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Abstract. Discovering association rules from transaction databases is
a well studied data mining task. Many effective techniques have been
proposed over the years. However, due to the huge size of the output,
many works have tackled the problem of mining a smaller and relevant
set of rules. In this paper, we address the problem of enumerating the
minimal non-redundant association rules, widely considered as one of the
most relevant variant. We first provide its encoding as a propositional
formula whose models correspond to the minimal non redundant rules.
Then we show that the set of minimal generators used for extracting non-
redundant rules can also be encoded in this framework. Experiments on
many datasets show that our approach achieves better performance with
respect to the state-of-the-art specialized techniques.

1 Introduction

Extracting association rules from transactional databases have received intensive
research since its introduction by Rakesh Agrawal et al. in [1]. Initially referring
to data analysis, several new application domains have been identified, including
among others, bioinformatics, medical diagnosis, networks intrusion detection,
web mining, documents analysis, and scientific data analysis. This broad spec-
trum of applications enabled association analysis to be applied to a variety of
datasets, including sequential, spatial, and graph-based data. Interestingly, asso-
ciation patterns are now considered as a building block of several other learning
problems such as classification, regression, and clustering.

Most approaches have mentioned that the classical association rules mining
task produces too many rules [2,5,6,14,18]. The huge size of such set of rules does
not help the user to easily retrieve relevant informations. Such observation leads
to various definitions of redundancy in order to limit the number of association
rules. Thenceforth, many research have focused on eliminating redundant rules
while maintaining the set of relevant ones called (minimal) non-redundant asso-
ciation rules. Different kinds of non-redundant rules have been introduced such
as the Generic Basis [2], the Informative Basis [2], the Informative and Generic
Basis [6], Minimum Condition Maximum Consequent Rules (MMR) [14] and the
set of representative association rules [13] that cover all the association rules. To
prune out redundant rules, almost approaches share the two following steps: (1)
find the set of minimal generators and closed itemsets, and (2) generate confident
rules by considering the two sets already mined in step one.
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Recently, declarative approaches have been proposed to tackle several data
mining tasks through constraint programming (CP) and propositional satisfi-
ability (SAT) [7,8,11,12,15]. In [3], the authors proposed a new framework for
mining association rules in one step using propositional satisfiability leading
to a competitive approach compared to specialized techniques. Encouraged by
these results, we propose in this paper to extend this framework for extracting
the minimal non-redundant rules. The redundancy is eliminated elegantly us-
ing new constraints combined to some others listed in [3]. We show that two
kinds of non-redundant rules can be addressed. Furthermore, a restriction of our
encoding can be used to extract the minimal generators.

2 Preliminaries

2.1 Propositional Logic and SAT Problem

We here define the syntax and the semantics of propositional logic. Let Prop be
a countably set of propositional variables. We use the letters p, q, r, etc to range
over Prop. The set of propositional formulas, denoted Form, is defined inductively
started from Prop, the constant ⊥ denoting false, the constant > denoting true,
and using the logical connectives ¬, ∧, ∨,→. We use V ar(φ) to denote the set of
propositional variables appearing in the formula φ. The equivalence connective
↔ is defined by φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ).

A formula φ in conjunctive normal form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals. A literal is a positive (p) or negated
(¬p) propositional variable. The two literals p and ¬p are called complementary.
A CNF formula can also be seen as a set of clauses, and a clause as a set of
literals.

An interpretation I of a propositional formula φ is a function which associates
a value I(p) ∈ {0, 1} (0 corresponds to false and 1 to true) to the variables
p ∈ V ar(φ). A model or an implicant of a formula Φ is an interpretation I that
satisfies the formula in the usual truth-functional way. SAT problem consists in
deciding if a given CNF formula admits a model or not.

