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Abstract—Unlike traditional time series, the action sequences
of human decision making usually involve many cognitive pro-
cesses such as beliefs, desires, intentions and theory of mind, i.e.
what others are thinking. This makes predicting human decision
making challenging to be treated agnostically to the underlying
psychological mechanisms. We propose to use a recurrent neural
network architecture based on long short-term memory networks
(LSTM) to predict the time series of the actions taken by the
human subjects at each step of their decision making, the first
application of such methods in this research domain. In this
study, we collate the human data from 8 published literature of
the Iterated Prisoner’s Dilemma comprising 168,386 individual
decisions and postprocess them into 8,257 behavioral trajectories
of 9 actions each for both players. Similarly, we collate 617
trajectories of 95 actions from 10 different published studies of
Iowa Gambling Task experiments with healthy human subjects.
We train our prediction networks on the behavioral data from
these published psychological experiments of human decision
making, and demonstrate a clear advantage over the state-of-the-
art methods in predicting human decision making trajectories in
both single-agent scenarios such as the Iowa Gambling Task and
multi-agent scenarios such as the Iterated Prisoner’s Dilemma. In
the prediction, we observe that the weights of the top performers
tends to have a wider distribution, and a bigger bias in the
LSTM networks, which suggests possible interpretations for the
distribution of strategies adopted by each group. 1

Index Terms—Behavioral Modeling, LSTM, Recurrent Neural
Network, Time Series Forecasting

I. INTRODUCTION

Predictive modeling involves the use of statistics to predict
outcomes of “unseen” data, i.e. not used in model parameter-
ization, in real world phenomena, with wide applications in
economics, finance, healthcare, and science. In statistics, the
model that closely approximates the data generating process
might not necessarily be the most successful method to predict
real world outcomes [2], [3]. Yarkoni & Westfall [4] argue that
the near-total focus of the field of psychology on explaining the
causes of behavior have little or unknown capability to predict
future human behaviors with any appreciable accuracy, despite
the intricate theories of psychological mechanism these research
have endowed. Methods like regression and other mechanistic
models, even with high complexity, can still be outperformed
by biased and psychologically implausible models, due to
overfitting. In this work, we aim to bridge this gap, by providing

1The data and codes to reproduce the empirical results can be accessed and
reproduced at https://github.com/doerlbh/HumanLSTM. A extended version
of this work is to appear in [1].

machine learning methods to accurately predict game-based
human behavior.

While useful for the researchers to breakdown neuropsy-
chologically interpretable variables, these analyses only pro-
vide very constrained predictive guidelines, and fall short
to modeling more complicated real-world decision making
scenarios such as social dilemmas. As a popular framework to
expose tensions between cooperation and defection in a game-
like manner, the Iterated Prisoner’s Dilemma [5] has been
studied by computer scientists, economists, and psychologists
with different approaches. Beyond cognitive modeling of the
effects of game settings and past experiences on the overall
tendency to cooperate (or invest in the monetary games) [6],
[7], [8] proposed a logistic regression model to directly predict
individual actions during the Iterated Prisoner’s Dilemma. This
logistic regression model is also the state-of-the-art in predicting
action sequences in this task.

As another commonly used game-based task, albeit non-
social, the Iowa Gambling Task [9] is usually modeled as
a synthesis of various psychological processes and cognitive
elements [10], [11]. In the Iowa Gambling Task, the participant
needs to choose one out of four card decks (named A, B,
C, and D), and can win or lose money with each card when
choosing a deck to draw from [9]. The challenge of this kind
of game in computational modeling is that the reward payoffs
of each action arms are not necessarily Gaussian: all decks
have a consistent wins and variable losses where one of the
popular schemes, the scheme 1 [12], has a more variable losses
for deck C than another one, the scheme 2 [13].

In both settings, one active line of research is to clone and
simulate behavioral trajectories with reinforcement learning
models that incorporate learning-related parameters inspired
by the neurobiological priors of the human brain [14]–[16].
While offering discriminative and interpretable features in
characterizing the human decision making process, these
reinforcement learning models exhibit limited capability to
predict the human action sequences in complicated decision
making scenarios such as the Iterated Prisoner’s Dilemma [17].

