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Abstract

Swarmalators are systems of agents which are both self-propelled particles and
oscillators. Each particle is endowed with a phase which modulates its interaction
force with the other particles. In return, relative positions modulate phase syn-
chronization between interacting particles. In the present model, there is no force
reciprocity: when a particle attracts another one, the latter repels the former. This
results in a pursuit behavior. In this paper, we derive a hydrodynamic model of this
swarmalator system and show that it has explicit doubly-periodic travelling-wave
solutions in two space dimensions. These special solutions enjoy non-trivial topol-
ogy quantified by the index of the phase vector along a period in either dimension.
Stability of these solutions is studied by investigating the conditions for hyperbol-
icity of the model. Numerical solutions of both the particle and hydrodynamic
models are shown. They confirm the consistency of the hydrodynamic model with
the particle one for small times or large phase-noise but also reveal the emergence
of intriguing patterns in the case of small phase-noise.
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1 Introduction

We investigate a new collective dynamics model based on the swarmalator concept de-
scribed below. Collective dynamics refers to the coherent behavior of self-propelled agents
subject to mutual interactions such as attraction, repulsion and alignment. Examples in
nature are provided by birds [70], fish [47, 55], ants [5, 16], bacteria [20], sperm [18],
colloidal rollers [9]. How coherence emerges is still the subject of an intense literature
in which mathematical models play a central role. In many models, self-propulsion is
accounted for by imposing the agents a constant speed, identical for all agents, such as
in the Vicsek model [87] and its many variants [2, 10, 11, 14, 15, 17, 54, 56] (see also the
review [88]). By contrast, a constant speed is not assumed in the Cucker-Smale model [19]
and its variants [40, 52, 51, 72]. The synchronization of oscillator populations shares many
similar features with collective dynamics. The paradigmatic model of oscillator synchro-
nization is the Kuramoto model [64] which has stimulated an intense research activity
(see e.g. the review [1]).

Among collective dynamics models, swarmalators have recently attracted increasing
attention. Swarmalators are systems of agents that are simultaneously self-propelled
particles and oscillators. In addition to position and velocity, they are endowed with a
phase which may synchronize with the neighbors’ phases. There is a two-way coupling
between positions and phases: phase differences between neighboring particles modulate
interaction forces and relative positions influence phase synchronization. The concept
and terminology was introduced in [76] and further developed in [49, 57, 58, 63, 65,
69, 74, 75] (see also the review [73]). Swarmalator models have been applied to e.g.
the collective swimming of nematode swarms [79] or the intercellular organization of
multicellular organisms [61]. Related earlier models associate phases with rotations of
self-propulsion speeds [27, 67, 68, 77] but, in these models, there is only a one way coupling
of phases on positions.

Topological states are solutions which have non-trivial topology quantified by some dis-
crete topological index (such as a winding number). Topological states have appeared first
in the quantum Hall effect and gradually in other applications such as topological insula-
tors [53, 80]. Non-trivial topology endows the system with increased robustness against
perturbations because breaking the topological state requires a jump of the topological
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index and thus, a finite amount of energy. This is the so-called ’topological protection’
effect. In collective dynamics, topological states have been investigated in recent work
[26, 81, 83, 84, 89] (see also the review [82]). Swarmalator models also support topological
states, such as the “phase-wave states” of [76].

In the present paper, we propose a new swarmalator model and demonstrate that it
possesses travelling-wave solutions having non-trivial topology. This model differs from
the above cited swarmalator models because the phase-modulated force does not enjoy
reciprocity: the force acted on a particle by another one is equal to the force acted by the
latter on the former, and not the opposite as it should if reciprocity was enforced. The
result is a pursuit behavior: when two particles interact, according to their relative phases
one particle chases the other one or vice versa (see Fig. 1). Another difference with [76]
is that our model is second order: the self-propulsion component of the velocity obeys a
time-continuous version [36] of the Vicsek model [87], namely, particles’ self-propulsion
velocities tend to align with their neighbors up to some noise. Lastly, the model includes
noises in both self-propulsion velocity and phase, in contrast to most of the above cited
literature.

Our methodology is based on studying a continuum version of the swarmalator model.
In general, there are three stages of description of particle systems. The finest level of
detail is provided by the particle system itself, which, for swarmalators, consists of a
differential system for the positions, velocities and phases of all the particles involved. The
next stage is given by the kinetic model where the system is described by the probability
distribution of the particles in the space of positions, velocities and phases. The passage
between particle and kinetic models requires letting N → ∞ where N is the number
of particles. Its mathematical investigation has given rise to a large number of works,
(see e.g. [12, 21, 85] in classical kinetic theory, [6, 8, 37] for the Vicsek model and [50]
for the swarmalators). Kinetic models of collective dynamics have been proposed in e.g.
[4, 78]. For kinetic models derived from the Vicsek model, existence of solutions [42, 46],
phase transitions [29, 30, 44], numerical methods [45, 48] and relations to models with no
velocity normalization [7] have been studied.

The final stage which gives rise to the coarsest level of details but provides the highest
tractability consists of continuum models. These models are obtained from kinetic ones
through an asymptotic limit involving a small parameter representing the ratio of the mi-
croscopic scale (e.g. the range of particle interactions) and the macroscopic one (typically
the size of the observed region). This approach originates from the kinetic theory of gases
(see reviews in [12, 21]). The continuum version of the Viscek model was derived via this
asymptotic procedure for the first time in [28] (see also [43]) and gave rise to the new
“Self-Organized Hydrodynamics (SOH)” model. This derivation provides closed formulas
for the parameters of the hydrodynamic model as functions of those of the particle and
kinetic model. Later, [62] showed the mathematically rigorous validity of the asymptotic
limit. Another, more intuitive approach [3, 4, 86] was developed earlier and led to a
different model, the “Toner-Tu” model. As interesting as it can be, the Toner-Tu model
has no mathematically proven connection with the Vicsek particle model, and there are
no rigorous formulas relating the parameters of the two models. There have been several
extensions of [36]. In relation to the present work, let us mention [28] which includes
attraction-repulsion forces, and [24, 31, 32, 33] where alignment of body attitudes (in-
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stead of mere self-propulsion velocity) is considered and shown to support topological
states [26]. Local existence of solutions for the SOH model was proved in [34, 90] and
numerical simulations can be found in [28, 39, 71].

In this paper, we first derive the continuum version of the swarmalator model under
consideration. The derivation strongly relies on [28, 36, 43] and details will be given in an
appendix. The resulting model, called “Swarmalator Hydrodynamics (SH)” consists of
three evolution equations for the particle density, mean self-propulsion velocity and mean
phase. We will also consider the case where the phase noise is small which simplifies
the system and leads to the “Noiseless Swarmalator Hydrodynamics (NSH)”. We first
analyze the conditions under which the NSH system is hyperbolic. We then specialize the
SH system to two spatial dimensions and show the existence of doubly-periodic travelling-
wave solutions. These solutions present a non-trivial topology as evidenced by the index
of the phase vector field being non-zero. We will then present numerical experiments
which have three objectives: (i) the validation of the SH and NSH models as macroscopic
descriptions of the swarmalators model; (ii) the numerical verification of the hyperbolicity
conditions and (iii) the exploration and comparisons of the patterns obtained by the
particle and SH or NSH models in relation with their topology. In forthcoming papers
[22, 23], we will explore other classes of travelling-wave solutions at both the particle and
hydrodynamic level, investigate whether they enjoy topological protection and decipher
the mechanisms of topological phase transitions when they occur.

The main innovations of this work are: (i) the introduction of a new swarmalator
model involving force non-reciprocity; (ii) the derivation and hyperbolicity analysis of a
system of continuum equations for this model, named the SH system; (iii) the derivation
of a class of topologically non-trivial doubly-periodic travelling-wave solutions to the SH
system (iv) the numerical validation of the SH model against the particle model and of its
hyperbolicity, and the exploration of the patterns appearing with both models in relation
with their topology.

The organization of this paper is as follows. In Section 2, we introduce the swarmalator
system and derive the associated kinetic equations. Some technical points are deferred to
Appendix 6. Section 3 presents the derivation of the hydrodynamic model, the analysis
of its hyperbolicity and the determination of a special class of explicit travelling-wave
solutions. Proofs of these results are collected in Appendices 7, 8 and 9. Numerical
experiments are presented in Section 4 for the particle model and its hydrodynamic limit.
Details on the numerical methods are deferred to Appendix 10. The videos of the outcome
of the simulations can be found in the supplementary material. The list and description
of the supplementary videos can be found in Appendix 11. Finally perspectives are drawn
in Section 5.

2 Particle and kinetic models

In a first subsection, we present the particle swarmalator model on which this study is
based. In a second subsection, we provide a kinetic formulation of this model in the limit
of a large number of particles.
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2.1 The particle model

We consider N particles labeled k = 1, . . . , N , having position Xk ∈ Rn. We suppose
these particles are self-propelled with constant and uniform self-propulsion speed c0 and
direction of self-propulsion vk ∈ Sn−1. Additionally we assume that each particle is en-
dowed with a phase φk ∈ R/(2πZ). Neighboring particles interact via alignment of their
self-propulsion direction to a local average self-propulsion direction v̄k on the one hand
and via an attractive-repulsive potential W depending on their positions and phases.
The self-propulsion speed is also subject to Brownian noise. The phases of neighboring
particle are subject to synchronization to a local average phase φ̄k and some noise. Fi-
nally, the particles are subject to a confinement potential V . Specifically, the system for
(Xk, vk, φk)k=1,...,N is written

dXk

dt
= c0vk − γ∇xW (Xk, φk), (2.1)

dvk = Pv⊥k ◦
[(
ν v̄k −∇xV (Xk(t))

)
dt+

√
2DdBk

t

]
, (2.2)

dφk = −ν ′ sin(φk − φ̄k) dt+
√
2D′ dB

′k
t , (2.3)

the self propulsion speed c0, the alignment frequency ν, the synchronization frequency ν ′,
the velocity noise D and the phase noise D′ being positive and given. The confinement
potential V : Rd → [0,∞) with V → ∞ as |x| → ∞ is also given. The terms dBk

t and dB
′k
t

describe brownian noises on Rn and R respectively. The symbol ◦ in (2.2) means that the
stochastic differential equation is interpreted in the Stratonovitch sense, a condition for
the vector vk to remain on Sn−1 [59].

The attractive-repulsive potential W : Rd × R/(2πZ)× [0,∞) → R takes the form

W (x, φ, t) =
1

N

N∑
j=1

ω(|x−Xj(t)|) sin(φj(t)− φ), (2.4)

with a given sensing function ω: [0,∞) → R such that x 7→ ω(|x|) is smooth on Rn and
normalized, i.e.

∫
Rn ω(|x|) dx = 1. The given constant γ can be either positive or negative

and specifies the intensity of the attractive-repulsive force. The contribution of the j-th
particle to the force −γ∇xW (x, φ, t) depends on the phase difference φj(t) − φ. This
contribution is in the direction of −∇x[ω(x−Xj(t))] if φj(t) is slightly ahead of the phase
φ and γ > 0 or if φj(t) is slightly behind the phase φ and γ < 0. It is in the opposite
direction in the converse cases. Thus, the attractive or repulsive character of this force
depends on the relative phases and on the sign of γ.

In (2.2), for v ∈ Sn−1, Pv⊥ stands for the orthogonal projection onto {v}⊥ and has
expression Pv⊥ = Id − v ⊗ v where Id is the n × n identity matrix and ⊗ stands for the
tensor product. To define v̄k we first introduce the current

Jk(x, t) =
1

N

N∑
j=1

ζ(|x−Xj(t)|) vj(t), (2.5)

with again, a given sensing function ζ: [0,∞) → R. Then, we let

v̄k =
( Jk
|Jk|

)
(Xk(t), t), (2.6)
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assuming that the denominator does not vanish.
We proceed analogously to define φ̄k. We first introduce

Lk(x, t) =
1

N

N∑
j=1

η(|x−Xj(t)|) eiφj(t), (2.7)

with a given sensing function η: [0,∞) → R. Then, we define φ̄k(t) ∈ R/(2πZ) by

eiφ̄k(t) =
( Lk
|Lk|

)
(Xk(t), t), (2.8)

again, assuming that the denominator does not vanish. Here again, dB
′k
t stands for

independent brownian motions in R.
System (2.1)-(2.3) is an extension of the time-continuous version of the Vicsek model

[87] proposed in [36]. Indeed, let us temporarily assume that there is neither external
potential (V = 0) nor phase noise (D′ = 0) and that all particle phases are initially equal.
Then the attraction-repulsion potential vanishes (W = 0), the phases remain constant
and the position and velocities follow the time-continuous version of the classical Vicsek
model [36]:

dXk

dt
= c0vk, (2.9)

dvk = Pv⊥k ◦
[
ν v̄k dt+

√
2DdBk

t

]
. (2.10)

Eq. (2.9) describes motion in the direction of vk at constant speed c0 as a consequence of
self-propulsion. The first term at the right-hand side of (2.10) tends to align vk with the
mean direction of the neighbors v̄k computed through (2.5), (2.6) at rate ν. The second
term of (2.10) generates a brownian motion of vk on the sphere and models velocity noise
with noise intensity D (see e.g. [27, 28, 31, 32, 39, 43] for references on this model and
some of its variants).