2.2 Association Rules

Let Ω be a finite non empty set of symbols, called items. From now on, we
assume that this set is fixed. We use the letters a, b, c, etc to range over the
elements of Ω. An itemset I over Ω is defined as a subset of Ω, i.e., I ⊆ Ω. We
use 2Ω to denote the set of itemsets over Ω and we use the capital letters I, J ,
K, etc to range over the elements of 2Ω .

A transaction is an ordered pair (i, I) where i is a natural number, called
transaction identifier, and I an itemset, i.e., (i, I) ∈ N × 2Ω . A transaction
database D is defined as a finite non empty set of transactions (D ⊆ N × 2Ω)
where each transaction identifier refers to a unique itemset.

Given a transaction database D and an itemset I, the cover of I in D, denoted
C(I,D), is defined as {i ∈ N | (i, J) ∈ D and I ⊆ J}. The support of I in D,
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denoted Supp(I,D), corresponds to the cardinality of C(I,D), i.e., Supp(I,D) =
|C(I,D)|. An itemset I ⊆ Ω such that Supp(I,D) > 1 is a closed itemset if, for
all itemsets J with I ⊂ J , Supp(J,D) < Supp(I,D).

Example 1. For instance, let us consider the transaction database D depicted
in Table 1. We have C({c, d},D) = {1, 2, 3, 4, 5} and Supp({c, d},D) = 5 while
Supp({f},D) = 3. The itemset {c, d} is closed, while {f} is not since Supp({f},D) =
Supp({c, d, f},D).

tid Transactions

1 c d e f g
2 c d e f g
3 a b c d
4 a b c d f
5 a b c d
6 c e

Table 1. A Transaction Database D

Name Asso. Rules Support Confidence

r1 {a} → {b} 3/6 1
r2 {a} → {b, c, d} 3/6 1
r3 {c} → {d} 5/6 5/6
r4 {c, d} → {e, f, g} 2/6 2/5

Table 2. Some association rules

In this work, we are interested in the problem of mining association rules
(MAR). An association rule is a pattern of the form X → Y where X (called the
antecedent) and Y (called the consequent) are two disjoint itemsets. In MAR,
the interestingness predicate is defined using the notions of support and con-
fidence. The support of an association rule X → Y in a transaction database

D, defined as Supp(X → Y,D) = Supp(X∪Y,D)
|D| , determines how often a rule

is applicable to a given dataset, i.e., the occurrence frequency of the rule. The

confidence of X → Y in D, defined as Conf(X → Y,D) = Supp(X∪Y,D)
Supp(X,D) , provides

an estimate of the conditional probability of Y given X. When there is no am-
biguity, we omit to mention the transaction database D , and we simply note
Supp(X → Y ) and Conf(X → Y ).

A valid association rule is an association rule with support and confidence
greater than or equal to the minimum support threshold (minsupp) and mini-
mum confidence threshold (minconf) respectively. More precisely, given a trans-
action database D, a minimum support threshold minsupp and a minimum con-
fidence threshold minconf, the problem of mining association rules consists in
computing MAR(D,minsupp,minconf) = {X → Y | X,Y ⊆ Ω, Supp(X →
Y,D) > minsupp, Conf(X → Y,D) > minconf}

Table 2 illustrates some association rules with their corresponding supports
and confidences. For instance, Supp({a} → {b}) = 3

6 and Conf({a} → {b}) = 1.

3 SAT-Based Association Rules Mining

In this section, we briefly review the recent approach proposed in [3] for mining
association rules through Boolean satisfiability. The basic idea consists in mod-
eling such mining task as a propositional formula whose models corresponds to
the required association rules. In this encoding, two sets of Boolean variables
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are used to represent the items of an association rules X → Y and the transac-
tions. Then, the support and the confidence of an association rule are captured
through 0/1 linear inequalities over the Boolean variables associated to transac-
tions. In order to define the SAT-based encoding, we fix, without loss of general-
ity, a set Ω of n items, a transaction database D = {(1, I1), . . . , (m, Im)} where
∀i ∈ {1,m}, Ii ⊆ Ω, a minimum support threshold minsupp and a minimum
confidence threshold minconf .

