versions after permutation

of nodes.

Figure 10: The Fourier transform of the average autorrelation func-

tion obtained for the US airports network. Though this should not

be taken for the respective power spectrum, the obtained Fourier

transform has special interest as it highlights eventual oscillations

present in the autorrelation function, which would be related to peri-

odical properties eventually found in the original network topology.

promising possibilities include the application to other

real-world networks, as well as further relating the au-

torrelation and cross-relation signatures with other inter-

esting properties of networks such as their spectra and

Fourier transforms.

Acknowledgments.

Luciano da F. Costa thanks CNPq (grant

no. 307085/2018-0) and FAPESP (grant 15/22308-

2).

Note:

As all other preprints by the author, this work is pos-

sibly being considered by a scientific journal. Respective

modification, commercial use, or distribution of any of its

parts are not possible. Many of the preprints by the au-

thor are also available in HAL and arXiv. This work can

also be cited by using the DOI number or article identifi-

cation link. Thanks for reading.

References

[1] D. B. et al. West. Introduction to graph theory, vol-

ume 2. Prentice hall Upper Saddle River, 2001.

[2] B. Bollobás. Modern graph theory, volume 184.

Springer Science & Business Media, 1998.

[3] A.L. Barabási and Pósfai M. Network Sience. Cam-

bridge University Press, 2016.

[4] M. Newman. Networks: An introduction. Oxford

University Press, 2010.

[5] L. da F. Costa, F. A. Rodrigues, G. Travieso, and

P. R. Villas Boas. Characterization of complex net-

works: A survey of measurements. Advances in

Physics, 56(1):167–242, 2007.

[6] L. da F. Costa, O.N. Oliveira Jr., G. Travieso, F.A.

Rodrigues, P.R. Villas Boas, L. Antiqueira, M.P.

Viana, and L.E.C. Rocha. Analyzing and modeling

real-world phenomena with complex networks: a sur-

vey of applications. Advances in Physics, 60(3):329–

412, 2011.

11



[7] L. da F. Costa. What is a complex network?

https://www.researchgate.net/publication/

324312765_What_is_a_Complex_Network_CDT-2,

2018. [Online; accessed 05-May-2019].

[8] L. da F. Costa and G. Domingues. Cost-based ap-

proach to complexity: A common denominator? Re-

vista Brasileira de Ensino de F́ısica, 44, 2022.

[9] D. E. Knuth. The Art of Computing. Addison Wes-

ley, 1998.

[10] N. Wirth. Algorithms & data structures. Prentice-

Hall, Inc., 1985.

[11] T. H. Cormen. Introduction to Algorithms. MIT

Press, 2009.

[12] E. O. Brigham. Fast Fourier Transform and its Ap-

plications. Pearson, 1988.

[13] L. da F. Costa. Shape Classification and Analysis:

Theory and Practice. CRC Press, Boca Raton, 2nd

edition, 2009.
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