When added, the potential V biases the alignment direction in the direction of −∇xV ,
as shown in (2.2). This takes into account for instance, external cues in the agents’
navigation. With the assumption that V (x) → ∞ as x → ∞, the potential confines the
particles in a bounded region of space. Now, if the phases are not constant and/or if
phase noise is present (D′ ̸= 0), the attraction-repulsion potential W turns on. It may
seem strange that W appears in (2.1) and not in (2.2) like V . We provide a justification
of it in Appendix 6.1 through an overdamped limit. Now, W biases particle motion in
the direction of −γ∇xW . It endows the particles with a pursuit behavior illustrated in
Fig. 1 in the case of a pair interaction. The dynamics of the phases follows (2.3) which
is conceptually similar to (2.10) if phases φk are associated with unit vectors eiφk in the
complex plane C. Indeed, (2.3) just states that this vector is subject to alignment with
the mean phase vector of the neighbors eiφ̄k at rate ν ′ and to noise with noise intensity D′.

This system describes agents that swarm (through velocity alignment) and which,
at the same time, are oscillators subject to synchronization (through phase alignment).
Moreover, swarming and synchronization are coupled through space as motion in space
depends on velocity and phase while swarming and synchronisation depend on space
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through the target velocity and target phase. Thus, this system belongs to the class
of “swarmalators”, a term coined in [76]. Note that in the present system, the natural
oscillator frequency is supposed to be zero. There is no conceptual objection to include a
non-zero natural frequency but the patterns generated by the system and further explored
could be different. This will be investigated in future work. Swarmalators have recently
stimulated an intense research, see e.g. [49, 57, 58, 63, 65, 69, 74, 75].

F1X1 X2 F2

eiϕ2
eiϕ1

1

Figure 1: Pursuit dynamics between two particles located at X1 and X2. The force
F1 = −γ∇xW (W1, φ1) acting on X1 is equal to the force F2 = −γ∇xW (W2, φ2) acting
on X2. Both are given by F1 = F2 =

γ
2
ω′(|X1 −X2|) X2−X1

|X2−X1| sin(φ2 −φ1) and are depicted

by black arrows. The phases of the two particles are symbolized by the unit vectors eiφk ,
k = 1, 2 in the complex plane which are depicted in blue. The unit circle is drawn in
red. The current situation which occurs for γω′(|X1 −X2|) > 0 diplays the pursuit of X2

by X1. The converse would occur if γω′(|X1 −X2|) < 0.

2.2 The kinetic model

Our goal is now to derive a continuum version of the swarmalator model (2.1)-(2.3) in
the form of hydrodynamic-type equations. To do so, it is convenient to introduce an
intermediate description between the particle and hydrodynamic models, the so-called
kinetic model.

We begin with introducing the empirical measure of the particles in the space Rn ×
Sn−1 × R/(2πZ) by

µN(x, v, φ, t) =
1

N

N∑
j=1

δ(Xj(t),vj(t),φj(t))(x, v, φ), (2.11)

where δ(Xj(t),vj(t),φj(t))(x, v, φ) is the Dirac delta located at (Xj(t), vj(t), φj(t)). This is a
random measure. In the limitN → ∞, under appropriate conditions which we will assume
satisfied, µN converges in the weak sense to a deterministic measure f(x, v, φ, t) dx dv dφ
where f satisfies the following kinetic model posed on Rn × Sn−1 × R/(2πZ):

∂tf +∇x ·
[(
c0v − γ∇xWf (x, φ)

)
f
]
+∇v ·

[
Pv⊥
(
ν v̄f −∇xV (x)

)
f
]

+ν ′ ∂φ
[
sin(φ̄f − φ)f

]
= D∆vf +D′∂2φf, (2.12)

with Wf given by

Wf (x, φ, t) =

∫
Rn×Sn−1×[0,2π]

ω(|y − x|) sin(ψ − φ) f(y, w, ψ, t) dy dw dψ. (2.13)
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To define v̄f and φ̄f , we first define

Jf (x, t) =

∫
Rn×Sn−1×[0,2π]

ζ(|y − x|)w f(y, w, ψ, t) dy dw dψ, (2.14)

Lf (x, t) =

∫
Rn×Sn−1×[0,2π]

η(|y − x|) eiψ f(y, w, ψ, t) dy dw dψ. (2.15)

Then, we let

v̄f (x, t) =
( Jf
|Jf |

)
(x, t), eiφ̄f (x, t) =

( Lf
|Lf |

)
(x, t). (2.16)

We note that the operators ∇v, ∇v·, ∆v are respectively the spherical gradient, divergence
and Laplace-Beltrami operators. Finally, by the fact that the empirical measure (2.11) is
a probability measure, f satisfies the normalization condition∫

Rn×Sn−1×[0,2π]

f(x, v, φ, t) dx dv dφ = 1. (2.17)

A hydrodynamic scaling detailed in Appendix 6.2, eventually leads to the following
modified kinetic problem, which depends on the scaling parameter ε:

∂tf
ε +∇x ·

[(
v − γ∇xUfε(x, φ)

)
f ε
]
−∇v ·

[
Pv⊥∇xV (x) f ε

]
=

1

ε

{
D∇v ·

[
− kPv⊥ufε f

ε +∇vf
ε
]
+D′ ∂φ

[
− k′ sin(αfε − φ)f ε + ∂φf

ε
]}
,(2.18)

Uf (x, φ, t) = |ℓf (x, t)| sin(αf − φ), (2.19)

uf =
jf
|jf |

, jf (x, t) =

∫
Sn−1×[0,2π]

w f(x,w, ψ, t) dw dψ, (2.20)

eiαf =
ℓf
|ℓf |

, ℓf (x, t) =

∫
Sn−1×[0,2π]

eiψ f(x,w, ψ, t) dw dψ, (2.21)

with k = ν
D

and k′ = ν′

D′ . The parameter ε ≪ 1 encodes the ratio of the microscopic
scale, i.e. the typical distance or time over which particle response to interactions takes
place, and the macroscopic scale, i.e. the typical size or duration of the experiment. The
hydrodynamic model is obtained as the ε → 0 limit of this system. It describes how the
macroscopic scale is influenced by the microscopic dynamics on average and is developed
in the next section.

3 The hydrodynamic model

In a first subsection, we derive the hydrodynamic model by letting ε → 0 in the kinetic
model (2.18)-(2.21). Details are given in Appendix 7. In a second subsection, we simplify
the hydrodynamic model by assuming small phase noise, and we study the resulting
model.
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3.1 Derivation of the hydrodynamic model

We being with introducing the von-Mises distributions: for u ∈ Sn−1 and α ∈ R/(2πZ),
we let

Mu(v) =
1

Z
ekv·u, Z =

∫
Sn−1

ekv·u dv, (3.1)

Nα(φ) =
1

Z ′ e
k′ cos(φ−α), Z ′ =

∫
[0,2π]

ek
′ cos(φ−α) dφ. (3.2)

We note that Z does not depend on u but only on k and likewise, Z ′ does not depend on
α but only on k′.

Then, we have the formal theorem, whose proof can be found in Appendix 7.

Theorem 3.1 Suppose that there is a smooth solution f ε to the kinetic model (2.18) for
all ε > 0 and that this solution converges smoothly as ε→ 0 to a function f 0. Then,

f 0(x, v, φ, t) = ρ(x, t)Mu(x,t)(v)Nα(x,t)(φ), (3.3)

where ρ, u and α are functions from Rn× [0,∞) to [0,∞), Sn−1 and R/(2πZ) respectively,
which satisfy the following systems of partial differential equations:

∂tρ+∇x ·
[
ρ(c1u+ bρ∇xα)

]
= 0, (3.4)

∂tu+
[
(c2u+ bρ∇xα) · ∇x

]
u+ Pu⊥∇x(Θ log ρ+ κV ) = 0, (3.5)

ρ
(
∂tα +

[
(c1u+ b′ρ∇xα) · ∇x

]
α
)
−Θ′ ∇x ·

(
ρ∇xρ

)
= 0, (3.6)

where the coefficients c1, c2, b, b
′, Θ, Θ′ and κ are given in Appendix 7 and have the

following properties:

� c1: [0,∞) → [0, 1), k 7→ c1(k) is an increasing function of k with c1(0) = 0 and
limk→∞ c1(k) = 1 [43].

� c2: [0,∞) → (−1, 1), k 7→ c2(k) is a function of k such that c2(0) = 0 and
limk→∞ c2(k) = 1. Furthermore, for small and large k, we have 0 < c2(k) <
c1(k) [43].

� Θ = Θ(k) = k−1, κ = κ(k) = n−1
k

+ c2(k) (see Appendix 7).

� Θ′, b and b′ are functions of k′ and γ which have the opposite sign to γ (see Ap-
pendix 7).

Remark 3.1 Numerical simulations in dimension n = 2 [71] suggest that c2: [0,∞) →
[0, 1), k 7→ c2(k) is an increasing function of k and that 0 < c2(k) < c1(k), ∀k ∈ (0,∞).
But a rigorous proof of these properties is still lacking.

Remark 3.2 Because of (2.17), ρ satisfies the normalization condition∫
Rn

ρ(x, t) dx = 1. (3.7)
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In the remainder of this paper, we will assume that k is small or large enough so that
the property 0 < c2(k) < c1(k) is guaranteed.

Formula (3.3) relies on the following lemma, whose proof can be found in [36]. Defining

Q(f) = D∇v ·
[
− kPv⊥uf f +∇vf

]
+D′ ∂φ

[
− k′ sin(αf − φ)f + ∂φf

]
, (3.8)

we have :

Lemma 3.2 (i) We can write

Q(f) = D∇v ·
[
Muf∇v

( f

Muf

)]
+D′ ∂φ

[
Nαf

∂φ

( f

Nαf

)]
. (3.9)

(ii) Defining

D(f) =

∫
Sn−1×[0,2π]

Q(f)
f

Muf Nαf

dv dφ, (3.10)

we have

D(f) = −
∫
Sn−1×[0,2π]

Muf Nαf

[
D
∣∣∣∇v

( f

Muf Nαf

)∣∣∣2 +D′
∣∣∣∂φ( f

Muf Nαf

)∣∣∣2] dv dφ ≤ 0.

(3.11)
(iii) Let f = f(v, φ). Then, the following assertions are equivalent:

(a) Q(f) = 0,
(b) D(f) = 0
(c) ∃(ρ, u, α) ∈ [0,∞)× Sn−1 × R/(2πZ) such that

f(v, φ) = ρMu(v)Nα(φ). (3.12)

We note that Eq. (2.18) can be written

T (f ε) =
1

ε
Q(f ε), (3.13)

with
T (f) = ∂tf +∇x ·

[(
v − γ∇xUf (x, φ)

)
f
]
−∇v ·

[
Pv⊥∇xV (x) f

]
, (3.14)

being the transport operator. Lemma 3.2 and Formula (3.13) suggest that we could
modify the collision operator (3.9) and introduce the relaxation (BGK-type) operator

QR(f) = D
(
ρfMufNαf

− f
)
, (3.15)

with uf and αf given by (2.20), (2.21) and ρf by

ρf (x, t) =

∫
Sn−1×[0,2π]

f(x,w, ψ, t) dw dψ, (3.16)

and consider the analogous perturbation problem to (3.13), namely

T (f ε) =
1

ε
QR(f

ε). (3.17)
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It can be easily shown that Lemma 3.2 (ii) and (iii) still holds with (3.11) replaced by

D(f) = −D
∫
Sn−1×[0,2π]

Muf Nαf

(
ρf −

f

Muf Nαf

)2
dv dφ ≤ 0. (3.18)

Then, the following theorem holds

Theorem 3.3 Theorem 3.1 still holds for Eq. (3.17), but with different expressions of
the constants involved. Their expressions can be found in Appendix 7.

Kinetic Eq. (3.17) can be given an interpretation in terms of an interacting particle
system following a jump process, aka a Piecewise Deterministic Markov Process (PDMP).
This interpretation is given in Appendix 6.3.