To date, we can say that the existing approaches suggested
to generally describe human decision behavior are based on
linear models. However, it is known that human behavior can
be highly nonlinear; thus, we propose in this paper to study
human behavior decision making based on the well-known
long short-term memory networks (LSTM) to forecast the
human decision making in game-like psychological tasks like



Cooperate Defect
Cooperate (R, R) (S, T)
Defect (T, S) (P, P)

TABLE I: Payoff codes of the Iterated Prisoner’s Dilemma.
In this game, each agent has two actions: Cooperate and Defect,
and can receive one of the four possible rewards: R (Reward),
P (Penalty), S (Sucker), and T (Temptation), based on the
actions taken by its opponent (the first row) and itself (the first
column). The reward tuple would then reads (reward to the
agent itself, reward to the agent’s opponent).

the Iowa gambling task and the Iterated Prisoner’s Dilemma.
To the best of our knowledge, this is the first study that applies
recurrent neural networks to directly predict sequences of
human decision making process. We believe this work can
facilitate the understanding of how human behave in online
game setting.

A. Background

1) The Iterated Prisoner’s Dilemma (IPD): The Iterated
Prisoner’s Dilemma (IPD) can be defined as a matrix game
G = [N, {Ai}i∈N , {Ri}i∈N ], where N is the set of agents,
Ai is the set of actions available to agent i with A being the
joint action space A1×· · ·×An, and Ri is the reward function
for agent i. A special case of this generic multi-agent Iterated
Prisoner’s Dilemma is the classical two-agent case (Table I).
In this game, each agent has two actions: cooperate (C) and
defect (D), and can receive one of the four possible rewards:
R (Reward), P (Penalty), S (Sucker), and T (Temptation). In
the multi-agent setting, if all agents Cooperates (C), they all
receive Reward (R); if all agents defects (D), they all receive
Penalty (P); if some agents Cooperate (C) and some Defect (D),
cooperators receive Sucker (S) and defector receive Temptation
(T). The four payoffs satisfy the following inequalities: T >
R > P > S and 2R > T + S. The Prisoner’s Dilemma
is a one round game, but is commonly studied in a manner
where the prior outcomes matter to understand the evolution
of cooperative behaviour from complex dynamics [18].

2) The Iowa Gambling Task (IGT): The original Iowa
Gambling Task (IGT) studies decision making where the
participant needs to choose one out of four card decks (named
A, B, C, and D), and can win or lose money with each card
when choosing a deck to draw from [9], over around 100
actions. In each round, the participants receives feedback about
the win (the money he/she wins), the loss (the money he/she
loses), and the combined gain (win minus lose). In the Markov
Decision Process setup, from initial state I, the player select
one of the four deck to go to state A, B, C, or D, and reveals
positive reward r+ (the win), negative reward r− (the loss)
and combined reward r = r+ + r− simultaneously. Decks
A and B by default is set to have an expected payout (-25)
lower than the better decks, C and D (+25). For baselines, the
combined reward r is used to update the agents. There are two
major payoff schemes in IGT. In the traditional payoff scheme,
the net outcome of every 10 cards from the bad decks (i.e.,
decks A and B) is -250, and +250 in the case of the good

decks (i.e., decks C and D). There are two decks with frequent
losses (decks A and C), and two decks with infrequent losses
(decks B and D). All decks have consistent wins (A and B to
have +100, while C and D to have +50) and variable losses
(summarized in Table II, where scheme 1 [12] has a more
variable losses for deck C than scheme 2 [13]).

II. MATERIALS AND METHODS

A. Recurrent Neural Networks and Long-Short-Term-Memory
Networks

Recurrent neural networks are a class of artificial neural
networks that captures a notion of time. It has both conventional
edges that map from input nodes to the recurrent nodes, and
recurrent edges that map recurrent nodes across adjacent time
steps, including cycles of length one that are self-connections
from a node to itself [19]. It can be formulated as:

ht = σ(Whxxt +Whhht−1 + bh) (1)

where at time t, the recurrent layer receives input xt and
computes the neurons’ hidden states ht given the input xt, last
hidden states ht−1 and the parameters including a kernel Whx,
a recurrent kernel Whh and a bias term bh. The activation
σ can be in different forms, with sigmoid function to be a
conventional choice. The dynamics of the recurrent network
can be considered as a deep neural network by unfolding the
computing graph into layers with shared weights. Then we
can train the unfolded network across many time steps with
backpropagation with algorithm slike Backpropagation through
time (BPTT) [20].

