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Abstract. Clustering has been extensively studied to deal with differ-
ent kinds of data. Usually, datasets are represented as a n-dimensional
vector of attributes described by numerical or nominal categorical values.
Symbolic data is another concept where the objects are more complex
such as intervals, multi-categorical or modal. However, new applications
might give rise to even more complex data describing for example cus-
tomer desires, constraints, and preferences. Such data can be expressed
more compactly using logic-based representations. In this paper, we in-
troduce a new clustering framework, where complex objects are described
by propositional formulas. First, we extend the two well-known k-means
and hierarchical agglomerative clustering techniques. Second, we intro-
duce a new divisive algorithm for clustering objects represented explicitly
by sets of models. Finally, we propose a propositional satisfiability based
encoding of the problem of clustering propositional formulas without the
need for an explicit representation of their models. Preliminary experi-
mental results validating our proposed framework are provided.

1 Introduction

Clustering is a technique used to recover hidden structure in a dataset obtained
by grouping data into clusters of similar objects. It is derived by several im-
portant applications ranging from scientific data exploration, to information
retrieval, and computational biology (e.g. [1]). Such diversity in terms of ap-
plication domains induces a variety of data types and clustering techniques (see.
[2] for a survey). Indeed, data can be transactional, sequential, trees, graphs,
texts, or even of a symbolic nature [6, 7, 10]. This last kind of data is particularly
suitable for modeling complex and heterogeneous objects usually described by a
set of multivalued variables of different types (e.g. intervals, multi-categorical or
modal) (e.g. [3, 4, 8]). We can also mention conceptual clustering proposed more
than thirty years ago by Michalski [14] and defined as a machine learning task. It
accepts a set of object descriptions (events, facts, observations, ...) and produces
a classification scheme over them. Conceptual clustering not only partitions the
data, but generates clusters that can be summarized by a conceptual description.
As a summary, conceptual and symbolic clustering are twoparadigm proposed to
deal with kinds of data other than those usually described by numerical values.

In today’s data-driven digital era, data might be even more complex and het-
erogenous. Such complex data might represent customers desires or preferences
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collected in different possible ways using surveys and quizzes. As an example,
one can cite configuration systems usually designed to provide customized prod-
ucts satisfying the different requirements of the customer, usually modeled by
constraints or logic-formulas (e.g. [11]). These customers requirements-data or
the data-models provided by the configuration systems are some kind of complex
data that we are interested in. These data can be represented by logic-formulas
(requirements) or by models (the products satisfying the requirements). Data
can also represent more complex entities such as transaction databases. Indeed,
suppose that we collected several transaction databases from stores chain selling
the same products, one can be interested in determining similar stores (clusters)
or stores with the same behavior. This could help the manager of the stores
chain to better define its trade policy. In the two previous examples, data can
be better represented as a set of propositional formulas or as sets of models.

In this paper, we introduce a new clustering framework, where complex ob-
jects are described by propositional formulas. We first extend the two well known
k-means and hierarchical agglomerative clustering techniques. Then, we intro-
duce a new divisive algorithm for clustering objects represented explicitly by
sets of models. Finally, we propose a propositional satisfiability based encoding
of clustering propositional formulas without the need for an explicit representa-
tion of their models. Preliminary experimental results validating our proposed
framework are provided before concluding.

1.1 Propositional Satisfiability

Let P be a countably infinite set of propositional variables. The set of proposi-
tional formulas, denoted FP , is defined inductively starting from P, the constant
⊥ denoting absurdity, the constant > denoting true, We use the greek letters φ,
ψ to represent formulas. A Boolean interpretation I of a formula φ is defined as
a function from P(φ) to {0, 1} (0 for false and 1 for true). A model of a formula
φ is a Boolean interpretation I that satisfies φ (written I � φ), i.e. I(φ) = 1. We
denote the set of models of φ byM(φ). A formula φ is satisfiable (or consistent)
if there exists a model of φ; otherwise it is called unsatisfiable (or inconsistent).

Let φ and ψ be two propositional formulas, we say that ψ is a logical conse-
quence of φ, written φ � ψ, iff M(φ) ⊆ M(ψ). The two formulas φ and ψ are
called equivalent iff φ � ψ and ψ � φ, i.e M(φ) =M(ψ).