We now make comments on the hydrodynamic model (3.4)-(3.6). Again, let us tem-
porarily assume that there is no external potential (V = 0), no phase noise (Θ′ = 0,
see Appendix 8.1) and that the phases are initially constant (α|t=0 independent of x).
Then, α remains constant in time (and independent of x) and the equations for ρ and u
reduce to

∂tρ+∇x · (c1ρu) = 0, (3.19)

∂tu+ c2(u · ∇x)u+
Θ

ρ
Pu⊥∇xρ = 0, (3.20)

|u| = 1, (3.21)

where we have highlighted in (3.21) the fact that u (the average self-propulsion direction)
is a normalized vector. This model is the continuum version of the Vicsek model derived
in [36], referred to as the Self-Organized Hydrodynamics (SOH). Eq. (3.19) is the mass
conservation (or continuity) equation for the fluid density ρ. It shows that the fluid
velocity c1u establishes along the average self-propulsion direction u and has norm c1.
Hence, the fluid speed is less than the particle speed (whose value is 1 after scaling) and
this is because the direction of particle velocities is spread around u according to the von
Mises distribution (3.1). Eq. (3.20) is akin to the momentum conservation equation in
the isothermal Euler equation of gas dynamics. Indeed, the first two terms correspond to
the material derivative of u and are balanced by a pressure force −Θ∇xρ. However, we
can spot several differences. The first one is the normalization condition (3.21) which has
no counterpart in the Euler equation and which gives rise to the projection operator Pu⊥
in factor of the pressure term. Indeed, this projection is needed to ensure consistency with
the constraint (3.21). Another difference is that the material derivative does not involve
the fluid velocity c1u but a different velocity c2u since c2 ̸= c1. This feature makes the
model non Galilean-invariant, but this is no surprise because the particle model itself is not
Galilean-invariant: there is a preferred frame where the particle speed is 1. The quantity
c2 is the speed at which information propagates among the agents for them to update
their velocity in response to density gradients. We noted that, fairly generally, we have
c2 < c1. The fact that c2 ̸= c1 will be key to the existence of topological travelling-wave
solutions discussed in the next section.

Compared with the SOH model, the full model involves the additional equation (3.6)
for the average phase α(x, t). Naturally, only spatial gradients of α influence the dynamics
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of ρ and u (as only differences of phases influence the particle dynamics) and their influence
is the same in Eqs. (3.4) and (3.5): it adds the same term bρ∇xα to both the fluid
velocity c1u and the information velocity c2u. This reflects the influence of the attraction-
repulsion potential which, at the particle level, adds to the self-propulsion velocity a
vector whose orientation depends on the differences (i.e. gradients) of the phases and on
the sign of γ (which controls that of b as stated in the theorem). The phase equation (3.6)
is a balance equation similar to the velocity equation (3.5). The material derivative of α
combines c1u and the contribution of ρ∇xα as in (3.4) but intriguingly, this contribution
is weighted by a different coefficient b′ compared to Eqs. (3.4), (3.5). Finally the material
derivative is balanced by a diffusive term of the density ρ. However, note that Θ′ may
have either signs as well as γ. Finally, the external potential appears in the velocity
equation (3.5) and biases the mean alignment direction u (or its material derivative)
consistently with what it does in the particle model. The full model (3.4)-(3.6) will be
referred to as “Swarmalator Hydrodynamics” (SH).

3.2 Small noise limit in the phase equation

In this section, we neglect the noise in the phase equation, i.e., we make k′ → ∞. It has
been numerically observed that the most interesting patterns are obtained in this regime.
Indeed, phase gradients increase coherence between the particles through the pursuit
mechanism (see Fig. 1). On the opposite, phase noise, which contributes to equalizing
the phases, destroys this coherence.

We have the following lemma, the proof of which can be found in Appendix 8.1.

Lemma 3.4 In the limit k′ → ∞, we have

b→ −γ, b′ → −γ, Θ′ → 0. (3.22)

In this limit, the macroscopic system becomes (assuming ρ ̸= 0):

∂tρ+∇x ·
[
ρ(c1u+ bρ∇xα)

]
= 0, (3.23)

∂tu+
[
(c2u+ bρ∇xα) · ∇x

]
u+ Pu⊥∇x(Θ log ρ+ κV ) = 0, (3.24)

∂tα +
[
(c1u+ bρ∇xα) · ∇x

]
α = 0, (3.25)

We note that the contributions of ρ∇xα are now weighted by the same coefficient b
in all three material derivatives (there was a different coefficient b′ for the phase equation
in the general SH (3.4) - (3.6)). Consequently, in (3.25), the phase is transported by the
fluid velocity as defined from (3.23), i.e. c1u+ bρ∇xα.

In the remainder of this paper, we will focus on this system, further referred to as the
“Noiseless Swarmalator Hydrodynamics” (NSH).

Taking the gradient of (3.4) and introducing z = ∇xα, we find that (ρ, u, z) satisfies
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the following system:

∂tρ+∇x ·
[
ρ(c1u+ bρz)

]
= 0, (3.26)

∂tu+
[
(c2u+ bρz) · ∇x

]
u+ Pu⊥∇x(Θ log ρ+ κV ) = 0, (3.27)

∂tz +∇x

[
(c1u+ bρz) · z

]
= 0, (3.28)

∇x ∧ z = 0, (3.29)

where ∇x ∧ z is the exterior derivative of z if z is identified to a differential form, i.e.
∇x ∧ z is the antisymmetric matrix with entries (∇x ∧ z)ij = ∂xizj − ∂xjzi. Eq. (3.29)
is a structural constraint that says that z is a gradient, namely that there exists α such
that z = ∇xα. Eq. (3.28) preserves this structural constraint as the exterior derivative of
a gradient is always zero. Now, the relation between the NSH System (3.23)-(3.25) and
System (3.26)-(3.29) is expressed in the following lemma, the proof of which is obvious.

Lemma 3.5 (i) Let (ρ, u, α) be a solution of the NSH System (3.23)-(3.25). Then,
(ρ, u, z) with z = ∇xα is a solution of System (3.26)-(3.29).
(ii) Conversely, let (ρ, u, z) be a solution of System (3.26)-(3.29). Suppose z0 = z|t=0

satisfies ∇x ∧ z0 = 0. Let α0 be a solution of ∇xα0 = z0 and let α be a solution of

∂tα + (c1u+ bρz) · z = 0, α|t=0 = α0.

Then, (ρ, u, α) is a solution of the NSH System (3.23)-(3.25).

We investigate the hyperbolicity of System (3.26)-(3.29) in the case V = 0. Consider
a uniform steady state of density ρ0, velocity u0 and phase gradient z0 (note that for
this study, we ignore the normalization condition (3.7)). In view of Lemma 3.5, such a
steady-state corresponds to a solution (ρ0, u0, α0) of the NSH System (3.23)-(3.25) with

α0 = α0(x, t) = z0 · x− (c1u0 + bρ0z0) · z0 t. (3.30)

In other words, a uniform steady-state solution for System (3.26)-(3.29) is a travelling-
wave solution of the NSH System (3.23)-(3.25). We take the spatial Fourier transform of
the linearized system to (3.26)-(3.29) and denote by ξ the Fourier variable and τ = ξ/|ξ|
its direction. Using frame indifference, we introduce a reference frame (e1, . . . , en) such
that u0 ∈ Span{e1}, z0 ∈ Span{e1, e2} and ξ ∈ Span{e1, e2, e3}. Then, we introduce the
angles δ ∈ [−π, π), θ ∈ [0, π], ϕ ∈ [−π, π) such that

u0 = e1, z0 = |z0| (cos δ e1 + sin δ e2), τ = sin θ cosϕ e1 + sin θ sinϕ e2 + cos θ e3. (3.31)

In other words, δ is the polar angle of z0 in the frame (e1, e2) and (θ, ϕ) are the spherical
angles of τ in (e1, e2, e3). This geometric setting is illustrated in Figure 2. Now, we have

Lemma 3.6 In this Lemma, we make V = 0.
(i) If z0 = 0 or z0 ∥ u0 and if c1− c2 ̸= 2|b|ρ0|z0|, System (3.26)-(3.29) is hyperbolic about
(ρ0, u0, z0).
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Figure 2: Geometric setting of the hyperbolicity analysis

� If |z0| ≠ 0, the eigenvalue (propagation speed)

λ1 = (c2 + bρ0|z0|) sin θ cosϕ,

is of multiplicity at least n − 2. The other three eigenvalues are simple and are
the real roots of a cubic equation. In some special cases, one of these roots can
coincide with λ1, in which case it has multiplicity n− 1. In the general case, λ1 has
multiplicity equal to n− 2.

� If |z0| = 0, w.l.o.g. we can choose θ = π/2. Then, the eigenvalues are (generically):

∗ λ1 = c2 cosϕ of multiplicity n − 2 corresponding to propagation of the compo-
nents of the velocity normal to both u0 and ξ,

∗ λ2 = c1 cosϕ of multiplicity 1 corresponding to propagation of phase perturba-
tions,

∗ a pair of simple eigenvalues

λ± =
1

2

(
(c1 + c2) cosϕ±

√
(c1 − c2)2 cos2 ϕ+ 4c1Θsin2 ϕ

)
,

corresponding to the intertwining of the density perturbation and the component
of the velocity perturbation along Pu⊥0 ξ.

(ii) If z0 ̸= 0 and z0 ̸∥ u0, there are two constants C1 and C2 with 0 < C1 < C2, depending
on c1, c2 and Θ, such that for all ρ0|b||z0| ∈ (0, C1) ∪ (C2,∞), there exists values of
the angle δ between u0 and z0 such that System (3.26)-(3.29) is not hyperbolic about
(ρ0, u0, z0).

The proof of this Lemma can be found in Appendix 8.2.

Remark 3.3 (i) In the case z0 = 0, the eigenvalues λ1 and λ± are the eigenvalues of the
SOH model (3.19), (3.20) [34]. The phase equation only adds the extra eigenvalue λ2. In
this case, no eigenmode depends on the coupling constant b.
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(ii) The condition that c1−c2 ̸= 2|b|ρ0|z0| is purely technical. In this case, there is a double
real eigenvalue which is not explicit. Thus, the dimension of the corresponding eigenspace
is not known and we cannot guarantee hyperbolicity. However, this is an isolated value of
|b|ρ0|z0| and so, we may state that generically, the problem is hyperbolic when z0 ∥ u0.
(iii) As soon as z0 ̸∥ u0 and ρ0|b||z0| ie either small or large, there are configurations
(ρ0, u0, z0) that lead to hyperbolicity loss. The proof in Appendix 8.2 shows that this loss
happens when the angle between u0 and z0 is close to π/2. So, there is no contradiction
with the hyperbolicity result when z0 ∥ u0. Although we do not know if hyperbolicity is lost
at intermediate values of ρ0|b||z0|, we may expect to observe instabilities as soon as the
angle between u0 and z0 is sizeable.

In the next section, we will consider the NSH model and derive several classes of
explicit solutions in dimension n = 2.

3.3 Doubly periodic travelling-wave solutions in dimension n = 2

In this section, we restrict ourselves to dimension n = 2. We let (x1, x2) be the cartesian
coordinates of a point x ∈ R2 and (e1, e2) be the cartesian coordinate basis. We denote
by (u1, u2) the two coordinates of the self-propulsion velocity u in this basis. We recall
that u is a normalized vector, i.e.

u21 + u22 = 1. (3.32)

We assume a spatial domain Ω = (0, 1)2 with periodic boundary conditions. Then, we
have the following

Proposition 3.7 (i) Travelling-wave solutions: let (m, p) ∈ Z2 and let U ∈ S1 be ar-
bitrary. Then, the following is a periodic travelling-wave solution of the NSH system
(3.23)-(3.25) (with V = 0) in Ω satisfying the normalization condition (3.7):

ρ = 1, (3.33)

u = U, (3.34)

α = 2π (px1 +mx2)− λt+ α0, (3.35)

λ = 2πc1(pU1 +mU2) + 4π2b(p2 +m2), (3.36)

where U = U1e1 + U2e2 and α0 ∈ R is an arbitrary constant.
(ii) Stationary solutions with non-constant phase: let (p,m) ∈ Z2 \ {(0, 0)} be such that√

p2 +m2 ≤ c1
2π|b| . (3.37)

Then there exist two vectors (if the inequality in (3.37) is strict) or a unique vector (if
there is equality in (3.37)) U ∈ S1 such that

pU1 +mU2 = −2πb

c1
(p2 +m2). (3.38)

For these two choices of U (respectively unique choice of U), then λ = 0 and the solution
(3.33)-(3.35) is a stationary solution.
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(iii) Stationary solutions with constant phase: If (p,m) = (0, 0), then λ = 0 and α = α0

is a constant. Then the solution (3.33)-(3.35) is a stationary solution for any choice of
U ∈ S1.

The proof of this theorem is given in Appendix 9. These periodic solutions can easily
be generalized to arbitrary dimensions. They are also solutions to the SH model (3.4)-(3.6)
if in Prop. 3.7, we change b into b′.

We note that when x1 or x2 increases by one (i.e. one period), the phase α is increased
by an integer multiple of 2π. So, as an element of R/(2πZ), α is Z-periodic, as ρ and
u are. An alternate view consists of introducing the unit vector field eiα(x,t) where the
plane is identified with C. In this representation, the integers p and m are the indices
of this unit vector field when, at a given time t, one moves along the x1- and x2-axes by
one period respectively (see Fig. 3). Thus, the pair (p,m) is a topological index of this
solution and obviously, remains unchanged with time.

x2

1

0
1 x10

1

Figure 3: Plot of the phase field α(x, 0) (when α0 = 0) given by (3.35) in the case
(p,m) = (1, 2). The vectors eiα(x,0) at the points (x1, x2) = (k

8
, ℓ
8
), for k, ℓ in {0, 1, . . . , 8}

are shown. The color code corresponds to the angle α with red, pink, yellow, green, light
blue, blue, magenta, purple corresponding to α = 0, π

4
, π
2
, 3π

4
, π, 5π

4
, 3π

2
, 7π

4
respectively.