Long Short Term Memory (LSTM) was later introduced to
overcome the vanishing gradient problem of recurrent networks
[21]. The model resembles traditional recurrent neural networks,
but introduces a series of gating mechanisms to adaptively keep
a memory. It introduces four additional variables, the input
gate g, the input state i, the forget gate f, and the output gate
o. The full formulations are as follows:

gt = φ(Wgxxt +Wghht−1 + bg) (2)

it = σ(Wixxt +Wihht−1 + bi) (3)

ft = σ(Wfxxt +Wfhht−1 + bf ) (4)

ot = σ(Woxxt +Wohht−1 + bo) (5)

st = gt � it + st−1 � ft (6)

ht = φ(st)� ot (7)

where the activation functions are either sigmoid σ or tanh φ,
and � is pointwise mulitplication. A cell state st is computed
based on the previous cell state st−1 the input gate g, the input
state i and the forget gate f. Then, the hidden state of the LSTM
layer is computed by pointwise multiplying the activated cell
state with the output gate.



Decks win per card loss per card expected value scheme
A (bad) +100 Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) -25 1
B (bad) +100 Infrequent: -1250 (p=0.1) -25 1
C (good) +50 Frequent: -25 (p=0.1), -75 (p=0.1),-50 (p=0.3) +25 1
D (good) +50 Infrequent: -250 (p=0.1) +25 1
A (bad) +100 Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) -25 2
B (bad) +100 Infrequent: -1250 (p=0.1) -25 2
C (good) +50 Infrequent: -50 (p=0.5) +25 2
D (good) +50 Infrequent: -250 (p=0.1) +25 2

TABLE II: Payoff schemes of the Iowa Gambling Task. In this game, the subject needs to choose one out of four card decks
(named A, B, C, and D), and can win or lose money with each card when choosing a deck for over around 100 actions. In
each round, the subject receives feedback about the win (the money he/she wins), the loss (the money he/she loses), and the
combined gain (win minus lose). Decks A and B by default is set to have an expected combined payout (-25) lower than the
better decks, C and D (+25). All decks have consistent wins (A and B to have +100, while C and D to have +50) and variable
losses, with different variabilities in the two schemes.

Fig. 1: Prediction Framework with a Recurrent Network:
at each time step t, the historical action from the last time step
xt is fed into the recurrent neural networks as input, and the
network outputs a predicted action xt+1 for the following time
step and updates its hidden state ht.

B. Prediction with Recurrent Networks

The prediction framework of the recurrent neural networks
is illustrated in Figure 1: at each time step, the historical action
from the last time step is fed into the recurrent neural networks
as input, and the network outputs a predicted action for the
following time step. In the single-agent setting (i.e. the human
subject makes his or her decision without interactions with
other players), the input and output of the recurrent neural
networks both consist of the player’s actions. In the multi-agent
setting (i.e. the human subject makes his or her decision based
on not only his or her own prior actions and rewards, but also
the actions performed by other participants in the game), the
input features consist of the actions performed by all parcipants
in the game in the last time step. In both scenarios, we code the
actions into a multi-dimensional one-hot representation before
serving to the prediction network.

C. Neural Network Architecture and Training Procedures

We construct a neural network model that consist of multiple
layers of LSTM networks with bias terms, followed by a ReLU
activation function and a fully connected layer to map from
the LSTM network output to a Softmax activation function,
from which a prediction label is collected with an argmax
operation. We implement the model in the standard library
of PyTorch framework. We train the models for 200 and 400

epochs, respectively, for the Iterated Prisoner’s Dilemma and the
Iowa Gambling Task. We use the Adam [22] as the optimizer
for the model and set the learning rate to be 1e-3 and a L2
regularization weight to be 1e-5.