A CNF formula is a conjunction (∧) of clauses, where a clause is a disjunc-
tion (∨) of literals. A literal is a propositional variable (p), called positive literal,
or (¬p), called negative literal. The SAT problem consists in deciding whether a
given CNF formula admits a model or not. Another problem related to SAT is
the SAT model enumeration problem. Enumeration requires generating all mod-
els of a problem instance without duplicates. Models enumeration is related to
#SAT, the problem of computing the number of models for a given propositional
formula. Model counting is the canonical #P-complete problem. On the practi-
cal side, for model counting, SampleCount a sampling based approach proposed
by Gomes et al in [9], provides very good lower bounds with high confidence.
Similarly, an efficient model enumeration algorithm has been proposed in [12, 5].
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2 Motivating Example

To motivate our proposed framework, let us consider a simple example of a
car dealer selling different cars bands with several possible options. For each car
brand, several colors and types of fuels are available. The car dealer collected the
preferences of four customers through a survey questionnaire. The first customer
does not want red cars. The second wants a car with a diesel fuel, while the third
wants a red car with gasoline fuel. Finally, the fourth customer prefers brand
Peugeot cars. In addition to these customer desires, we also consider mutual
exclusion constraints (mutex), allowing to express that each car must have only
one color, one type of fuel and one car brand.

To express the different customer desires in propositional logic, we consider
the following propositional variables: r (resp. b) represents red (resp. black)
colors, p (resp. c) represents the Peugeot (resp. Citroen) car brand and d (resp.
g) represents cars with diesel (resp. gasoline) fuel.

The mutex constraints are expressed by the following formula: µ = [(r∧¬b)∨
(b ∧ ¬r)] ∧ [(g ∧ ¬d) ∨ (d ∧ ¬g)] ∧ [(p ∧ ¬c) ∨ (c ∧ ¬p)].

In Figure 1 (left hand side), for each customer ci, we associate a propositional
formula φci expressing its desires. We also provide the set of models satisfying
both the desires of the customer and the mutex constraints (M(φci ∧ µ)). The
presentation of the models follows the variables ordering: r ≺ b ≺ d ≺ g ≺ c ≺ p.
In Figure 1 (right hand side), we give a graphical representation of the preferences
of the four customers. This illustrative example highlights the expressiveness of

Customers c1 c2 c3 c4
φci ¬r d g ∧ r p

M(φci ∧ µ) 010101 011001 010101
010110 011010 011001
011001 101001 100101 100101
011010 101010 100110 101001

100110

100101

010101

011001

101001

101010
011010

010110

Φc3

Φc1

Φc4

Φc2

Fig. 1. Logical and Graphical Representation of Customers Preferences

logic-based data representation while allowing the possibility to define both user
and background constraints.

3 Adapting Standard Clustering Algorithms

In this section, we present our extension of the well-known k-means and ag-
glomerative hierarchical clustering algorithms to handle objects expressed as
propositional formulas. Let us first fix some necessary notations and definitions.
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We use P(k, Φ) to denote the problem of clustering the set of propositional for-
mulas Φ = {φ1, . . . , φn} into a set of k clusters with k 6 n. Let C be a family of
sets over Φ. C is a solution of P(k, Φ) if and only if |C| = k,

⋃
Ci∈C Ci = Φ with

Ci ∩ Cj = ∅ for 1 6 i < j 6 k, and M(
∧
φ∈Ci φ) 6= ∅ for every Ci ∈ C. We say

that a clustering problem P(k, Φ) is consistent if it admits a solution.

3.1 k-Means Algorithm for propositional formulas Clustering

Given a set of n data points in d-dimensional space Rd and a positive integer k,
the k-means algorithm determines a set of k points in Rd, called centers, so as
to minimize an objective function such as the mean squared distance from each
data point to its nearest center. To extend the k-means algorithm to clustering
of objects described by propositional formulas, we need to define,

1. a distance between two formulas;
2. a centroid representing a given cluster;
3. an objective function to optimize.

Let us recall that a propositional formula φ can be equivalently expressed by
its set of modelsM(φ). With this representation in mind, one can consider that
two formula φ1 and φ2 are similar if their set of common modelsM(φ1)∩M(φ2)
is higher with respect to the remaining (distinctive) models M(φ1) \M(φ2) ∪
M(φ2) \ M(φ1). This kind of similarity is related to the well-known contrast
model of similarity proposed in a seminal paper by Tversky [15].