The indices of this vector field about the origin are 1 and 2 when one moves along the x1-
and x2-axes respectively.

These travelling-wave solutions are nothing but the restrictions to a periodic spatial
domain of the uniform solutions of System (3.26)-(3.29), with the additional constraint
that the phase itself must be periodic (hence the restriction to a discrete set of values of z0,
namely z0 ∈ 2πZ2 \ {(0, 0)}). The stability of these solutions has been studied in Section
3.2. Thus, we may apply Lemma 3.6 and conclude that, as long as U = (p,m)/

√
p2 +m2,

these solutions are stable. Also, we may state that otherwise, if |b|
√
p2 +m2 is either small

or large, these solutions are unstable. In particular, the stationary solutions which are
guaranteed to be stable are those for which we have equality in (3.37). In the unstable
case, one may wonder what happens to the topological index (p,m). Since, it can only
change by integer values, only two possibilities may occur: either the solution transitions
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to another solution with the same topological index, or, a phase discontinuity occurs
somewhere. To distinguish between these two scenarios, numerical simulations are needed
and will be developed in future work.

4 Numerical experiments

In this section, we present numerical simulations of both the particle model (2.1)-(2.3) and
the hydrodynamic SH model (3.4)-(3.6). The goals and main conclusions of this section
are summarized below.

� In Section 4.1, we provide a validation of the SH model as a macroscopic description
of the particle model by showing that the particle model follows the behavior pre-
dicted by the SH model. For this, we use the explicit doubly periodic solutions of
Section 3.3 as a baseline and we provide a quantitative analysis of the convergence
of the particle model to the SH model as the number of particles goes to infinity.

� In Section 4.2 we study the long-time behavior of the particle system and the sta-
bility of the doubly-periodic travelling-wave solutions. We investigate the role of
the noise in the phase equation (i.e. of the parameter k′) and of the direction of the
initial velocity u0. In particular, we demonstrate that the doubly-periodic solution
is all the more stable than the level of phase-noise is high (i.e. than the value of
k′ is low). For low levels of noise in the phase equation (i.e for large values of k′),
the behavior of the particle system after a certain simulation time is characterized
by the emergence of a strong segregation phenomenon between regions of constant
phase separated by thin boundaries of very-low density. By contrast, for large lev-
els of noise in the phase equation (i.e. for k′ small), the doubly-periodic travelling
wave solution is very stable starting from any configuration. Moreover, in this case,
topologically non-trivial states can emerge even starting from an initially disordered
state. Finally, these experiments also give a numerical verification of the hyperbolic-
ity condition stated in Lemma 3.6. In particular we observe that when u0 and ∇xα0

are normal and for low phase-noise levels, the destabilization of the corresponding
travelling-wave solution is faster than when u0 and ∇xα0 are aligned. In addition,
we also observe that the solution is more stable when u0 and ∇xα0 are negatively
aligned (i.e. in opposite directions) than when they are positively aligned (i.e. in
the same direction).

� In Section 4.3, we present simulations of the SH model. The segregation behavior
observed in the particle simulations is not clearly observed in the simulation of the
SH system although we still observe the formation of thin regions of low-density for
low levels of noise in the phase equation. Finally, the particle and SH simulations
both show that the doubly-periodic travelling wave solution is more stable for large
levels of noise in the phase equation and when the initial velocity is negatively
aligned with the phase gradient.
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4.1 Validation of the hydrodynamic limit

In order to numerically validate the derivation of the Swarmalator Hydrodynamics model
(3.4)-(3.6), we simulate the particle system (2.1)-(2.3) with a set of parameters chosen
accordingly to the scaling conditions presented in Appendix 6.2 and under which the
mean-field and hydrodynamic limits are taken. Then we confront statistical quantities
measured at the particle level with their prediction given by the hydrodynamic model.

4.1.1 Scaling

Following the notations of Appendix 6.2, we first fix the macroscopic space and time scales
x0 = 1 and t0 = 1. Then we choose a large number of particles N and a small radius
of interaction R. In a spatially homogeneous setting, each particle interact in average
with Nneigh = πR2N neighboring particles. As a rule of thumb, the mean-field regime is
attained when a particle typically interacts with at least a few tens of other particles. We
will therefore choose the parameters N and R such that Nneigh ∼ 102.

Then, as explained in Appendix 6.2, in order to take the hydrodynamic limit, the
radius of interaction R is the only scaling parameter from which all the other parameters
of the particle simulations can be defined. Namely, we choose a linear potential for the
phase attraction-repulsion force

ω(r) =
x40
t0R2

ω̃
( r
R

)
,

where ω̃(r̃) = 3
π
(1− r̃)1r̃≤1 and r̃ = r/R. Note that with x0 = 1 and t0 = 1 then it holds

that
∫
R2 ω(|x|) dx = 1 and for y ∈ R2,

∇x ω(|y − x|) = C
y − x

|y − x| 1|y−x|≤R, (4.1)

with C =
x40
t0R3 . Moreover, we choose

ζ(r) = η(r) =
x20
R2

1r≤R.

The other parameters are also chosen depending on R as

D =
x0
t0R

D̃, ν =
x0
t0R

ν̃, D′ =
x0
t0R

D̃′, ν ′ =
x0
t0R

ν̃ ′,

so that D̃, ν̃, D̃′, ν̃ ′ are dimensionless parameters. Note that the parameter γ is already a
dimensionless parameter.

4.1.2 Setting of the experiment

In order to check the behavior of the particle system as N → +∞ and R → 0, we use
as a test case the doubly periodic travelling wave solution derived in Section 3.3. Given
arbitrary alignment parameters D̃, ν̃, D̃′, ν̃ ′, we initialize the particle system by drawing
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N particles uniformly on the torus (0, 1)2 and the initial velocities with respect to the von
Mises distribution Mu0 with u0 = (0,−1)T. The phase of a particle at position (x1, x2)
is sampled from the von Mises distribution N2πx2 (corresponding to p = 0 and m = 1 in
Proposition 3.7). Then, we choose the intensity of the phase attraction-repulsion force
such that b′ = 1

2π
(1 + c1), i.e.

γ = − c1 + 1

2πc′1(
1
k′
+ c′2)

,

so that the theoretical travelling wave speed is equal to

λ = −2πc1 + 4π2b′ = 2π,

where we recall that b′ is given by (7.35). We recall that with the potential (4.1), a
particle chases the particles which are slightly ahead of phase when γ < 0 and flees them
when γ > 0. In the present case, with γ < 0, p = 0 and m = 1, it means that the phase
attraction-repulsion force is opposite to the mean self-propulsion velocity of the particles
(see e.g. the term inside the divergence operator in (3.4)) and λ = 2π means that the
travelling-wave is moving upward and is 1-periodic.

At the particle level, in order to observe a travelling wave and measure its speed, we
need to define a suitable statistical indicator. First, we define the “mass” of a particle
with phase φ as

m(φ) = 1 + cosφ.

Then we consider the x2-coordinate of the “center of mass” (in the torus) at time t of the
particle system, given by the formula:

xN2 (t) =
1

2π
arg

(
1

N

N∑
k=1

m(φk)e
2iπXk,2(t)

)
, (4.2)

where Xk,2 is the x2-coordinate of the position of particle k. The formal mean-field limit
when N → +∞ leads to

1

N

N∑
k=1

m(φk)e
2iπXk,2(t) −→

N→+∞

∫ 1

0

∫ 2π

0

(1 + cosφ) e2iπx2 Nα(t,x2)(φ) dx2 dφ,

where we recall that Nα denotes the von Mises distribution (3.2) with the parameter α
given by the macroscopic model (3.35). Namely in this experiment α(t, x2) = 2πx2−λt+α0

where we chose α0 = π. A direct computation shows that

xN2 (t) →
1

2
+ t mod 1. (4.3)

4.1.3 Results

We run the particle simulation with the parameters described above and we measure the
quantity (4.2).

First, Figure 4 illustrates the behavior of the particle simulation when N goes to
infinity with a fixed small interaction radius. We measure the quantity xN2 (t) for various
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values of N and we compare it to the theoretical prediction (4.3) when N → +∞. For
small values of N , in a regime where the particles have only a few neighbors to interact
with (Nneigh ∼ 1), only a noisy behavior is observed although the center of mass is
clearly biased to move in the expected direction. As N grows and since R is fixed, each
particle interacts in average with a larger number of other particles. When the number of
neighbours crosses ∼ 100, the system can be considered as being in a mean-field regime
and we observe a very good qualitative agreement with the macroscopic prediction (4.3).

(a) N = 104 (Nneigh ∼ 0.8) (b) N = 123015 (Nneigh ∼ 10) (c) N = 1999999 (Nneigh ∼ 157)

Figure 4: Twenty independent measurements of the x2-coordinate of the center of mass of
the particle system over 0.1 units of time for three different values of N . The thick dashed
red line is the theoretical prediction derived from the macroscopic model. For each value
of N , twenty independent experiments are displayed in colored plain thin lines. For each
value of N , the number Nneigh = πR2N is the average number of neighbours in a ball of
radius R. Parameters: R = 0.005, ν̃ = 3, D̃ = 1, ν̃ ′ = 5, D̃′ = 1.

Having shown a qualitative agreement between the measured and predicted behaviors,
we then perform a quantitative analysis of the convergence of the particle scheme when
N → +∞. Since the quantity xN2 (t) qualitatively and theoretically converges as N → +∞
towards a straight line, we compute the slope of this line (using a standard linear regression
method) and compare it to the predicted travelling wave speed, theoretically equal to 1.
The results are shown in Figure 5.

In Figure 5a, we observe an excellent quantitative agreement between the measured
and predicted travelling wave speeds when N is large. Namely, when N > 3 · 106, the
absolute value of the difference between the two quantities is, in average, of order 10−3

with a standard deviation of the order 10−2. Moreover, Figure 5a gives an indication on
the behavior of the particle scheme for small and moderate values of N . In particular,
it should be noted that, when N is small, the measured speed is actually larger than
the predicted one. To understand this phenomenon, let us first point out that with
the chosen parameters, there are two competing effects: the phase gradient produces
a positive force in the (0, 1)T direction (i.e. pointing upward) while the self-propulsion
velocity is in the direction (0,−1)T (i.e. pointing downward). However there is a difference
in the nature of these two forces. The self-propulsion velocity is subject to noise and
different particles have independent noises. On the contrary, the force exerted by the
phase gradient is just computed by taking an average over all (neighboring) particles
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(a) Speed for various N (b) Standard deviation around the mean value

Figure 5: Convergence of the particle scheme as N → +∞. (a) For different values of N ,
twenty independent experiments are run and for each of them the measured travelling-
wave speed is computed as the slope coefficient of xN2 (t) using a standard linear regression.
The blue points correspond to the mean value over the twenty experiments for each value
of N and the error bar in orange shows the standard deviation. The theoretical speed is
equal to 1 as indicated by the dotted black horizontal line. The inset shows the absolute
value of the difference between the mean value of the measured speed averaged over the 20
simulations and the theoretical speed in log-scale. (b) The blue points show the standard
deviation around the mean value of the measured travelling-wave speed for each value
of N . The orange line is the regression line (excluding the first point) and has a slope
coefficient equal to 0.48 which is close to the value 0.5 predicted by the central limit
theorem. Parameters: R = 0.005, ν̃ = 3, D̃ = 1, ν̃ ′ = 5, D̃′ = 1.

and is thus less sensitive to the individual noises affecting the particles self-propulsion
velocities and phases. Even when N is small, we can infer that the phase attraction-
repulsion force has a smaller variance than the self-propulsion velocity. Since the norm of
the self-propulsion velocity is constant equal to 1, a larger variance means that in average,
the self-propulsion velocity opposite to the phase attraction-repulsion force has a norm
smaller than 1. The phase attraction-repulsion force is thus winning over the two, which
can explain the positive bias observed. Note also that when the self-propulsion velocity
and the phase attraction-repulsion forces are positively aligned, we have observed (not
shown here) that the measured speed is slower than the one predicted, which is expected
since due to the noise, the two forces are not perfectly aligned and the norm of their sum
is smaller than the theoretical value obtained when they are perfectly aligned.