In order to capture the two part of each association rule, we associate two
Boolean variables to each item a, denoted xa and ya. The variables of the form
xa (resp. ya) are used to represent the antecedent (resp. consequent) of each
candidate rule. Then, to represent the cover of X and X ∪ Y , each transaction
identifier i ∈ {1,m} is associated with two propositional variables pi and qi. The
variables of the form pi (resp. qi) are used to represent the cover of X (resp.
X ∪ Y ). More precisely, given a Boolean interpretation B, the corresponding
association rule, denoted rI , is X = {a ∈ Ω | I(xa) = 1} → Y = {b ∈ Ω |
I(yb) = 1}, the cover of X is {i ∈ {1,m} | I(pi) = 1}, and the cover of X ∪ Y is
{i ∈ {1,m} | I(qi) = 1}. The SAT-based encoding of the problem of enumerating
association rules consists in a set of constraints defined as follows.

(
∨
a∈Ω

xa) ∧ (
∨
a∈Ω

ya) (1)

∧
a∈Ω

(¬xa ∨ ¬ya) (2)

∧
i∈1..m

¬pi ↔
∨

a∈Ω\Ii

xa (3)

∧
i∈1..m

¬qi ↔ ¬pi ∨ (
∨

a∈Ω\Ii

ya) (4)

∑
i∈1..m

qi > m×minsupp (5)

∑
i∈1..m qi∑
i∈1..m pi

> minconf (6)

The two clauses of Formula 1 express that X and Y are not empty sets.
Formula (2) allows to express X ∩ Y = ∅. It is simply defined by imposing that
xa and ya are not both true for every item a. The third constraint is used to
represent the cover of the itemset corresponding to the left part of the candidate
association rule. Given an itemset X, we know that the transaction identifier i
does not belong to C(X,D) if and only if there exists an item a ∈ X such that
a /∈ Ii. This property is represented by constraint (3) expressing that pi is false
if and only if X contains an item that does not belong to the transaction i. In
the same way, the formula (4) allows to capture the cover of X ∪ Y .

To specify that the support of the candidate rule has to be greater than
or equal to the fixed threshold minsupp (in percentage), and the confidence is
greater than or equal to minconf , we use the constraints (5) and (6) expressed
by 0/1 linear inequalities.

To extend the mining task to the closed association rules, the following con-
straint is added to express that X ∪ Y is a closed itemset [9]:∧

a∈Ω
((

∧
i∈1..m

qi → a ∈ Ii)→ xa ∨ ya) (7)
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This formula means that, for all item a ∈ Ω, if we have C(X ∪ Y,D) = C(X ∪
Y ∪ {a},D), which is encoded with the formula

∧
i∈{1,m} qi → a ∈ Ii, then we

get a ∈ X ∪ Y , which is encoded with xa ∨ ya.

4 Minimal Non-Redundant Association Rules

In this section, we present our encoding of the problem of extracting non-
redundant rules into propositional satisfiability. First, we focus on the interesting
representation that corresponds to the minimal non-redundant association rules
(MNRs in short) [14,2].

Definition 1. An association rule r : X → Y is a minimal non-redundant rule
iff there is no association rule r′ : X ′ → Y ′ different from r s.t. (i) Supp(r) =
Supp(r′), (ii) Conf(r) = Conf(r′) and (iii) X ′ ⊆ X and Y ⊆ Y ′.

Example 2. Consider again the association rules given in Table 2. In this set of
rules, r2 : {a} → {b, c, d} is a minimal non-redundant rule while r1 : {a} → {b}
is not.

In the following proposition, we point out that all the minimal non-redundant
association rules are closed.

Proposition 1. If r : X → Y is a minimal non-redundant association rule in
a transaction database D then X ∪ Y is a closed itemset D.