Definition 1 (Tversky [15]). Let a and b be two objects described by two sets
of features A and B respectively. Similarity between a and b, denoted s(a, b), is
defined as:

s (a, b) =
f (A∩B)

f (A∩B) + αf (A−B) + βf (B −A)
α, β>0

The positive coefficients α and β reflects the weights given to the distinctive
features of the two objects a and b. We usually assume that f is a matching
function satisfying the additivity property f(A ∪ B) = f(A) + f(B), whenever
A and B are disjoint. The ratio model defines a normalized value of similarity
such that 0 6 s(a, b) 6 1.

Contrast similarity model is particularly suitable in our context. To extend
Definition 1, we consider the relationship between set operations and logical
connectives. Indeed, the set union (resp. intersection) corresponds to disjunction
(resp. conjunction). The difference between sets can be expressed using both
conjunction and negation connectives, while the symmetric difference between
sets can be expressed using the xor (⊕) logical connective. Indeed, we have
M(φ1) \M(φ2)∪M(φ2) \M(φ1) =M((φ1 ∧¬φ2)∨ (φ2 ∧¬φ1)) =M(φ1⊕φ2).

Using these relationships, we derive the following extension of the ratio
model[16].
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Definition 2. Let a and b be two objects described by two propositional formulas
φ1 and φ2 respectively. Similarity between a and b is defined as:

s (a, b) =
f (φ1 ∧ φ2)

f (φ1∧φ2) + αf (φ1 ∧ ¬φ2) + βf (φ2 ∧ ¬φ1)
α, β>0

In our context, as no distinction is made between the measure of φ1 ∧ ¬φ2
and φ2 ∧ ¬φ1, we derive the following similarity measure.

Definition 3. Let a and b be two objects described by two propositional formulas
φ1 and φ2 respectively. Similarity between a and b is defined as:

s (a, b) =
f (φ1 ∧ φ2)

f (φ1∧φ2) + γf (φ1 ⊕ φ2)
, γ>0

From Definition 2 (resp. Definition 3), instantiating α = β = 1 (resp. γ = 1),
we derive a logic-based variant of the well known Jaccard similarity coefficient
(resp. distance) [13]:

Definition 4. Let a and b be two objects described by two propositional formulas
φ1 and φ2 respectively. Similarity and distance between a and b or between φ1
and φ2 are defined respectively as:

sJ(a, b) = sJ(φ1, φ2) =
f(φ1 ∧ φ2)

f(φ1 ∨ φ2)
and dJ(a, b) = 1− sJ(a, b) = dJ(φ1, φ2)

As mentioned previously, considering the model based representation of propo-
sitional formulas, we define the function f as:

f :

∣∣∣∣FP −→ N
φ 7−→ |M(φ)|

Clearly, the function f satisfies the additive property. Indeed, we have M(φ1 ∨
φ2) = M(φ1) ∪ M(φ2). Computing f involves solving a #P-Complete model
counting problem as discussed in Section 1.1.

Let us now define the representative of a cluster of propositional formulas.

Definition 5. Let Ci be a cluster involving ni formulas {φ1i , φ2i , . . . , φni
}. We

define the cluster representative (also called centroid) OCi of the cluster Ci as:

OCi = φ1i ∧ φ2i ∧ . . . ∧ φni

It is important to note that in our proposed extension, the goal is to group
formulas into consistent clusters. Consequently, the formula representing a given
cluster must be consistent.

We use the classical k-means objective function introduced in Definition 6

Definition 6. Let P(k, Φ) be the problem of clustering a set of propositional
formulas Φ = {φ1, . . . , φn} to k(6 n) clusters C = {C1, . . . , Ck}. The objective
function is defined using Absolute-Error Criterion (AEC):

C∗ = arg min
C

k∑
i=1

∑
φ∈Ci

dJ(φ,OCi) (1)
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Our clustering algorithm of a set of propositional formulas can now be de-
rived from the classical k-means algorithm using the new components (distance,
centroid and objective function) defined above.

3.2 Hierarchical Agglomerative Algorithm for propositional
formulas Clustering

Hierarchical algorithms can behave better than the k-means. The base idea of
hierarchical agglomerative algorithms is to build a dendrogram such that at each
level the two closest clusters are merged. By applying a hierarchical algorithm,
we will ensure that if there are two objects that are closest to each other, they
will necessarily be in the same cluster. In this adaptation, the similarity be-
tween two clusters is identical to the similarity between their representatives.
Similarly to Definition 5, the conjunction of all formulas in a cluster represents
its centroid. To merge clusters, we combine the two clusters with the smallest
centroid distance. Using this adaptation, we can applay a standard hierarchical
agglomerative algorithm on data represented as boolean formulas as illustrated
in figure 2.Note that this algorithm needs at least O(n2) calls to a # SAT oracle.