D. Evaluation of the Iterated Prisoner’s Dilemma

We collate the human data comprising 168,386 individual
decisions from many human subjects experiments [6], [7],
[23]–[28] that use real financial incentives and transparently
convey the rules of the game to the subjects. As a a standard
procedure in experimental economics, subjects anonymously
interact with each other and their decisions to cooperate or
defect at each time period of each interaction are recorded.
They receive payoffs proportional to the outcomes in the same
or similar payoff as the one we used in Table I. Following the
similar preprocessing steps as [8], we are able to construct the
comprehensive collection of game structures and individual
decisions from the description of the experiments in the
published papers and the publicly available data sets. This
comprehensive dataset consists of behavioral trajectories of
different time horizons, ranging from 2 to 30 rounds, but most
of these experimental data only host full historical information
of at most past 9 actions. We select only those trajectories
with these full historical information, which comprised 8,257
behavioral trajectories of 9 actions each for both players.

We compare with two baselines. The first baseline is a
logistic regression taking into account a group of handcrafted
features such as the game settings and historical actions [8]. It is
reported as the state-of-the-art in the task of predicting human
decision making in the task of Iterated Prisoner’s Dilemma.
Similar to the Iowa Gambling Task prediction, we include
the standard vector autoregression model [29] as our second
baseline. The order of the autoregression model is selected
based on Akaike information criterion (AIC) [30]. Similar to the
empirical evaluation in Iowa Gambling Task, here we still chose
our prediction network to be a two-layer LSTM network with
5 neurons at each layers for the Iterated Prisoner’s Dilemma
prediction. We randomly split the dataset by 80/20 as the
training set and the test set, and evaluated it with randomized
cross-validation.



Fig. 2: Results for predicting the Iterated Prisoner’s
Dilemma: Shown here are the statistics computed from the
prediction by a two-layer LSTM networks of five neurons at
each layer. The first time step is given as the prior, and we
record the prediction of the next 8 time steps in a 9-step Iterated
Prisoner’s Dilemma game. (A) Cooperation Rate: The LSTM
model characterizes human cooperation much better than the
baselines in the Iterated Prisoner’s Dilemma. (B) Individual
Trajectories: The mean squared error of predicting indivdiual
trajectories in the Iterated Prisoner’s Dilemma.

E. Evaluation of the Iowa Gambling Task

The raw data and descriptions of Iowa Gambling Task can
be downloaded at [31]. It consists of the behavioral trajectories
of 617 healthy human subjects performing the Iowa Gambling
Task. The data set consists of original experimental results
from 10 different studies, administrated with different lengths
of trials (95, 100 and 150 actions). We pool all the subjects
together and truncated all the actions to be 617 trajectories of
95 actions.

We compare our LSTM model with the standard vector
autoregression model [29]. The order of the autoregression
model is selected based on Akaike information criterion (AIC)
[30]. The autocorrelation is trained on all available sequences
in the training set. Same as our LSTM network, autoregression
model takes a multi-dimensional one-hot-based feature tensor
(of the previous time steps) as its observation window, and
then outputs the next predicted action. For empirical evaluation,
we chose our prediction network to be a two-layer LSTM
network with 5 neurons at each layers. This is to showcase
the effectiveness of our recurrent neural networks even if the
parameter set is very small. We randomly split the dataset by
80/20 as the training set and the test set, and evaluated it with
randomized crossvalidation.

III. RESULTS

A. Modeling the Iterated Prisoner’s Dilemma

The tendency to cooperation is an important subject of
interest in Iterated Prisoner’s Dilemma, because it characterizes
the core trade-off between self-interest and social benefit.
The cooperation rate is also the metric used by the state-
of-the-art paper in predicting Iterated Prisoner’s Dilemma
sequences [8]. We record the cooperation rate to evaluate
how close the behavioral trajectory predicted by a model
captures the ground truth of the human decision making
sequence. As shown in Figure 2A, the autoregression model

Fig. 3: Results for predicting the Iowa Gambling Task:
Shown here are the statistics computed from the prediction by
a two-layer LSTM networks of five neurons at each layer. The
first time step is given as the prior, and we record the prediction
of the next 94 time steps in a 95-step Iowa Gambling Task
game. (A) Learning Curve: Both the LSTM and autoregression
model capture the learning dynamics of the human subjects
in the Iowa Gambling Task as measure by the evolution of
the rate of selection of the better actions. (B) IGT Prediction
of LSTM and autoregression. (C) Individual Trajectories: The
mean squared error of predicting individual actions in the Iowa
Gambling Task.

overestimates the cooperation rate of human decision making
by a significant amount. The state-of-the-art model in this task,
the logistic regression model [8] performs a better job than
the autoregression model, but still falls short at capturing the
subtle dynamics of human cooperation over time. Unlike the
baselines, our LSTM model perfectly predicts the cooperation
rate, although it is only trained to predict the individual actions
instead of the cooperation rate.