Proof. Assume that X ∪ Y is not a closed itemset. Then, there exists an item
a /∈ X ∪ Y s.t. Supp(X ∪ Y,D) = Supp(X ∪ Y ∪ {a},D). Consider now the rule
r′ : X → Y ∪ {a}. Clearly, we get Supp(r) = Supp(r′) and Conf(r) = Conf(r′)
since Supp(X ∪ Y,D) = Supp(X ∪ Y ∪ {a},D). Thus, r is not a minimal non-
redundant association rule and we get a contradiction.

In other words, the minimal non-redundant association rules are the closed
rules in which the antecedents are minimal w.r.t. set inclusion. Using this prop-
erty, the authors of [2] provided a characterization of the antecedents of the
minimal non-redundant rules, called minimal generators.

Definition 2 (Minimal Generator). Given a closed itemset X in a transac-
tion database D, an itemset X ′ ⊆ X is a minimal generator of X iff Supp(X ′,D) =
Supp(X,D) and there is no X ′′ ⊆ X s.t. X ′′ ⊂ X ′ and Supp(X ′′,D) = Supp(X,D).

Usual algorithms use the set of frequent closed itemsets together with min-
imal generators to extract the set of minimal non-redundant association rules.
Then, most existing approaches to mine minimal association rules proceed in two
steps. In our approach, we propose to extend the SAT-based encoding proposed
in [3] to retrieve the minimal non-redundant association rules in one step.

In order to define a SAT-based encoding of the problem of generating the
minimal non-redundant association rules, we only need to extend the encoding
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described in Section 3 with a formula that forces each antecedent to be a min-
imal generator. To this end, we use a formula that represents the fact that if
Supp(X → Y,D) = Supp(X \ {a} → Y,D), then a has to be excluded from
X, i.e., a /∈ X. However, we write the contraposition of this property. Indeed,
the following formula expresses that, for all item a, if a belongs to X then the
support of X is smaller than the support of X \ {a}:

(
∧
a∈Ω

xa →
∨

(i∈1..m, a 6∈Ii)

(
∧

b/∈Ii∪{a}

¬xb)) ∨ (
∑
b∈Ω

xb = 1) (8)

We use EMNR(D,minsupp,minconf) to denote the encoding (1)∧ (2)∧ (3)∧
(4) ∧ (5) ∧ (6) ∧ (7) ∧ (8).

The soundness of EMNR(D,minsupp,minconf) comes directly from the fol-
lowing proposition:

Proposition 2. The association rule r : X → Y is a minimal non-redundant
rule iff r is a closed association rule, and |X| = 1 or, for all item a ∈ X,
Supp(X,D) > Supp(X \ {a},D).

Proof.
Part⇒. Using Proposition 1, we know that r is a closed association rule. Assume
now that there exists an item a ∈ X s.t. Supp(X,D) = Supp(X \ {a},D). Then,
r′ : X \ {a} → Y ∪ {a} is a closed association rule s.t. Supp(r,D) = Supp(r′,D)
and Conf(r,D) = Conf(r′,D). Thus, we get a contradiction since r is a minimal
non-redundant association rule.
Part⇐. Using the fact that r is a closed association rule, we know that there is no
association rule r′ : X ′ → Y ′ s.t. X∪Y ⊂ X ′∪Y ′ and Supp(r,D) = Supp(r′,D).
Moreover, knowing that Supp(X,D) > Supp(X \{a},D) for every a ∈ X, we get
Conf(X \ {a} → Y ∪ {a},D) < Conf(r,D) for every a ∈ X. As a consequence,
r is a minimal non-redundant association rule.

The soundness of our encoding means that a Boolean interpretation I is a
model of EMNR(D,minsupp,minconf) if and only if X = {a ∈ Ω | I(xa) =
1} → Y = {b ∈ Ω | I(yb) = 1} is a minimal non-redundant association rule.

Proposition 3. The encoding EMNR(D,minsupp,minconf) is sound.