1
Inconsistency

2/3

4/5

c2 c4 c3c1

dJ

d p g ∧ r¬r

¬r ∧ d

¬r ∧ d ∧ p

Fig. 2. Agglomerative Clustering on the Car Dealer Example

4 Divisive Algorithm for Model Based Representation

As mentioned previously, when we consider the problem of clustering a set of
formulas Φ = {φ1, φ1, . . . , φn} without common model, i.e., Φ ` ⊥, agglomerative
algorithm and k-means can fail to find a clustering with the desired number of
clusters. In the sequel, we propose a top-down hierarchical (or divisive) algorithm
for clustering a set of propositional formulas. Our proposed adaptation makes
use of the well-known minimum hitting sets problem, that we recall.

Definition 7. H is a hitting set of a set of sets Ω if ∀S ∈ Ω, H ∩ S 6= ∅. A
hitting set H is irreducible if there is no other hitting set H ′ s.t H ′ ⊂ H. H is
called minimum hitting set if there is no hitting set H ′ such that |H ′| < |H|.
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Example 1. Let Φ = {φ1, φ2, φ3} be a set of propositional formulas such that
M(φ1) = {m1,m2,m3}, M(φ2) = {m1,m4} and M(φ3) = {m3,m5}. The set
H = {m1,m3} is a minimum and irreducible hitting set of the models of Φ.

In our adaptation, we choose the worst cluster to divide according to the
following quality measure.

Definition 8. Let Ci = {φ1i , . . . , φni
} be a cluster of ni propositional formulas.

We define the quality of Ci as:

Q(Ci) =
|M(φ1i ∧ · · · ∧ φni)|
|M(φ1i ∨ · · · ∨ φni

)|

The quality of a cluster is obtained by extending the similarity measure between
two formulas to a set of formulas. Indeed, a cluster is qualified to be of poor
quality, when its formulas admits a great number of models while sharing a
small number of models. Consequently, the worst cluster is obtained as follows:

C∗i = argmin
Ci∈C

Q(Ci)

Definition 9. Let Φ be a set of propositional formulas and I a Boolean in-
terpretation. We define the subset of formulas of Φ sharing the model I as
S(I, Φ) = {φ ∈ Φ | I � φ}

To build consistent clusters, Algorithm 1 starts by computing a minimum
hitting set H of the set of sets of models of the formulas in Φ (line 1). The main
idea behind our algorithm is to use the models of the computed minimum hitting
set to divide a cluster into several consistent clusters. Each cluster is obtained
by selecting for each model m of the minimum hitting set, the set of formulas
admitting m as a model. In this way, the formulas in the obtained clusters share
at least one model. If the size of the minimum hitting set H is greater than k,
then no clustering is possible, and the algorithm returns an empty set (line 3),
otherwise a consistent clustering can be obtained. In this last case, the algorithm
starts by a clustering C where all the formulas in Φ are grouped into a single
cluster (line 6). We start an iterative top-down divisive process (lines 7-20), until
generating k clusters. At each iteration, we choose a cluster to divide (line 8)
which is one of those with the worst quality (see Definition 8). Then, we build
Ω the set of sets of models of the formulas involved in the selected cluster, while
removing the set of common models M (lines 9-10). A minimum hitting set
H of Ω is then computed (line 11). It is important to note that by removing
the common models M from the models of each formula of the selected cluster,
we avoid the trivial minimum hitting sets of size 1. Now, we use the hitting
set H to divide the chosen cluster C∗i into |H| clusters (line 12). Indeed, for
each model m in H, we associate a cluster Ψm made of formulas of C∗i sharing
the model m. In this way, we maintain the consistency property on each new
cluster Ψm. Now, we substitute in C the cluster of poor quality C∗i with the new
set of clusters (line 18). However, this is only done when the size of the new
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Algorithm 1: Model-Based Divisive Algorithm for Clustering Boolean
Formulas

Input: A set of formulas Φ = {φ1, . . . , φn} and an integer k > 1
Output: A set of clusters C = {C1, . . . , Ck}

1 H ← minHittingSet({M(φ1), . . . ,M(φn)});
2 if (|H| > k) then
3 return ∅ ;
4 end
5 else
6 C ← {Φ};
7 while (|C| ! = k) do
8 C∗i = {φi1 . . . φini