Given the same intuition from the Iowa Gambling Task,
a model that predicts the cooperation rate well doesn’t
guarantee it captures the correct action strategies used by each
individual trajectories. As shown in Figure 2B, LSTM has a
lower average MSE of 0.12 across all prediction time steps,
beating the two baselines, autoregression (0.18) and logistic
regression (0.75), by a significant amount. In addition, the
prediction error by the three models offers several surprising
observations: (1) Although the logistic regression model (the
state-of-the-art) predicts the population-wise cooperation rate,
it fails heavily at predicting individual actions; (2) Despite the
significant overestimation of population cooperation rate, the
autoregression model maintained a relatively low prediction
error with a similar trend as the best model, our LSTM model;
(3) During the intermediate phase (the 4th or the 5th round)
of the Iterated Prisoner’s Dilemma game, the prediction error
appears to be the largest for the logistic regression model, but
the smallest for the autoregression and LSTM models.

We believe that predicting the Iterated Prisoner’s Dilemma is
a much more difficult task than predicting the Iowa Gambling
Task due to its additional complications from the multi-agent



Fig. 4: Model complexity analysis in the Iterated Prisoner’s
Dilemma: Shown here are the cooperation rates computed from
the prediction by the LSTM networks versus the real human
data. The first time step is given as the prior, and we record
the prediction of the next 8 time steps in a 9-step Iterated
Prisoner’s Dilemma game. The columns indicates the number
of layers in the LSTM networks, ranging from 1, 2 and 3.
The rows indicates the number of neurons in each layer of the
LSTM networks, ranging from 5, 10, 50 and 100.

and social dilemma settings. The clear advantage of the LSTM
model over the baseline in this task, demonstrated the merit that
the recurrent neural network better captures realistic human
decision making and offers reliable prediction of individualized
human behaviors.

B. Modeling the Iowa Gambling Task

As in the payoff schemes from Table II, the Iowa Gambling
Task has two actions that are more preferable (giving more
rewards) than the other two. In psychology and neuroscience
literature of Iowa Gambling Task, the percentage of choosing
these two “better” actions is usually reported as a function
of time, and used to characterize the learning progress of the
human subjects. We record this metric to evaluate how well
the behavioral trajectory predicted by a model captures the
ground truth of the human decision making sequence. As shown
in Figure 3A, both the LSTM and the autoregression model
capture the learning dynamics of the human subjects well.

Despite a comparable performance in predicting the overall
trend of the learning progress. The capability of a prediction
model to capture the action strategy during each individual
game is a more challenging objective. For instance, it is
possible for a bad prediction model to forecast every individual

Fig. 5: Model complexity analysis in the Iowa Gambling
Task (learning): Shown here are the percentage of choosing
the better decks (i.e. the learning curves) computed from the
prediction by the LSTM networks versus the real human data.
The first time step is given as the prior, and we record the
prediction of the next 94 time steps in a 95-step Iowa Gambling
Task game. The columns indicates the number of layers in the
LSTM networks, ranging from 1, 2 and 3. The rows indicates
the number of neurons in each layer of the LSTM networks,
ranging from 5, 10, 50 and 100.

trajectories incorrectly given their corresponding heterogeneous
prior history, while maintaining a perfect prediction for the
composition of actions in the population sense. Therefore, we
report the mean squared error (MSE) between the predicted
sequences and the ground truth in order to understand the
performance of the models in the individual sense.

As shown in Figure 3C, the overall MSE drops as the
observation window increases (i.e. the model has seen more
historical time series). The LSTM network predicts the in-
dividual trajectories better, with the lowest average MSE of
0.011 across all prediction time steps, beating the MSE by
autoregression, 0.015, by a significant amount since the first
few prediction time steps. As shown in Figure 3B, the LSTM
network learns to mimic the overall learning trend of the Iowa
Gambling Task in each decks.