Proof. It come from the soundness of the encoding (1)∧(2)∧(3)∧(4)∧(5)∧(6)∧(7)
w.r.t. the problem of generating closed association rules, Proposition 2 and the
fact that (8) expresses that Supp(X,D) > Supp(X \ {a},D) for every a ∈ X.

Let us note that the constraint (8) is not a CNF formula. In order to avoid
the blow up in terms of the number of clauses resulting from the transformation
of (8) into CNF, new additional variables can be added to present the subfor-
mulas of the form

∧
b/∈Ii∪{a} ¬xb i.e., zi ↔

∧
b/∈Ii∪{a} ¬xb. Nonetheless, using

this transformation, the number of resulting clauses from constraint (8) is in
O(m × |Ω|2) which may make the model enumeration much more harder. To
limit the number of clauses, we propose the following transformation which is
equivalent to the property captured by (8).
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(
∧
a∈Ω

(xa →
∨

(i∈1..m, a 6∈Ii)

¬zi)) ∧ (
∧

i∈1..m
(¬zi →

∑
b/∈Ii

xb ≤ 1)) ∨ (
∑
b∈Ω

xb = 1) (9)

In fact, this transformation comes from the fact that (
∧
b/∈Ii∪{a} ¬xb) is equiv-

alent to (
∑
b/∈Ii xb ≤ 1) in the case where Ii does not contain a. As a consequence,

(9) expresses exactly the requirements of (8). The additional variables zi allow
to obtain an efficient encoding.

Note that (9) can be encoded in O(m× |Ω|) rather than O(m× |Ω|2) of the
previous formulation. A linear constraint of the form

∑n
i=1 xi ≤ 1, commonly

called AtMostOne constraint, can be encoded in a linear way [16] using additional
variables as follows.

(¬x1 ∨ s1)∧ (¬xn ∨¬sn−1)∧
∧

1<i<n

(¬xi ∨ si)∧ (¬si−1 ∨ si)∧ (¬xi ∨¬si−1) (10)

Thus, the constraint (¬y →
∑n
i=1 xi ≤ 1) can be obtained by adding y to

each clause of (10). However, this can slow down the unit propagation process.
In fact, when more than one xi is assigned to true, y is not deduced to be true
directly by unit propagation. To increase the power of unit propagation, one
need to add y only on negatives binary clauses of (10) as shown in (11).

(¬x1∨s1)∧(y∨¬xn∨¬sn−1)∧
∧

1<i<n

(¬xi∨si)∧(¬si−1∨si)∧(y∨¬xi∨¬si−1) (11)

It is worth noting that one can use some of the constraints above to enumer-
ate all the minimal generators. As mentioned before, the minimal generators are
the antecedents of the minimal non-redundant rules. As a consequence, the en-
coding (3)∧(5)∧(9) (restricted to X) allows us to get all the minimal generators.

Another notion of non-redundant rules has been defined in the work of M.
Zaki [18]. It is slightly different from representative rules defined in [13]. It con-
sists in mining association rules, called the most general rules (MGR in short),
that have the shortest antecedent and consequent (in terms of inclusion) in an
equivalent class of rules (with the same confidence and support).

Definition 3. [18] An association rule r : X → Y is a non-redundant rule iff
there is no association rule r′ : X ′ → Y ′ different from r s.t. (i) Supp(r) =
Supp(r′), (ii) Conf(r) = Conf(r′) and (iii) X ′ ⊆ X and Y ′ ⊆ Y .

Unlike the non-redundant notion in Definition 1, the closure constraint on
X ∪ Y in Zaki’s notion is obviously omitted.

Example 3. Considering again the association rules of Table 2. The rule r1 :
{a} → {b} is non-redundant while r2 : {a} → {b, c, d} is not.
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Proposition 4 provides a characterization of Zaki’s non-redundant association
rules.