A second important observation that we have made, but which is not directly shown
in Figure 5, is that for larger values of R (R ∼ 0.01) and for very large values of N
(N > 106), there is a perceptible negative bias in the measured travelling-wave speed,
meaning that it is slower than expected (although it is still larger for N small). For
R = 0.01 and for all values of N > 106, the measured speed is about 0.97 instead of 1.
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Since the theoretical speed is proportional to c1(k
′) this can be explained by the fact that

when taking the hydrodynamic limit (see Section 7), this latter quantity appears as the
limit when R → 0 of

|LR| =
∣∣∣ ∫

Rn×[0,2π]

ηR(|y − x|)eiψNα(y,t)(ψ) dy dψ
∣∣∣ = c1(k

′)
∣∣∣ ∫

Rn

ηR(|y − x|)eiα(y,t) dy
∣∣∣

under the assumption that the particle distribution is equal to the equilibrium distribu-
tion f(y, w, ψ, t) = ρ(y, t)Mu(y,t)(w)Nα(y,t)(ψ) with ρ(y, t) ≡ 1 and u, α are given by the
macroscopic model. The kernel ηR ≡ ηR(|x|) := R−nη(|x|/R) is non negative, has integral
one and tends to a Dirac delta at 0 when R → 0. Consequently, since ηR has integral
one, by the triangle inequality, the last term on the right-hand side is smaller than c1(k

′)
for any R > 0. However, this effect is not perceptible for the value R = 0.005 as shown
on Figure 5.

Finally, Figure 5b shows that the standard deviation around the average measured
travelling-wave speed decreases as an inverse power law as N is increasing. The ex-
ponent of this inverse power law is computed using a standard linear regression and is
equal to approximately 0.48. This experimental value has a simple theoretical explana-
tion. In the mean-field limit, the particles can be shown to behave as independent and
identically distributed random variables (thanks to the so-called propagation of chaos
property). Consequently, by the central limit theorem, the standard deviation around the
average (4.2) should behave like N−1/2, which is consistent with the observations.

4.2 Segregation phenomena

In a macroscopic regime, the doubly periodic travelling wave observed in the particle
simulations is stable during a certain time but may eventually transition towards another
state. This destabilization phenomenon may be understood as a natural consequence of
the numerical noise induced by the scheme (which combines both the finite size effect
and the inherent stochasticity of the particles). It can also be seen as a practical way to
study the stability of the different solutions of the macroscopic system (3.4)-(3.6). In this
section we investigate how the particle system departs from the doubly periodic travelling
wave configuration depending on the initial direction of the velocity and on the value of
the parameter k′. This will give a numerical confirmation of the results of Lemma 3.6.
In addition, we show that for low levels of noise in the phase equation (i.e. for large
values of k′), the particle system transitions towards configurations characterized by a
strong segregation between populations of particles with constant phase separated by
thin boundaries of low density.

4.2.1 Parameters and setting of the experiments

All the simulations in this section take place in an intermediate regime where the inter-
action radius is sizeable compared to the dimension of the domain. Consequently, this
setting is slightly farther from the hydrodynamic limit (which requires R → 0) than that
of Section 4.1 and we note a small but perceivable departure of the observed travelling-
wave speed from the value predicted by the hydrodynamic model. We choose this setting
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because simulations are quicker to run without qualitatively altering the results. All the
simulations presented below use the following parameters:

N = 106, R = 0.01, ν̃ = 5, D̃ = 1, γ = 0.2.

The particles’ positions are sampled independently uniformly in the torus. The initial
phase of a particle at position (x1, x2) is sampled from the von Mises distribution N2πx2 .
With this choice, the phase attraction-repulsion force drags the particles downward (i.e.
in the direction (0,−1)T). Given an initial velocity v0 ∈ S2, the particles’ velocities are
sampled according to the von Mises distribution Mv0 .

In order to test the influence of the phase attraction-repulsion interaction, we vary
the parameters ν̃ ′ and D̃′ and the choice of the initial velocity v0. First, we consider four
choices for the parameters ν̃ ′ and D̃′ which correspond to four different levels of noise in
the phase equation.

1. Very-low noise: k′ ≡ k′hi+ = 10000 (ν̃ ′ = 10, D̃′ = 0.001).

2. Low noise: k′ ≡ k′hi = 200 (ν̃ ′ = 10, D̃′ = 0.05).

3. Medium noise: k′ ≡ k′med = 10 (ν̃ ′ = 10, D̃′ = 1).

4. Large noise: k′ ≡ k′lo = 3 (ν̃ ′ = 3, D̃′ = 1).

For smaller values of k′, only a noisy behavior is observed as it can be expected. Then,
for each value of k′, we will consider three different choices for the initial velocity v0.

1. When v0 = (0,−1)T we say that the velocity and the phase attraction repulsion
force are Positively Aligned (PA).

2. When v0 = (0, 1)T we say that the velocity and the phase attraction repulsion force
are Negatively Aligned (NA).

3. When v0 = (1, 0)T we say that the velocity and the phase attraction repulsion force
are Orthogonal (OT).

As a control system, for each value of k′, we also consider the system where the posi-
tions, velocities and phases of the particles are initially sampled independently uniformly
respectively in (0, 1)2, S1 and [0, 2π]. This configuration is referred as UF in the following.

4.2.2 Results

The results for all the simulations are shown in Videos 1 to 18 in Appendix 11.1. The
main observations are summarized below.

1. In the very-low noise case (k′hi+ = 10000) and for any choice of the direction of the
initial velocity v0, the particles immediately segregate into small regions of equal
phase separated by very-low density thin boundaries.
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� Starting from a NA configuration, after a transition period during which many
small constant-phase regions are forming, merging or expanding, the system
stabilizes into a configuration where a succession of constant-phase regions with
a band-like shape move in the direction v0 = (0, 1)T (see Figs. 6a and 6b and
Video 1). The global direction of motion of the system v0 remains constant
throughout the simulation. Note that since there is no phase gradient within
each region, the particles in each region are not subject to the phase attraction-
repulsion force.

� Starting from a PA configuration, the situation is initially analogous to the
NA case except that the particles are moving in the direction (0,−1)T. How-
ever, as times grows, unlike the NA case, the system does not reach a stable
configuration within the 40 units of time of the simulation. Although we still
observe the formation of band-like regions of constant phase moving at a con-
stant speed, these regions do not have a constant shape and are perpetually
subject to destruction and recombination (see Video 2).

� Starting from a OT configuration, unlike the NA and PA cases, the global ve-
locity of the system does not remain constant. During the first units of time
and simultaneously to the formation and recombination of constant-phase re-
gions, the global velocity of the particles (and direction of motion) transitions
from (1, 0)T to (0, 1)T. After 40 units of time, the systems reaches a configura-
tion similar to the one starting from a NA configuration but no bands stable
over a long time can be clearly identified (see Video 3).

2. In the low noise case (k′hi = 200), the dynamics is similar to the very-low noise case
with a few exceptions. First, the final configuration starting from the NA and OT
configurations is still composed of band-like constant-phase regions moving in the
direction (0, 1)T but the size of the regions is increased (see Figs. 6c and 6d and
Videos 5 and 7) and the final state is more stable starting from a OT configuration.
We also note that the phase in each band is not constant over time but slowly evolve.
Secondly, starting from the PA configuration, the analogous configuration is much
more unstable and the system finally ends up in a flocking phase with all the phases
equal and an arbitrary direction of motion (see Video 6).

3. In the medium noise case (k′med = 10). For all choices of v0, the initial structure is
preserved during a longer time (approximately 5 units of time). Then we observe
the formation of thin elongated low-density regions. Unlike the previous cases, they
do not clearly delimitate segregation regions and we de not observe the formation
of constant-phase clusters. As time grows, the system finally ends up in a situation
similar to the previous cases where band-like structures separated by thin low-
density boundaries are moving along the x2-axis. In the OT case, the velocity
transitions from (1, 0)T to (0, 1)T. We note that the final outcome of the system is
still characterized by a segregation phenomenon into band-like structures but unlike
the cases where k′ is larger, these structures are larger and although they are clearly
separated by thin low-density boundaries, there is an inner gradient of phase in each
band and the phase is not preserved over time in each band as it was in the previous
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cases (see Figs. 6e and 6f and Videos 9 to 11).

4. In the large noise case (k′lo = 3) and for all choices of v0 the initial doubly peri-
odic travelling wave is stable throughout the simulation (see Figs. 6g and 6h and
Videos 13 to 15).

Finally, starting from a uniformly disordered UF state with random velocities and
phases, for very-low to medium levels of noise (k′ = k′hi+ to k′ = k′med), the system always
ends up in a flocking phase with all the phases and velocities equal. Similarly to what is
observed starting from a NA, PA or OT configuration, we initially observe clusterization
and phase-segregation phenomena which are all the more important that k′ is large (see
Videos 4, 8 and 12). The situation is more complex in the large noise scenario (k′ = k′lo)
as independent experiments with the same parameters can lead to different outcomes. In
addition to the flocking phase (see Video 16), we have also observed cases where the system
ends up in various topologically non-trivial states. These states are still characterized by
a continuous gradient of phase which is topologically constrained by the periodicity of
the domain. However, unlike the doubly-periodic travelling wave solution, a wide range
of complex structures can emerge characterized by non constant densities and velocities
(see Videos 17 and 18).

(a) Density k′hi+ (b) Phase k′hi+ (c) Density k′hi (d) Phase k′hi

(e) Density k′med (f) Phase k′med (g) Density k′lo (h) Phase k′lo

Figure 6: Final state after 40 units of time starting from a NA configuration for four
values of k′. For each value of k′, the domain is discretized into a uniform grid with
104 cells of size 0.01. (a),(c),(e),(g) The density of particles is obtained by counting the
proportion of particles in each cell. (b),(d),(f),(h) The phase in each cell is the average
phase of the particles in this cell. It is arbitrarily set to 0 when the cell is empty. The
corresponding videos can be found in the supplementary material: (a)-(b) Video 1 (c)-(d)
Video 5 (e)-(f) Video 9 (g)-(h) Video 13. Parameters: N = 106, R = 0.01, ν̃ = 5, D̃ = 1,
γ = 0.2.
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4.2.3 Discussion

Regardless of the level of noise k′, all the experiments confirm that the NA configuration
is the most stable one. Even though the initial doubly periodic travelling wave is not
preserved, the only stable final configuration correspond to a case where the velocity is
pointing in the direction (0, 1)T and the phase is constant along the x1-axis and piecewise
constant and increasing along the x2 axis. It can be understood as a more general version
of the NA case where in the latter the phase is linear and increasing along the x2-axis.
As predicted by Lemma 3.6, the OT configuration is the most unstable one and except
for low values of k′, it never persists and quickly transitions towards a more stable NA
case. Note that Lemma 3.6 does not make a distinction between the stability of the NA
and PA cases. Numerically the former is the most stable.

An important observation is the ability of the particle model to produce segregation.
We were not able to predict this behavior using the SH model (3.4)-(3.6), although we
cannot exclude that it also corresponds to (possibly singular) solutions that remain to be
identified. The simulation of the macroscopic model presented in the next section may also
support this idea. It is also worth mentioning that the emergence of band-like structures is
a well-known phenomenon in the Vicsek model [14]. However, the phenomenon observed
is quite different on many aspects. First, the emergence of bands in the Vicsek model can
be observed only in a very specific range of parameters and in very-low density regimes.
The conditions of the presented simulations are much more general. Moreover, the bands
observed here have a very different profile from the ones observed in the Vicsek model. In
the Vicsek model, bands have an asymmetric profile characterized by a sharp front edge
and an exponentially decaying tail whereas the bands observed here are larger and have
a symmetric profile (see Fig. 7).

Figure 7: Number of particles in the strips [0, 1] × [ k
100
, k+1
100

] for k ∈ {0, . . . , 99} after 40
units of time starting from the NA configuration with k′ = k′med. Same parameters as
Fig. 6e.

Regarding the doubly periodic travelling wave solution that we theoretically identified
in Section 3.3, the particle simulations tend to indicate that the noise in the phase equation
has a stabilizing effect. In the large noise case and for any choice of the initial velocity,
we indeed do not observe any segregation but rather a stable doubly periodic travelling
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wave as expected, with a moving speed close to the theoretical speed predicted by the
macroscopic model.

Finally, these experiments show the robustness of topological states. Even if for lower
levels of noise in the phase equation, the theoretical doubly periodic travelling wave does
not persist, the system still transitions towards a state characterized by a nontrivial
topology. Such scenario is never observed starting from the topologically trivial UF state.
The topological robustness increases with the level of noise in the phase equation and in
such regime, more general topological states can even emerge form the UF configuration,
which shows that the flocking state is not the only global attractor of the system. The
doubly periodic travelling wave may be seen as the simplest topological state and further
investigations are needed to determine whether the topological states observed at the
particle level also correspond to solutions of the hydrodynamic model.

4.3 Simulation of the hydrodynamic NSH and SH models

Following the methodology introduced in [71] for the SOH model, a finite volume dis-
cretization of the SH model is also presented. The details of the numerical method are
described in Appendix 10.2. The results for all the simulations are shown in Videos 19
to 21 in Appendix 11.2. The main observations are summarized below.

4.3.1 NSH case

Simulating the NSH system is computationally easier, in particular because it does not
require to discretize the term ∇x · (ρ∇xρ) in the phase equation. Starting from a doubly
periodic initial condition and regardless of the direction of the initial velocity, we observe
a very stable travelling wave moving in the direction of the phase gradient at the speed
predicted by the model. However, starting from a slightly perturbed initial condition, we
immediately observe the formation of shocks with strong local variations of the density
and of the phase. Due to the CFL condition which becomes too stringent in this situation,
we were not able to continue the simulation further. The same difficulty happens in the
very-low noise case k′hi+. Note however that this observation is consistent with the particle
simulations which also show this behavior.