} ← argmin
Ci∈C,|Ci|>1

Q(Ci), . ni = |C∗i |;

9 M =M(φi1 ) ∩ · · · ∩M(φini
);

10 Ω = {M(φi1 ) \M, . . . ,M(φini
) \M};

11 H ← minHittingSet(Ω);
12 ∀m ∈ H, Ψm ← S(m, C∗i );
13 if (|C|+ |H| − 1 > k) then
14 Ψ ← merge({Ψm1 , . . . , Ψm|C|+|H|−1−k

});
15 C ← (C \ C∗i ) ∪ {Ψ} ∪ {Ψm|C|+|H|−k

, . . . , Ψm|H|}
16 end
17 else
18 C ← (C \ C∗i ) ∪ {Ψm1

, . . . , Ψm|H|}
19 end

20 end

21 end
22 C ← eliminateOverlap(C);
23 return C

clustering does not exceed k (line 13); otherwise to obtain exactly k clusters, we
merge (function merge) the first |C| + |H| − (k + 1) of these new clusters (line
14) before applying substitution (line 15). Note that in the divisive step (line
12), a formula can belong to several new clusters. The reason comes from the
fact that a given formula can share several models of the minimum hitting set.
Consequently, a last step is then performed to produce non overlapping clusters
(line 20 - function eliminateOverlap). To do this, for each formula occurring in
several clusters, we keep it in the cluster with the best quality, while removing
it in the remaining clusters. Obviously, depending on applications, overlapping
clusters might be more suitable. In this case, one only need to skip the call to
the overlap elimination function.

Algorithm 1, involves O(n) calls to model enumeration problem (line 1), O(k)
calls to # SAT oracle (line 8) and O(k) calls to minimum hitting set problem
(line 1 and 11).

Let us now gives some interesting properties of our propositional formulas
based divisive algorithm. The first one states the correctness of our algorithm.

Proposition 1. If P(k, Φ) is consistent, then Algorithm 1 produces a clustering.

The proof trivially follows from the previous detailed explanation on how the
algorithm operates.
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The second property allows us to establish that two equivalent formulas might
be located in the same cluster when overlaps between clusters are allowed.

Proposition 2. Let P(k, Φ) be a clustering problem with overlaps, C a clustering
of P(k, Φ) and φ1, φ2 ∈ Φ. If φ1 ≡ φ2 then ∀Ci ∈ C, φ1 ∈ Ci iff φ2 ∈ Ci.

The last property generalizes the previous property to the case of two for-
mulas where one is a logical consequence of the other.

Proposition 3. Let P(k, Φ) be a clustering problem with overlaps, C a clustering
of P(k, Φ) and φ1, φ2 ∈ Φ. If φ1 ` φ2 then ∀Ci ∈ C, if φ1 ∈ Ci then φ2 ∈ Ci.

5 SAT encoding for a Bounded Consistent Clustering

As discussed in the previous section, when the propositional formulas are not
represented by their models, our proposed model based divisive algorithm re-
quires O(n) calls to model enumeration oracle, to compute the set of models of
each formula. Such set of models might be of exponential size in the worst case.
In addition to these limitations, one also need to compute a minimum hitting
set of a set of sets of models (O(k) calls). In this section, we present an alterna-
tive approach that significantly reduces the overall complexity of our Algorithm.
To this end, we introduce a SAT-based encoding that allows to find a bounded
consistent clustering of a given set of propositional formulas.

Let Φ = {φ1, . . . , φn} be a set of propositional formulas and k a positive
integer. To define our encoding, we associate to each propositional variable p
appearing in Φ a set of k fresh propositional variables, denoted p1, . . . , pk. Then,
for every formula φi ∈ Φ and j ∈ {1, . . . , k}, we use φji to denote the for-
mula obtained from φi by replacing each propositional variable p with the fresh
variable pj . The formula φji is used to model the fact that φi is in the jth cluster.

The following formula expresses that each formula in Φ has to be true in at
least one consistent cluster:

n∧
i=1

(

k∨
j=1

φji ) (2)

One can easily see that (2) is satisfiable if and only if Φ can be partitioned
in k consistent clusters. It is worth noting that in a model of (2) a formula can
belong to more than one cluster. To obtain a bounded consistent clustering from
a model m, we only have to consider for each formula φi ∈ Φ a single positive
integer j in the set {1 6 j 6 k | m(φji ) = 1}. This problem can be avoided
by reformulation. To this end, we associate to each formula φi in Φ a set of k
fresh propositional variables, denoted q1φi

, . . . , qkφi
. The variable qjφi

is used to

represent the fact that φi is in the jth cluster by using the following formula:

n∧
i=1

(

k∧
j=1

qjφi
⇔ φji ) (3)
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Then, to express that each formula in Φ belongs to exactly one consistent cluster,
we use the following formula:

n∧
i=1

(

k∑
j=1

qjφi
= 1) (4)

Our second SAT encoding of the bounded consistent clustering problem
P(k, Φ) is defined by the formula PSAT (k, Φ) = (3) ∧ (4). From a model m
of PSAT (k, Φ), a clustering can be easily extracted. Indeed, if m(qjφi

) = true
then φi ∈ Cj otherwise φi 6∈ Cj .

Definition 10. Let Φ = {φ1, . . . , φn}. C is called a minimum consistent clus-
tering of Φ if there is no consistent clustering C′ of Φ such that |C′| < |C].

As we can observe, clustering propositional formulas can be done using Algo-
rithm 1 by replacing the computation of the minimum hitting set with the com-
putation of the minimum consistent clustering (Definition 10) using PSAT (k, Φ).
Similarly to Algorithm 1, Properties 1, 2 and 3 holds.

6 Experimentation

In this section, we carried out an experimental evaluation of the performance of
our divisive and agglomerative algorithms for the clustering of a set of propo-
sitional formulas. Our goal is to assess the feasibility and effectiveness of our
proposed framework.

We performed our experiments on a machine with Intel Core2 Quad CPU of
2.66GHz and 8G of RAM. Our first aim is to compare the performance of our
divisive and agglomerative algorithms. To this end, We consider two datasets
splice, and german-credit1. We consider each data set as a set of transactions,
where each transaction is a formula (a set of models). Consequently, an item is
assimilated to a model.

Figure 3 shows the performances of agglomerative (Algorithm ??) and divi-
sive (Algorithm 1) methods on the problem of clustering transaction databases.
First, our divisive algorithm outperforms the agglomerative algorithm on splice

and german-credit. Nevertheless, as illustrated in section 3.2, the agglomera-
tive algorithm is unable to find a clustering all the time. This is the case on
splice data, where such approach can not provide clustering answer when the
number of desired clusters is less than 84.

To further investigate the expressiveness and the ability of our approach
to scale, we enlarge our experiments of the previous problem by studying the
clustering of a set of formulas resulting from a random-generated poll with 100
to 1000 participants where each participant is invited to report its preferences.
The questions of the poll are organized in four levels. At the first level, the
participant is invited to select its 3 preferred options among 5. According to the

1 https://dtai.cs.kuleuven.be/CP4IM/
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Fig. 3. Model approach: Agglomerative vs Divisive

preferences of the participant, she/he is invited to select other preferences from
the second level and so on until the last level (level 4). For illustration, assume
that in the first level we consider a set S of courses (e.g. Artificial Intelligence,
Data Mining, Databases, Networks and Web Programming). A student selects
three courses from S (level 1). Then, for each selected course, she/he chooses
chapters (level 2), and so on. The preferences of each participant are encoded
as a propositional formula (the resulting formulas have between 567 and 1813
models). Agglomerative approach is not considered since it can not guaranty to
find a clustering solution if it exists.
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Fig. 4. Time vs #Clusters vs #Participants

The time needed to obtain a clustering, Figure 4, does not exceed 100 seconds
for all values of k. This shows that our approach scale well. Finally, we study the
evolution of the time needed to find a clustering when the number of clusters is
fixed to 20 and the number of participants is varied from 100 to 1000 (Figure
4). Here again the time needed is reasonable, i.e., less than 100 seconds.

7 Conclusion et perspectives

In this work we introduced the concept of consistent clustering propositional for-
mulas. We show how well-known k-means, agglomerative and divisive algorithms



12 Abdelhamid Boudane, Said Jabbour, Lakhdar Sais, and Yakoub Salhi

can be adapted to this new framework. We then, propose two new solutions. The
first one called model based, assume that the set of models of each formula are
given. We then show how the hitting set notion is used to efficiently give a con-
sistent clustering. In the second part, we propose an encoding into SAT of the
divisive algorithm that make a linear number of calls to a #SAT oracle to count
the set of models during the clustering steps. As a future work, we plan to ex-
plore other similarity measure, to define intuitive distance between propositional
formulas. Improving our divisive algorithm by exploiting efficiently the overlaps
deserves further investigation.
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