Proposition 4. Given an association rule r : X → Y in a transaction database
D, r is a non-redundant rule iff (i) |X| = 1 or ∀a ∈ X, Supp(X \ {a},D) >
Supp(X,D); and (ii) |Y | = 1 or ∀b ∈ Y , Supp(X ∪ Y ) < Supp(X ∪ Y \ {b}).

Proof.
Part ⇒. Assume that |X| > 1 and there exists a ∈ X such that Supp(X \
{a},D) = Supp(X,D). Then, Supp(X \ {a} → Y,D) = Supp(r,D) holds.
Moreover, we have Supp(X ∪ Y \ {a},D) = Supp(X ∪ Y,D). Thus, we have
Conf(X \ {a} → Y,D) = Conf(r,D). As a consequence, we get a contradiction
since r is non-redundant rule, and we obtain the property (i).

Assume now that there exists b ∈ Y such that |Y | > 1 and Supp(X ∪ Y \
{b},D) = Supp(X ∪ Y,D). Then, Conf(X → Y \ {b},D) = Conf(X → Y,D)
holds. Moreover, we have Supp(X → Y \ {b},D) = Supp(X → Y,D). Thus,
using the fact that r is a non-redundant rule, we get a contradiction, and then
we obtain the property (ii).
Part ⇐. Assume that r is a redundant rule. Then, there exists a ∈ X ∪ Y s.t.
Supp(X \ {a} → Y,D) = Supp(r,D) if a ∈ x, and Conf(X → Y \ {a},D) =
conf(r,D) otherwise. Thus, we get Supp(X \ {a},D) = Supp(X,D) if a ∈ X,
and Supp(X ∪ Y ) = Supp(X ∪ Y \ {b}) otherwise. As a consequence, using the
properties (i) and (ii) we get a contradiction. Therefore, r is non-redundant.

Using the characterization provided in Proposition 4, we only need to add
to the encoding EMNR(D,minsupp,minconf) without the closeness constraint
a new constraint representing the property (ii) to get an encoding for mining
Zaki’s non-redundant rules. Our definition of such constraint is as follows:∧

a∈Ω
ya → (

∨
(i∈1..m, a 6∈Ii)

(pi ∧
∧

b/∈Ii∪{a}

¬yb)) ∨ (
∑
b∈Ω

yb = 1) (12)

It is worth noting that the constraint (12) is very similar to (8). Indeed, the
difference is in the fact that we use the variables pi to reason about the cover of
X ∪Y and not only Y . Furthermore, one can easily see that (12) can be encoded
into a CNF formula in the same way as (8).

5 Experiments

In this section, we present a comparative experimental evaluation of our proposed
approach with specialized association rules mining algorithms. We consider the
minimal non redundant (MNR) association rules mining task.

To enumerate the set of models of the resulting CNF formula, we follow the
approach of [3]. The proposed model enumeration algorithm is based on a back-
track search DPLL-like procedure. In our experiments, the variables ordering
heuristic, focus in priority on the variables of respectively X and Y to select the
one to assign next. The main power of this approach consists in using watched
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literals structure to perform accurately the unit propagation. Let us also note
that the constraint (5) and (6) dedicated to frequency and confidence are man-
aged without translation into CNF form, leading to an hybrid SAT-CSP model
enumeration algorithm. Indeed, the linear inequalities (5) and (6) are managed
and propagated on the fly as usually done in constraint programming. Each
model of the propositional formula encoding the association rules mining task,
corresponds to an association rule obtained by considering the truth values of
the propositional variables encoding the antecedent (X) and the consequent (Y )
of this rule.

In the experiments, SAT4MNR indicates our SAT based solver for mining the
minimal non redundant association rules. In addition we consider SAT4MNR-D
that partition the search as in [10]. This is done as follows: Let Ω = {a1, . . . , an},
we transform the problem into n mining problem where each one encodes rules
X → Y s.t. {a1 . . . , ai−1} 6⊂ X and ai ∈ X. Moreover, we denote by SAT4MGR
our SAT based solver for mining most general rules (Definition 3).

To assess the performance of our constraint based encoding for minimal non-
redundant rules, we compare our solver to two specialized association rules min-
ing solvers namely CORON 1 and SPMF 2 [4]. CORON and SPMF are two
multi-purpose data mining toolkits, impemented in Java, and which incorporate
a rich collection of data mining algorithms. For minimal non redundant associ-
ation rules, we compare our approach to the ZART algorithm implemented in
CORON and SPMF toolkits, which is one of the recent and the most efficient
state-of-the-art algorithms for enumerating minimal non redundant association
rules [17]. Let us recall that ZART finds the minimal non redundant associations
rules in two steps. Firstly, the set of all frequent closed itemsets and the mini-
mal generators are extracted rapidly. Second, the identification of non-redundant
rules is then performed. This two steps-based procedure is more time consuming.

To compare the performances of our proposed approach, for each data we
proceed by varying the support from 5% to 100% with an interval of size of
5%. The confidence is varied in the same way. Then, for each data, a set of 400
configurations is generated. All the experiments were done on Intel Xeon quad-
core machines with 32GB of RAM running at 2.66 Ghz. For each instance, we
fix the timeout to 15 minutes of CPU time.

Results: Table 3 describes our comparative results. We report in column 1
the name of the data and its characteristics in parenthesis: number of items
(#items), number of transactions (#trans) and density. For each algorithm, we
report the number of solved configurations (#S), and the average solving time
(avg.time in seconds). For each unsolved configuration, the time is set to 900
seconds (time out). In the last row of Table 3, we provide the total number of
solved configurations and the global average CPU time in seconds.

According to such results, SAT4MNR outperforms the two specialized solvers
CORON and SPMF. It solves 488 configurations more than CORON and 920

1 Coron: http://coron.loria.fr/site/system.php
2 SPMF: http://www.philippe-fournier-viger.com/spmf/
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SAT4MNR-D SAT4MNR CORON SPMF SAT4MGR

avg. avg. avg. avg. avg.
data (#items, #trans, density) #S time(s) #S time(s) #S time(s) #S time(s) #S time(s)
Audiology (148, 216, 45%) 21 854,82 21 854.87 20 855.01 20 855.00 20 855.00
Zoo-1 (36, 101, 44%) 400 0.23 400 0.27 400 1.35 373 108.60 400 0.71
Tic-tac-toe (27, 958, 33%) 400 0.34 400 0.14 400 0.24 400 0.20 400 0.61
Anneal (93, 812, 45%) 279 337.25 248 405.82 160 591.39 80 724.46 221 461.05
Australian-credit (125, 653, 41%) 298 265.74 278 309.32 251 352.01 220 417.94 263 358.40
German-credit (112, 1000, 34%) 354 149.03 328 212.58 321 206.34 278 294.45 304 272.88
Heart-cleveland (95, 296, 47%) 331 200.28 317 235.79 271 307.57 240 368.21 286 289.28
Hepatitis (68, 137, 50%) 360 140.69 343 170.89 286 284.09 260 331.57 315 228.13
Hypothyroid (88, 3247, 49%) 150 615.13 126 649.22 104 681.52 80 751.23 109 676.03
kr-vs-kp (73, 3196, 49%) 198 504.62 172 556.85 168 552.04 140 627.64 158 583.25
Lymph (68, 148, 40%) 400 6.78 400 19.21 357 131.07 280 316.78 395 37.15
Mushroom (119, 8124, 18%) 400 146.87 389 77.02 400 3.81 360 97.25 354 181.89
Primary-tumor (31, 336, 48%) 400 2.08 400 4.61 400 4.15 379 87.66 400 8.11
Soybean (50, 650, 32%) 400 0.36 400 0.20 400 0.61 380 48.51 400 2.26
Vote (48, 435, 33%) 400 5.43 400 30.46 364 87.56 380 84.82 372 111.06