If we compare the Iowa Gambling Task with the Iterated
Prisoner’s Dilemma, we observe that the information asymme-
try caused by the unknown human opponent complicates the
prediction task in the Iterated Prisoner’s Dilemma, such that
the prediction error doesn’t follow a monotonic decrease when
the observation window increases, as we observe in the Iowa
Gambling Task.



Fig. 6: Model complexity analysis in the Iowa Gambling
Task (actions): Shown here are the percentage of choosing
individual action arms computed from the prediction by the
LSTM networks versus the real human data. The first time step
is given as the prior, and we record the prediction of the next
94 time steps in a 95-step Iowa Gambling Task game. The
columns indicates the number of layers in the LSTM networks,
ranging from 1, 2 and 3. The rows indicates the number of
neurons in each layer of the LSTM networks, ranging from 5,
10, 50 and 100.

C. Model complexity analysis

To investigate the effect of model complexity for the
prediction tasks, we vary the number of neurons from 5, 10,
50 to 100, and vary the number of the LSTM layers from 1,
2 to 3. We replicate the aforementioned experiments on the
Iterated Prisoner’s Dilemma and the Iowa Gambling Task.

In the Iterated Prisoner’s Dilemma, we observe that, the
LSTM networks ranging from 1 layer of 5 neurons to 3 layers
of 100 layers all predict the human cooperation rate very well,
as shown in Figure 4. This might suggest that, despite a multi-
agent game, Iterated Prisoner’s Dilemma has a much simpler
strategy to learn from.

Unlike the Iterated Prisoner’s Dilemma, as shown in Figure
5, the LSTM networks ranging from 1 layer of 5 neurons to 3
layers of 100 layers vary in their similarity of the learning curve

Fig. 7: Model complexity analysis in the Iowa Gambling
Task (prediction error): Shown here are the mean squared
error of indivual action arms between the prediction by the
LSTM networks and the real human data. The first time step
is given as the prior, and we record the prediction of the next
94 time steps in a 95-step Iowa Gambling Task game. The
columns indicates the number of layers in the LSTM networks,
ranging from 1, 2 and 3. The rows indicates the number of
neurons in each layer of the LSTM networks, ranging from 5,
10, 50 and 100.

in choosing the better actions to that of the human data. More
specifically, we observe that the human data usually have a dip
in the early rounds before catching up, while the wider and
deeper networks tend to adopt a simpler learning curve with
a smaller dip. In a close look at the actual prediction of each
action dimension, we observe that across many models, there
is a overall under-prediction of deck A and over-prediction of
deck B, the two bad decks, as in the Figure 6. The deck A
has a reward distribution of a five-modal distribution which is
very wide, while the deck B has a rare probability of assigning
a single large value which is very narrow. We suspect that
the different distributions of the reward functions might be a
reason behind the misprediction in our neural networks.

This is further supported by the Figure 7, where the mean
squared error (MSE) of the predictions of individual actions
are presented for all 12 model architectures. We observe that
smaller networks (narrower and shallower ones) predicts the
action of choosing decks C and D perfectly (the good decks),
while having some mispredictions in decks A and B (the bad
decks) better. We note that the reward distributions of the good
decks are more Gaussian than the bad decks, whose reward
distributions are more extreme, with very large values at very



Fig. 8: Learned representations and game performance
in the Iterated Prisoner’s Dilemma: Shown here are the
distribution of weights learned from top 25% and bottom
25% performers selected based on the cumulative rewards in
the historical records of human subjects playing the Iterated
Prisoner’s Dilemma.

Fig. 9: Learned representations and game performance in
the Iowa Gambling Task: Shown here are the distribution of
weights learned from top 25% and bottom 25% performers
selected based on the cumulative rewards in the historical
records of human subjects playing the Iowa Gambling Task.

rare probabilities. In our case, the smaller networks can capture
the Gaussian priors of the good decks very well, but don’t
have the expressive power to learn the more stochastic bad
decks well as bigger networks do.

D. Interpreting good and bad performers

To further investigate the interpretability of the trained LSTM
networks, we subset the human subject data into two groups.
The first group, which we call “top performers”, are the
players that yield the top 25 percent scores in the games.