4.3.2 SH case

By adding the terms corresponding to a nonzero k′ ̸= 0 (i.e. by adding noise in the
phase equation), the situation becomes more stable even starting from perturbed initial
conditions. The behavior is not immediately comparable to the behavior of the particle
simulations, but shares some of the main features. For the experiments discussed below,
in each scenario, the initial state is perturbed by adding a small random uniform noise
for the density, phase and velocity independently for each cell. For each cell, we add to
the theoretical density (equal to 1) a uniform random variable in [−0.25, 0.25]. For the
two angles which define the phase and velocity we add to the theoretical value a uniform
random variable in the interval [−0.75, 0.75] (in radians).
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� In the low noise case k′hi = 200, starting from a perturbed OT state we observe
the formation of thin low-density regions very reminiscent of the ones observed in
the particle simulations and a transition towards a more stable state close to a NA
configuration (see Video 21). Unlike the particle simulations, such behavior is not
observed starting from either perturbed NA or PA states. In the PA case, even
though the density does not stay uniform and we can observe the formation of thin
regions of lower density, they quickly fade away and do not degenerate as in the
OT case or in the particle simulations (see Video 20). In the NA case, the initially
perturbed density, phase and velocity are quickly restored to their theoretical un-
perturbed state (see Video 19), which is another numerical confirmation of the
increased stability of this state. In all cases, the simulation reaches a doubly periodic
travelling wave solution with a travelling wave speed correctly predicted by the
model (3.36).

� In the medium noise and large noise cases k′med = 10 and k′lo = 3, regardless of the
initial condition (OT, NA or PA), unlike the particle simulations, we do not observe
the formation of inhomogeneities but rather a stable doubly periodic travelling wave
solution (see Videos 22 to 27). This behavior is similar to the one observed in the
particle simulations in the large noise scenario and confirm the stabilizing effect of
the noise in the phase equation.

The simulations of the SH and particle models agree well for short times or when the
phase-noise level is large enough. At long time scales when the phase-noise is small, the
doubly-periodic solutions are more unstable with the particle simulations than with the
SH model. In the particle simulations, we observe the formation of regions of constant
phase separated by thin low density regions. By contrast, simulations of the hydrodynamic
model always maintain continuous gradients in phase.

5 Conclusion and perspectives

In this paper, we have presented a new swarmalator model without force reciprocity and
derived its hydrodynamic limit. We have studied the hydrodynamic model in the limit
of small phase noise and determined its hyperbolicity regime. Then, we have derived a
class of explicit doubly-periodic travelling-wave solutions in two spatial dimensions. These
solutions have non-trivial topology quantified by the index of the phase vector over a pe-
riod in either dimension. Solutions with index values larger than one are possible. Then
numerical simulations of these doubly-periodic travelling-wave solutions with both the
particle and hydrodynamic models have been presented. They confirm that the hydrody-
namic model is an accurate approximation of the particle one for short time or large phase
noise. They also provide a validation of the hyperbolicity result. However, for long times
and small values of the phase noise, the two models differ but both give rise to topological
solutions. In forthcoming papers [22, 23], we will pursue the investigation of topologi-
cal states in this swarmalator model by deriving and studying classes of travelling-wave
solutions in other geometries such as strips or annulae.
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Further studies can be envisioned. For instance, numerical simulations suggest that
in some parameter ranges, periodic-in-time solutions are generated. Their mathematical
investigation is still open. Another direction is to explore other phase spaces that would
generate solutions with more complex topologies such as higher order homotopy groups
of spheres.
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Appendices

6 Particle and kinetic models: additional material

6.1 Overdamped limit for potential W

System (2.1)-(2.3) is the limit as ε→ 0 of the following system

dXk

dt
= c0vk + wk, (6.1)

dvk =
1

ε

{
ε
(
Pv⊥k ◦

[(
ν v̄k −∇xV (Xk(t))

)
dt+

√
2DdBk

t

])}
, (6.2)

dwk
dt

= −1

ε

(
wk + γ∇xW (Xk, φk)

)
, (6.3)

complemented with (2.3) (here, the parameter ε has a different meaning compared to
the next section). This can be interpreted as follows. Forgetting ε for the time being,
from (6.1), we see that the particle velocity is decomposed in two terms: one c0vk stemming
from self-propulsion which has constant norm, and a complementary one wk. The total
force acting on the particle is thus the sum of a component acting on the self-propulsion
velocity given by (6.2) and of one acting on its complement given by (6.3). The first
component is unchanged from the original system (see (2.2)) while the second one is a
relaxation force. It describes the competition between the external force ∇xW and a fric-
tion force which hypothetically results from the surrounding medium (note that a similar
friction could also be included in (6.2) but would vanish anyway because Pv⊥k vk = 0).

Now, 1/ε in factor of (6.2), (6.3) is the friction coefficient and is very large. We see that,
in the limit ε → 0, we recover (2.1)-(2.3) under the condition that the forces involved in
(6.2) are of order ε (hence the multiplication by ε of all the terms involved). So, Sys-
tem (2.1)-(2.3) is obtained as the overdamped limit of the unrelaxed system under the
assumption that the alignment force, the noise and the exterior potential are very small,
of the same order as the inverse of the friction coefficient.

6.2 Scaling of the kinetic model

We first non-dimensionalize the kinetic model (2.12). We let x0, t0 be space and time
units which we relate to each other by x0 = c0t0. we note that v, φ, v̄, φ̄ are already
dimensionless. We introduce the change of variables x̃ = x/x0, t̃ = t/t0 and functions
f̃(x̃, v, φ, t̃) = xn0 f(x0x̃, v, φ, t0t̃), Ṽ (x̃) = t0x

−1
0 V (x0x̃), W̃ (x̃, φ, t̃) = t0x

−2
0 W (x0x̃, φ, t0t̃).

We also assume that there exists R > 0 and functions ω̃, ζ̃ and η̃ such that, for all
r ∈ [0,∞):

ω(r) =
xn+2
0

t0Rn
ω̃
( r
R

)
, ζ(r) =

xn0
Rn

ζ̃
( r
R

)
, η(r) =

xn0
Rn

η̃
( r
R

)
.

We define dimensionless constants

D̄ = Dt0, D̄′ = D′ t0, k =
ν

D
, k′ =

ν ′

D′ , R̄ =
R

x0
.
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In these new variables, the kinetic model reads (after dropping the tildes and bars for
simplicity):

∂tf +∇x ·
[(
v − γ∇xWf (x, φ)

)
f
]
−∇v ·

[
Pv⊥∇xV (x) f

]
= D∇v ·

[
− kPv⊥ v̄f f +∇vf

]
+D′ ∂φ

[
− k′ sin(φ̄f − φ)f + ∂φf

]
, (6.4)

Wf (x, φ, t) =

∫
Rn×Sn−1×[0,2π]

1

Rn
ω
( |y − x|

R

)
sin(ψ − φ) f(y, w, ψ, t) dy dw dψ, (6.5)

Jf (x, t) =

∫
Rn×Sn−1×[0,2π]

1

Rn
ζ
( |y − x|

R

)
w f(y, w, ψ, t) dy dw dψ. (6.6)

Lf (x, t) =

∫
Rn×Sn−1×[0,2π]

1

Rn
η
( |y − x|

R

)
eiψ f(y, w, ψ, t) dy dw dψ, (6.7)

v̄f (x, t) =
( Jf
|Jf |

)
(x, t), eiφ̄f (x, t) =

( Lf
|Lf |

)
(x, t). (6.8)

We now make the following scaling assumptions:

R = ε→ 0, D = O
(1
ε

)
, D′ = O

(1
ε

)
, k = O(1), k′ = O(1), γ = O(1).

Thus, introducting D̃ and D̃′ such that D = D̃/ε and D′ = D̃′/ε, we may assume that
D̃ and D̃′ are constants. After this scaling, the problem is written (again dropping the
tildes for simplicity):

∂tf
ε +∇x ·

[(
v − γ∇xW

ε
fε(x, φ)

)
f ε
]
−∇v ·

[
Pv⊥∇xV (x) f ε

]
=

1

ε

{
D∇v ·

[
− kPv⊥ v̄

ε
fε f

ε +∇vf
ε
]
+D′ ∂φ

[
− k′ sin(φ̄εfε − φ)f ε + ∂φf

ε
]}
, (6.9)

W ε
f (x, φ, t) =

∫
Rn×Sn−1×[0,2π]

1

εn
ω
( |y − x|

ε

)
sin(ψ − φ) f(y, w, ψ, t) dy dw dψ, (6.10)

Jεf (x, t) =

∫
Rn×Sn−1×[0,2π]

1

εn
ζ
( |y − x|

ε

)
w f(y, w, ψ, t) dy dw dψ. (6.11)

Lεf (x, t) =

∫
Rn×Sn−1×[0,2π]

1

εn
η
( |y − x|

ε

)
eiψ f(y, w, ψ, t) dy dw dψ, (6.12)

v̄εf (x, t) =
( Jεf
|Jεf |

)
(x, t), eiφ̄

ε
f (x, t) =

( Lεf
|Lεf |

)
(x, t). (6.13)
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Now, expanding expressions (6.10)-(6.13) in powers of ε, we get:

W ε
f = Uf +O(ε2), Uf (x, φ, t) =

∫
Sn−1×[0,2π]

sin(ψ − φ) f(x,w, ψ, t) dw dψ, (6.14)

Jεf (x, t) = ζ0jf +O(ε2), jf (x, t) =

∫
Sn−1×[0,2π]

w f(x,w, ψ, t) dw dψ, (6.15)

Lεf (x, t) = η0ℓf +O(ε2), ℓf (x, t) =

∫
Sn−1×[0,2π]

eiψ f(x,w, ψ, t) dw dψ, (6.16)

v̄εf = uf +O(ε2), uf (x, t) =
( jf
|jf |
)
(x, t), (6.17)

φ̄εf = αf +O(ε2), eiαf (x, t) =
( ℓf
|ℓf |
)
(x, t), (6.18)

with ζ0 =
∫
Rn ζ(|x|) dx, and a similar definition for η0. Furthermore, expanding sin(ψ−φ)

in (6.14), we note that Uf is given by (2.19).
Finally, introducing expansions (6.14)-(6.18) into (6.9) and neglecting the resulting

O(ε) terms which will have no influence on the final result, we are led to (2.18).

6.3 Particle system associated with the BGK operator

We use the same notations as Section 2.1. Each particle k ∈ {1, . . . , N} is associated
with an increasing sequence of random numbers T 1

k , T
k
2 , . . . , T

k
n , . . . which are subject to

the condition that the interval between two consecutive numbers are independent random
variables following a Poisson process with intensity D. At time T kn the (velocity, phase)
pair of the k-th particle jumps between from (vk, φk)(T

k
n −0) to (vk, φk)(T

k
n +0), while Xk

is continuous (i.e. Xk(T
k
n + 0) = Xk(T

k
n − 0)). For t ∈ (T kn , T

k
n+1), the triple (Xk, vk, φk)

evolves according to the following differential system:

dXk

dt
= c0vk − γ∇xW (Xk, φk),

dvk
dt

= −Pv⊥k ∇xV (Xk(t)),

dφk
dt

= 0.

with initial condition (Xk, vk, φk)(T
k
n+0) and (Xk, vk, φk)(T

k
n+1−0) are the values obtained

by the solution of this system at time T kn+1. Finally at jump time T kn , the pair (vk, φk)(T
k
n+

0) is drawn according to the von Mises distribution Mv̄k(Tk
n−0)Nφ̄k(Tk

n−0) where v̄k(T
k
n − 0)

and φ̄k(T
k
n − 0) are computed by (2.6) and (2.8) in which t is taken equal to T kn − 0. This

type of jump process is known as a Piecewise Deterministic Markov Process (PDMP).
In [37], it is proved that, in the limit N → ∞, the empirical measure of this process

(see Section 2.2) converges to the following kinetic equation:

∂tf +∇x ·
[(
c0v − γ∇xWf (x, φ)

)
f
]
−∇v ·

[
ν Pv⊥ v̄f f

]
= D

(
f −Mv̄fNφ̄f

)
,

with v̄f and φ̄f given by (2.16). The scaling developed in Section 6.2 can be developed
analogously here. In particular, it results in the localisation of v̄f and φ̄f which are then
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replaced by uf and αf given by (2.20) and (2.21) respectively. After scaling and neglect of
higher order terms in ε, the kinetic model reduces to (3.17) with the BGK type collision
operator (3.15). BGK-type models of Vicsek-type dynamics have been investigated in
[24, 25, 26, 33, 39].

7 Limit ε→ 0: proofs

In this section, we prove Theorems 3.1 and 3.3. The proofs are identical for the two theo-
rems. We develop it for Theorem 3.1 and only point out what is different for Theorem 3.3
when necessary. The proof follows a certain number of steps.