Total 4790 215.31 4622 235.15 4302 270.58 3870 340.94 4397 271.05

Table 3. Non-Redundant Associations Rules: SAT4MNR vs CORON vs SPMF

more than SPMF. SAT4MNR-D is the best on all the data in terms of the
number of solved configurations and average CPU time, Except for mushroom
data where CORON is better in term of time but SAT4MNR-D solves all the
configurations. Let us remark that for mushroom data, the number of minimal
non redundant association rules is very limited. This explains why SAT4MNR
is worse than CORON on this data. For instance, on anneal data, SAT4MNR
is remarkably efficient. It solves about 100 configurations more than CORON
and about 200 configurations more than SPMF. We can also remark that for
Lymph data SAT4MNR-D solves all the configurations in an average time of 7s
where CORON and SPMF cannot solve all the configurations and they take a
lot of time compared to SAT4MNR-D. More generally, the higher the density of
the data, the better are the performances of SAT4MNR. Interestingly enough,
partitioning the mining, allows to push further the performances of SAT4MNR.
In fact, SAT4MNR-D allows us to obtain better performances i.e., 168 more
solved instances and the average time solving is improved from 235.15 to 215.31.
Unsurprisingly, SAT4MGR, solves less configurations than SAT4MNR. In fact,
the set of minimal non-redundant rules is known to be reduced related to most
general non-redundant ones.

Figure 1 depicts the behavior of the considered association rules mining ap-
proach on two representative data, Anneal and kr − vs − kp. The results are
obtained by varying one parameter, while maintaining the others fixed. When
the minimum support decreases, the time needed to find all the rules increases.
Let us remark that for CORON and SPMF the time increases rapidly compared
to SAT4MNR-D. For anneal data SPMF (resp. CORON) is not able to provide
all non redundant rules when the minimum support is lower than 85%(resp.
65%). In contrast, with SAT4MNR and SAT4MNR-D it is possible to obtain all
rules for all values in the minimum support range. For kr-vs-kp it is important
to note that the time needed to extract rules increases drastically for SPMF and
CORON even if the confidence is higher. For instance, when the minimum sup-
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Fig. 1. Results highlights: Anneal and kr-vs-kp

port goes from 100% to 80% the time is multiplied by at least 10. Such increasing
is very limited for SAT4MNR and SAT4MNR-D.

Finally, in Table 4, we provide the variation of the ratio between the number
of classical (pure) rules, closed, generalized non redundant rules, and the minimal
non-redundant rules for kr-vs-kp data. As we can observe, the number of minimal
non-redundant association rules is smaller than those of generalized ones. The
latter is smaller than closed association rules that is itself smaller than pure ones
especially. For instance, when minimum support is equal to 40, the minimal non-
redundant association rules presents 2.85% from all the classical association rules
where the generalized ones is about 3.90%.

minimum support (%) 40 45 50 55 60 65 70

#Pures/#Closed 7.67 5.68 3.64 2.99 2.46 1.95 1.67

#Closed/#MGR 2.40 2.16 1.95 1.78 1.61 1.46 1.35

#MGR/#MNR 1.94 1.83 1.73 1.63 1.54 1.45 1.38

Table 4. kr-vs-kp : Pure vs Closed vs MNR vs MGR

6 Conclusion and perspectives

In this paper we proposed a novel approach for discovering non-redundant asso-
ciation rules. We show that non-redundant rules with minimum antecedent and
maximum consequences can be captured by modeling this problem into proposi-
tional satisfiability. We demonstrated that our approach is highly declarative and
flexible. Indeed, we have shown that minimal generators can be extracted using
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similar kind of constraints. We have also shown how to catch the non-redundant
rules with minimum antecedent and minimum consequences. The experimental
evaluation shows that our proposed approach achieves better performance than
specialized mining techniques.

As a future work, we plan to address the question of mining most general rules
having adjacent itemsets [18] using satisfiability to have a compact representation
of the set of most general non-redundant rules.
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