The second, group, which we call “bottom performers”, are the
players that yield the bottom 25 percent scores in the games.
As in the previous investigations, we choose our prediction
network to be a two-layer LSTM network with 5 neurons
at each layers. We train the networks for 100 epochs and
50 epochs, respectively, for the Iowa Gambling Task and the
Iterated Prisoner’s Dilemma. For each experiment, we trained a
population of 100 randomly initialized instances of the LSTM
networks and record their network weights.

We perform the (one-sample or two-sample) Kolmogorov-
Smirnov test for goodness of fit [32] on the parameter weight
distribution of the top and bottom performers.

In predicting the Iterated Prisoner’s Dilemma, we present
the distribution of the weights in the trained LSTM networks.
We don’t observe such a difference, as shown in Figure 8.
These observation is supported by the Kolmogorov-Smirnov
test: W 1

ih (0.022, p=0.041), W 1
hh (0.009, p=0.070), b1ih (0.023,

p=0.217), b1ih (0.008, p=1.000) for layer 1; and W 1
ih (0.011,

p=0.013), W 1
hh (0.006, p=0.424), b1ih (0.024, p=0.188), b1hh

(0.024, p=0.188) for the layer 2.
In predicting the Iowa Gambling Task on the other hand, we

observe that the weights of the top performers tends to have a
wider distribution, and a bigger bias in the LSTM networks
(Figure 9). These observation is supported by the Kolmogorov-
Smirnov test: W 1

ih (0.092, p=1.77e-59), W 1
hh (0.069, p=4.46e-

82), b1ih (0.134, p=5.04e-32), b1ih (0.131, p=1.63e-30) for layer
1; and W 1

ih (0.078, p=4.82e-107), W 1
hh (0.059, p=3.95e-60),

b1ih (0.082, p=4.24e-12), b1hh (0.074, p=4.69e-10) for layer 2.
The wider distribution of weights, that is significant for the

Iowa Gambling Task and marginal but pointing in the same
direction of the Iterated Prisoner’s Dilemma, is suggestive
of possible interpretations. One interesting possibility is that
the better performers represent a larger number of alternative
solutions which may be encompassed within the expressivity
of the LSTM; this hypothesis is of course speculative for the
moment, but we believe it may be eventually tested with further
experimentation.

IV. DISCUSSION

As far as we are aware, this is the first work to predict
the behavioral trajectories of the Iowa Gambling Task. In the
Iterated Prisoner’s Dilemma prediction task, [8] is the state-of-
the-art with their logistic regression model. In our evaluations,
our proposed LSTM model and autoregresssion baseline both
significantly outperforms [8].

Moreover, our analysis of LSTM’s biases and weights
points to possible ways for describing alternative solution
strategies leading to significantly different outcomes. Beyond
interpretative approaches however, good predictors of the
human decision making trajectories can help government
develop better resource allocation programs, help companies
develop better recommendation systems, and help clinicians
develop intervention plans for mental health treatments. As
a comparison, reinforcement learning models are good at
mechanistically capturing the psychological activities. The prior
work [17] provides a negative result for using reinforcement



learning models to predict human decision making, which
suggests the necessity of an additional behavioral predictor
model is in demand, and can serve useful purposes in many
real-world application that involves predictive modeling. We
observe in this predictive modeling investigation a possibility
that these behavioral predictors might capture characteristics
of human decision making process that are missed in reward-
driven models, partially because in behavioral experimental
settings, the reward representations, usually monetary, can be
an over-simplification of the complex underlying mechanisms
of human minds.

In summary, we introduce an LSTM network to predict the
action sequences of human decision making process in the
Iowa Gambling Task and the Iterated Prisoner’s Dilemma. As
the first attempt to utilize the recurrent neural networks to
directly predict human action sequences in these behavioral
tasks, our approach matches existing baselines in predicting
both the population trends and the individual strategies, in the
Iowa Gambling task, and then significantly outperforms the
state-of-the-art in the Iterated Prisoner’s Dilemma task. We find
the latter particularly noteworthy given that Iterated Prisoner’s
Dilemma is a cognitively more complex task, as it involves
multiple agents trying to predict each other’s behavior. Next
steps include extending our evaluations to human behavioral
trajectories in other sequential decision making environments
with more complicated and mixed incentive structure, such
as Diplomacy, Poker and chess playing, as well as efforts to
implement alternative recurrent models more readily amenable
to interpretation from the neuroscientific and psychological
perspectives.
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