Step 1: f is given by (3.3) with the functions ρ, u and α to be determined.
Indeed, if f ε → f 0 as ε → 0 smoothly, then f 0 satisfies Q(f 0) = 0, which in view of
Lemma 3.2 (iii) means that, at any given point (x, t), f is given by (3.12). At a different
point (x′, t′), the equilibrium (3.12) may be different. This means that ρ, u and α are
functions of (x, t), still to be determined, and that f is given by (3.3).

Step 2: derivation of the mass conservation equation (3.4). This is simply done
by integrating (3.13) with respect to (v, φ) and using that for any smooth functions f ,∫

Q(f) dv dφ = 0,

(in this discussion, we omit the integration domain Sn−1 × [0, 2π) any time the context is
clear). This cancels the 1/ε singularity and leads to∫

T (f ε) dv dφ = 0.

Letting ε→ 0, we finally get ∫
T (f 0) dv dφ = 0.

We note that the ∇v term in the expression (3.14) of T cancels in the integration with
respect to v. The time and space derivatives commute with the integrals in v and φ and
we get

∂tρ+∇x ·
(
ρ

∫ (
v − γ∇xUf0(x, φ)

)
Mu(v)Nα(φ) dv dφ

)
= 0. (7.1)

Now, we have from (2.19):

Uf0(x, φ) = c′1 ρ sin(α− φ),

with

c′1 =

∫ 2π

0

cosφ ek
′ cosφ dφ∫ 2π

0

ek
′ cosφ dφ

. (7.2)
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So, we get
∇xUf0(x, φ) = c′1

(
∇xρ sin(α− φ) + ρ cos(α− φ)∇xα

)
. (7.3)

Inserting (7.3) into (7.1) leads to (3.4) with

c1 =

∫ π

0

cos θ ek cos θ sinn−2 θ dθ∫ π

0

ek cos θ sinn−2 θ dθ

. (7.4)

and
b = −γ c′12. (7.5)

Step 3: Computation of the generalized collision invariants (GCI). To find
equations for u and α is a not as straightforward, as there are no collision invariants, i.e.
function χ(v, φ) such that for all smooth functions f∫

Q(f)χdv dφ = 0,

other than constant functions. In [36], it was shown that this difficulty can be solved by
the concept of generalized collision invariant (GCI). We summarize the approach here and
refer to [36, 43] for details. To define the GCI concept, we first introduce the following
operators

� if the collision operator is Q given by (3.8), thenQ(f ;u, α) is defined for any (u, α) ∈
Sn−1 × R/(2πZ) by

Q(f ;u, α) = D∇v ·
[
Mu∇v

( f

Mu

)]
+D′ ∂φ

[
Nα∂φ

( f

Nα

)]
. (7.6)

� if the collision operator is QR given by (3.15), then

QR(f ;u, α) = D
(
ρfMuNα − f

)
. (7.7)

We note that
Q(f) = Q(f ;uf , αf ), (7.8)

and we have a similar relation between QR and QR. Then, we have the:

Definition 7.1 Given (u, α) ∈ Sn−1×R/(2πZ), the function χu,α: Sn−1×R/(2πZ) → R,
(v, φ) 7→ χu,α(v, φ) is a GCI for Q associated to (u, α) if and only if the following holds:∫

Q(f ;u, α)χu,α dv dφ = 0, ∀f such that Pu⊥

∫
f v dv dφ = 0

and

∫
f sin(φ− α) dv dφ = 0. (7.9)

We have a similar definition of a GCI for QR by replacing Q by QR.
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We have the

Proposition 7.2 The set Gu,α of GCI χu,α is a vector space given by

Gu,α =
{
A h̃
(
cos(φ−α)

)
sin(φ−α)+h(u ·v)Pu⊥v ·B+C | A,C ∈ R, B ∈ {u}⊥

}
, (7.10)

where the functions h and h̃: (−1, 1) → R are given as follows:

� Case of operator Q: h and h̃ are such that the functions

g̃(φ) = h̃
(
cosφ

)
sinφ, g(θ) = h(cos θ) sin θ, (7.11)

are the solutions of the following equations:

−∂φ
(
ek

′ cosφ ∂φg̃
)
= sinφ ek

′ cosφ, (7.12)

for g̃ and

−∂θ
(
sinn−2 θ ek cos θ ∂θg

)
+
n− 2

sin2 θ
sinn−2 θ ek cos θ g = sin θ sinn−2 θ ek cos θ (7.13)

for g; these solutions are unique in the spaces H1(0, π) for g̃ and{
g | sin

n
2
−2 θ g ∈ L2(0, π), sin

n
2
−1 θ g ∈ H1(0, π)

}
,

for g; the functions g and g̃ are nonnegative on [0, π] and g̃ can be extended into a
smooth odd function on [−π, π],

� Case of operator QR: h and h̃ are given by

h̃ = 1, h = 1. (7.14)

Proof of Proposition 7.2. Case 1: collision operator Q. In [36, 43], it is shown
that (7.9) is equivalent to saying that

∃A ∈ R, ∃B ∈ {u}⊥ such that Q∗(χu,α;u, α) = A sin(φ− α) +B · v, (7.15)

where Q∗(·;u, α) is the formal L2-adjoint of Q(·;u, α). Computing this adjoint, we find
that χ = χu,α is a GCI if and only if it satisfies the following problem

D
1

Mu

∇v ·
(
Mu∇vχ

)
+D′ 1

Nα

∂φ
(
Nα∂φχ

)
= A sin(φ− α) +B · v. (7.16)

For given A and B, by Lax-Milgram theorem, it can be shown that this problem has
a unique solution in the subspace Ḣ1 of H1(Sn−1 × R/(2πZ)) consisting of functions g
satisfying

∫
g dv dφ = 0. Furthermore, any solution to (7.16) in H1 is equal to this special

solution up to an additive constant. Denoting by χA,B the unique solution of (7.16) in Ḣ1
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corresponding to the pair (A,B), we have χA,B = χA,0 + χ0,B with χA,0 only depending
on φ and solution to

D′ 1

Nα

∂φ
(
Nα∂φχ

A,0
)
= A sin(φ− α), (7.17)

and χ0,B only depending on v and solution to

D
1

Mu

∇v ·
(
Mu∇vχ

)
= B · v. (7.18)

These two problems have been solved in [36, 43] (note that (7.17) is a special case of
(7.18) corresponding to the dimension n = 2). Their solutions are given as follows:

χA,0 = −A h̃
(
cos(φ− α)

)
sin(φ− α), χ0,B = −h(u · v)B · v, (7.19)

with h and h̃ given by (7.11). This leads to (7.10).
Case 2: collision operator QR. Eq. (7.15) stands but now (7.16) is changed into

D
(∫

χ(w,ψ)Mu(w)Nα(ψ) dw dψ − ψ(v, φ)
)
= A sin(φ− α) +B · v. (7.20)

It is clear that any two solutions of this equation differ by a constant. So, we can single
out a solution by requiring that

∫
χ(w,ψ)Mu(w)Nα(ψ) dw dψ = 0. It follows that Gu,α is

given by (7.10) with h = 1 and h̃ = 1.

We will now write

χα(φ) = h̃
(
cos(φ− α)

)
sin(φ− α), χ⃗u(v) = h(u · v)Pu⊥v,

so that
Gu,α =

{
Aχα(φ) + χ⃗u(v) ·B + C | A,C ∈ R, B ∈ {u}⊥

}
. (7.21)

We remark that χ⃗u is a vector (perpendicular to u) further referred to as the vector GCI.
The main use of the GCI is as follows. We first note that

Pu⊥f

∫
f v dv dφ = Pu⊥f (|jf |uf ) = 0,

∫
f sin(φ− αf ) dv dφ = |ℓf | sin(αf − αf ) = 0.

Therefore, f satisfies the conditions of (7.9) for (u, α) = (uf , αf ). Thanks to (7.8), we
deduce that ∫

Q(f)χuf ,αf
dv dφ =

∫
Q(f ;uf , αf )χuf ,αf

dv dφ = 0.

From this, we obtain:∫
T (f ε)χufε ,αfε

dv dφ =
1

ε

∫
Q(f ε)χufε ,αfε

dv dφ = 0.

In particular, we get∫
T (f ε)χ⃗ufε dv dφ = 0,

∫
T (f ε)χαfε

dv dφ = 0.
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But it is clear that χα is continuous with respect to α and χ⃗u with respect to u. We can
then let ε→ 0 and obtain∫

T (f 0)χ⃗uf0 dv dφ = 0,

∫
T (f 0)χαf0

dv dφ = 0. (7.22)

These are the two missing equations of the fluid model as shown in the next step.

Step 4: Explicit forms of the equations for u and α. In this step, we are making
the two equations (7.22) explicit. We have

T (f0) = (∂t + v · ∇x)(ρMuNα)− γ∇x ·
(
∇xUρMuNα ρMuNα

)
−∇v ·

[
Pv⊥∇xV (x) ρMuNα

]
. (7.23)

Using the notations D = ∂t + v · ∇x and v⊥ = Pu⊥v as well as (7.3), computations give

D(ρMuNα) =MuNα

[
Dρ+ kρv⊥ ·Du+ k′ρ sin(φ− α)Dα

]
, (7.24)

∇x ·
(
∇xUρMuNα ρMuNα

)
= −c′1

{(
ρ∆xρ− ρ2|∇xα|2 + |∇xρ|2

)
sin(φ− α)

−
(
3ρ∇xρ · ∇xα + ρ2∆xα

)
cos(φ− α)

+kρv⊥ ·
([

∇xρ sin(φ− α)− ρ∇xα cos(φ− α)
]
· ∇x

)
u

+k′ρ sin(φ− α)
(
∇xρ sin(φ− α)− ρ∇xα cos(φ− α)

)
· ∇xα

}
MuNα, (7.25)

−∇v ·
[
Pv⊥∇xV (ρMuNα)

]
= ρMuNα

(
(n− 1)∇xV · v − k Pv⊥∇xV · Pv⊥u

)
. (7.26)

Using the decomposition v = (v · u)u+ v⊥, we can write

T (ρMuNα) =MuNα

(
Tee + Teo + Toe + Too

)
,

where Tee is even with respect to both v⊥ and sin(φ− α), Teo is even with respect to v⊥
and odd with respect to sin(φ− α), Toe is odd with respect to v⊥ and even with respect
to sin(φ− α) and finally Too is odd with respect to both arguments. We have

Teo = k′ρ sin(φ− α)
(
∂t + (v · u)u · ∇x

)
α + γc′1

[(
ρ∆xρ− ρ2|∇xα|2

+|∇xρ|2
)
sin(φ− α)− k′ρ2|∇xα|2 sin(φ− α) cos(φ− α)

]
, (7.27)

Toe = v⊥ · ∇xρ+ kρv⊥ ·
(
∂tu+ (v · u) (u · ∇x)u

)
+ (n− 1)ρv⊥ · ∇xV

+ρk(u · v)v⊥ · ∇xV − γc′1kρ
2 cos(φ− α) v⊥ ·

(
(∇xα · ∇x)u

)
, (7.28)

while the other terms will not be needed in the forthcoming computations.
We now consider the first Eq. (7.22). Since χuf0 is odd with respect to v and even

with respect to α, the only term in T (ρMuNα) which will not vanisy in the integration
by imparity will be that corresponding to Toe. By Lemma 4.1 of [35], we have, for any
function k(v · u),∫

Sn−1

k(v · u) v⊥ ⊗ v⊥ dv =
1

n− 1

∫
Sn−1

k(v · u) (1− (v · u)2) dv Pu⊥ .
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Using this, the first Eq. (7.22) leads to

C1Pu⊥∇xρ+ kC1ρ∂tu+ kC2ρ(u · ∇x)u+
(
(n− 1)C1 + kC2

)
ρPu⊥∇xV

−γkc′12C1ρ
2(∇xα · ∇x)u = 0, (7.29)

with

Ci =
1

n− 1

∫ π

0

cosi−1 θ h(cos θ) ek cos θ sinn θ dθ∫ π

0

ek cos θ sinn−2 θ dθ

, i = 1, 2. (7.30)

Dividing (7.29) by kC1, we get (3.5) with

c2 =
C2

C1

=

∫ π

0

cos θ h(cos θ) ek cos θ sinn θ dθ∫ π

0

h(cos θ) ek cos θ sinn θ dθ

, (7.31)

Θ =
1

k
, κ =

n− 1

k
+ c2. (7.32)

and b is given by (7.5).
We proceed similarly for the second Eq. (7.22). In this case, χαf0

is even with respect
to v and odd with respect to φ. So, the only term of T (ρMuNα) which remains is that
corresponding to Teo. This leads to

k′C ′
1ρ∂tα + c1C

′
1k

′ρ(u · ∇x)α + γc′1C
′
1(ρ∆xρ− ρ2|∇xα|2

+|∇xρ|2)− γc′1k
′C ′

2ρ
2|∇xα|2 = 0, (7.33)

with

C ′
i =

∫ 2π

0

cosi−1 φ h̃(cosφ) ek
′ cosφ sin2 φdφ∫ 2π

0

ek
′ cosφ dφ

i = 1, 2. (7.34)

Dividing by C ′
1k

′, we get (3.6) with

b′ = −γc′1
( 1

k′
+ c′2

)
, (7.35)

c′2 =
C ′

2

C ′
1

=

∫ 2π

0

cosφ h̃(cosφ) ek
′ cosφ sin2 φdφ∫ 2π

0

h̃(cosφ) ek
′ cosφ sin2 φdφ

, (7.36)

Θ′ = −γc
′
1

k′
. (7.37)

Finally, the properties of the coefficients listed at the end of the theorem statement
are direct consequences of [43]. This ends the proof of Theorem 3.1.
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8 Small noise limit in the phase equation

8.1 Expression of the system: proof of Lemma 3.4

We recall that b, b′ and Θ′ are given by (7.5), (7.35), (7.37) respectively. Now, it is proved
in [43] that c′1 → 1, c′2 → 1 as k′ → ∞. Thus, (3.22) follows immediately.

8.2 Hyperbolicity: proof of Lemma 3.6

Let (ρ0, u0, z0) ∈ (0,∞)× Sn−1 × Rn be given. Then, (ρ, u, z) = (ρ0, u0, z0) is a spatially
uniform stationary solution of System (3.26)-(3.29). The linearization of System (3.26)-
(3.29) about this equilibrium solution is then given by

∂tρ+ (c1u0 + 2bρ0z0) · ∇xρ+ c1ρ0∇x · u+ bρ20∇x · z = 0, (8.1)

∂tu+Θρ−1
0 Pu⊥0 ∇xρ+

(
(c2u0 + bρ0z0) · ∇x

)
u = 0, (8.2)

∂tz + b|z0|2∇xρ+∇xu z0 +∇xz (c1u0 + 2bρ0z0) = 0, (8.3)

∇x ∧ z = 0. (8.4)

u · u0 = 0. (8.5)

In (8.3),∇xu denotes the gradient matrix of u i.e. (∇xu)ij = ∂xiuj, for all i, j ∈ {1, . . . , n}.
The expression ∇xu z0 refers to the multiplication of the matrix ∇xu and the vector z0.
Similar definitions apply to ∇xz. The constraint (8.5) expresses that the first order
variation of a normalized vector is orthogonal to that vector.

We take the partial Fourier transform of this system with respect to x and denote
the resulting unknown by (ρ̂, û, ẑ)(ξ, t), with ξ the Fourier dual variable to x. We assume
ξ ̸= 0 (the case ξ = 0 corresponds to constants, which we already know are solutions of
the linearized system). We recall that τ = ξ/|ξ|. From (8.4) we deduce that ẑ = z̃τ ,
where z̃ ∈ R. Also, due to (8.5), we can project (8.2) on {u0}⊥, and the component u1 of
u on e1 is always zero.

Using these remarks, the Fourier transform of System (8.1)-(8.4) leads to

1

i|ξ|∂tρ̂+ τ · (c1u0 + 2bρ0z0)ρ̂+ c1ρ0 τ · û+ bρ20 z̃ = 0,

1

i|ξ|∂tû+Θρ−1
0 Pu⊥0 τ ρ̂+ (c2u0 + bρ0z0) · τ û = 0,

1

i|ξ|∂tz̃ + b|z0|2 ρ̂+ û · z0 + (c1u0 + 2bρ0z0) · τ ẑ = 0.

Choosing a reference frame such that u0, z0 and τ are expressed by (3.31), and denoting
by V = (ρ̂, û2, û3, û4, . . . , ûn, z̃)

T , we can write

1

i|ξ|∂tV + AV = 0,
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where A is given in dimension n ≥ 3 by:

A =



X1 c1ρ0 sin θ sinϕ c1ρ0 cos θ 0 . . . 0 bρ20
Θρ−1

0 sin θ sinϕ X2 0 0 . . . 0 0

Θρ−1
0 cos θ 0 X2 0

. . . 0 0
0 0 0 X2 . . . 0 0
...

...
...

. . . . . .
...

...
0 0 0 . . . . . . X2 0

b|z0|2 |z0| sin δ 0 . . . . . . 0 X1


, (8.6)

with

X1 = sin θ
(
c1 cosϕ+ 2bρ0|z0| cos(ϕ− δ)

)
, X2 = sin θ

(
c2 cosϕ+ bρ0|z0| cos(ϕ− δ)

)
.

In dimension n = 2, we can choose θ = π/2 and A is given by:

A =

 X1 c1ρ0 sinϕ bρ20
Θρ−1

0 sinϕ X2 0
b|z0|2 |z0| sin δ X1

 .

We recall that the system is hyperbolic about (ρ0, u0, z0) if and only if A is diagonalizable
with real eigenvalues for all values of θ and ϕ.

In the case n ≥ 3, developing the determinant with respect to the last column, we
find:

det(A− λId) = (X1 − λ)(X2 − λ)n−3

∣∣∣∣∣∣
X1 − λ c1ρ0 sin θ sinϕ c1ρ0 cos θ

Θρ−1
0 sin θ sinϕ X2 − λ 0
Θρ−1

0 cos θ 0 X2 − λ

∣∣∣∣∣∣
+(−1)n+2bρ20

n∏
k=3

(
(−1)2k−1(X2 − λ)

) ∣∣∣∣ Θρ−1
0 sin θ sinϕ X2 − λ
b|z0|2 |z0| sin δ

∣∣∣∣
= (X2 − λ)n−2

{
(X1 − λ)

[
(X1 − λ)(X2 − λ)− L

]
+MR−M2(X2 − λ)

}
=: (X2 − λ)n−2P (λ), (8.7)

with
L = c1Θ(cos2 θ + sin2 θ sin2 ϕ), M = bρ0|z0|, R = Θsin θ sinϕ sin δ. (8.8)

After rearranging, we get

P (λ) = Aλ3 +Bλ2 + Cλ+D, (8.9)

with

A = −1, B = 2X1 +X2, C = −2X1X2 −X2
1 + L+M2, (8.10)

D = X2
1X2 − LX1 +MR−M2X2. (8.11)

In the case n = 2, a direct computation shows that (8.7) with P given by (8.9), (8.10)
(8.11) is still true provided we make θ = π/2 in (8.8).
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In the case n ≥ 3, we see that X2 is an eigenvalue of A with multiplicity at least n−2.
We show that the associated eigenspace has dimension at least n−2. First, by inspection
of (8.6), it is clear that the space V = {(0, 0, 0, v4, . . . , vn, 0) | (v4, . . . , vn) ∈ Rn−3} is a
subspace of ker(A − X2Id). Now, we may remove the lines and columns of A − X2Id of
indices comprised between 4 and n and check the following determinant∣∣∣∣∣∣∣∣

Y c1ρ0 sin θ sinϕ c1ρ0 cos θ bρ20
Θρ−1

0 sin θ sinϕ 0 0 0
Θρ−1

0 cos θ 0 0 0
b|z0|2 |z0| sin δ 0 Y

∣∣∣∣∣∣∣∣ ,
with

Y = X1 −X2 = sin θ
(
(c1 − c2) cosϕ+M cos(ϕ− δ)

)
.

Developing with respect to the last column, we easily realize that this determinant is equal
to 0, showing that there is a one-dimensional complement space to V in ker(A−λId) and
consequently, that this eigenspace is at least of dimension n− 2.

According to classical results about the cubic equation [60], P has three distinct real
roots if and only if its discriminant ∆ is positive, i.e.

∆ =:
1

27

[
4(B2 + 3C)3 − (2B3 + 9BC + 27D)2

]
> 0.

Some algebra leads to

B2 + 3C = Y 2 + 3(L+M2), 2B3 + 9BC + 27D = −2Y 3 − 9Y (L− 2M2) + 27MR,

and finally we get ∆ as a polynomial of Y :

∆ = 4Y 4M2 + 4Y 3MR + Y 2(L2 + 20LM2 − 8M4)

+18YMR(L− 2M2) + 4(L+M2)3 − 27M2R2.(8.12)

Proof of (i). We first consider the case where δ = 0 or δ = π. In this case (8.8) shows
that R = 0 and ∆ reduces to

∆ = 4Y 4M2 + Y 2(L2 + 20LM2 − 8M4) + 4(L+M2)3

= 4
(
M2(Y 2 −M2)2 + L3 + 3L2M2 + 3LM4

)
+ Y 2(L2 + 20LM2).

Since L ≥ 0, all terms in the last expression are nonnegative so we get ∆ ≥ 0. If L ̸= 0,
we see that ∆ > 0 and so, the three roots of P are real and distinct. If L = 0, we have
∆ = 4M2(Y −M)2(Y +M)2, so that

∆ = 0 ⇐⇒ Y = ϵ1M,

with ϵ1 = ±1. On the other hand, from (8.8), we have

L = 0 ⇐⇒ θ =
π

2
and (ϕ = 0 or ϕ = π). (8.13)
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In this case, we have Y = ϵ2
(
(c1 − c2) + ϵ3M

)
with ϵ2 = cosϕ = ±1 and ϵ3 = cos δ = ±1.

Therefore, we have ∆ = 0 if and only if

(1− ϵ1ϵ2ϵ3)M = ϵ1ϵ2(c1 − c2).

Since c1 − c2 > 0 (see Theorem 3.1), we must have (1 − ϵ1ϵ2ϵ3) = 2. Hence ∆ can only
be zero if 2|M | = c1 − c2, which is ruled out in the assumptions of the theorem. Thus, it
follows that P has three real and distinct roots.

Now, we study whether one of these roots coincides with the root X2 found earlier.
Indeed, in this case, we have P (X2) = 0. From (8.9), (8.10), (8.11) we readily get that
P (X2) = LY . So, P (X2) = 0 implies L = 0 or Y = 0.

� If L = 0, injecting (8.13) into (8.6) shows that the eigenspace associated to the
eigenvalue X2 contains the subspace W = {(0, v2, . . . , vn, 0) | (v2, . . . , vn) ∈ Rn−1}.
Since Y 2 −M2 = 0 is not allowed by the assumptions of the theorem, we see that
A−X2Id has rank 2 which shows that ker(A−X2Id) has dimension exactly equal
to n − 1. Since the roots of P are distinct, X2 is a simple root of P so that, as an
eigenvalue of A, X2 has multiplicity n− 1. So, in this case, A is diagonalizable with
real eigenvalues.

� If Y = 0, injecting it into (8.6) readily shows that A−X2Id has rank 2. We conclude
similarly as in the previous case.

Now, in the general case where no root of P coincides with X2, the eigenspaces asso-
ciated with the roots of P are one-dimensional. Then, X2 is an eigenvalue of multiplicity
exactly equal to n− 2 and since the associated eigenspace has dimension at least n− 2 as
previously shown, its dimension is exactly n− 2. It follows that A is diagonalizable with
real eigenvalues.

This shows that the model is hyperbolic about (ρ0, u0, z0) when z0 ∥ u0. The case
where z0 = 0 is obvious and left to the reader.

Proof of (ii), case |M | large. We notice that the condition that ρ0|b||z0| large just
means that |M | is large. If we introduce T and Z such that

Y = T +MZ, T = (c1 − c2) sin θ cosϕ, Z = sin θ cos(ϕ− δ),

and insert it in (8.12), we get that ∆ is a polynomial in M of degree 6 which is written:

∆ = 4(Z2 − 1)2M6 + 16TZ(Z2 − 1)M5

+
(
8T 2(3Z2 − 1) + 12L+ 20LZ2 + 4Z3R− 36ZR

)
M4 + l.o.t,

where “l.o.t” stand for “lower order terms”. Suppose Z = ±1 =: ϵ. Then, sin θ = 1 and
cos(ϕ − δ) = ϵ. This means that θ = π/2 and ϕ = δ (if ϵ = 1) or ϕ = δ + π (if ϵ = −1).
This implies

L = c1Θsin2 δ, R = ϵΘsin2 δ, T = ϵ(c1 − c2) cos δ.

In this case, ∆ reduces to

∆ = 16
(
T 2 + 2(L− ϵR)

)
M4 + l.o.t

= 16
(
(c1 − c2)

2 cos2 δ − 2(1− c1)Θ sin2 δ
)
M4 + l.o.t
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Thus, whenever δ is such that

0 ≤ cot2 δ < E, E =
2Θ(1− c1)

(c1 − c2)2
,

(we notice that E > 0 thanks to Theorem 3.1), the leading order of ∆ as a polynomial
in M is a negative coefficient times M4. Thus, ∆ is negative for large enough M . The
coefficients of the lower order terms are bounded by constants that only depend on c1, c2
and Θ. Thus, there exists a constant C2 > 0 which only depends on c1, c2 and Θ such
that for |M | > C2 and δ such that cot2 δ < E/2, then ∆ < 0, showing that the System is
not hyperbolic about a state of corresponding (ρ0, u0, z0).

Proof of (ii), case |M | small. Suppose now θ = π/2 and ϕ such that L = c1Θsin2 ϕ =
e≪ 1. