Non-volatile electric control of spin-orbit torques in an oxide two-dimensional electron gas - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Nature Communications Année : 2023

Non-volatile electric control of spin-orbit torques in an oxide two-dimensional electron gas

Résumé

Spin-orbit torques (SOTs) have opened a novel way to manipulate the magnetization using in-plane current, with a great potential for the development of fast and low power information technologies. It has been recently shown that two-dimensional electron gases (2DEGs) appearing at oxide interfaces provide a highly efficient spin-to-charge current interconversion. The ability to manipulate 2DEGs using gate voltages could offer a degree of freedom lacking in the classical ferromagnetic/spin Hall effect bilayers for spin-orbitronics, in which the sign and amplitude of SOTs at a given current are fixed by the stack structure. Here, we report the non-volatile electric-field control of SOTs in an oxide-based Rashba-Edelstein 2DEG. We demonstrate that the 2DEG is controlled using a back-gate electric-field, providing two remanent and switchable states, with a large resistance contrast of 1064%. The SOTs can then be controlled electrically in a non-volatile way, both in amplitude and in sign. This achievement in a 2DEG-CoFeB/MgO heterostructures with large perpendicular magnetization further validates the compatibility of oxide 2DEGs for magnetic tunnel junction integration, paving the way to the advent of electrically reconfigurable SOT MRAMS circuits, SOT oscillators, skyrmion and domain-wall-based devices, and magnonic circuits.
Fichier principal
Vignette du fichier
Manuscript_Grezes.pdf (765.84 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03687463 , version 1 (03-06-2022)

Licence

Paternité

Identifiants

Citer

Cécile Grezes, Aurélie Kandazoglou, Maxen Cosset-Cheneau, Luis Arche, Paul Noël, et al.. Non-volatile electric control of spin-orbit torques in an oxide two-dimensional electron gas. Nature Communications, 2023, 14 (2590), ⟨10.1038/s41467-023-37866-2⟩. ⟨hal-03687463⟩
91 Consultations
96 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More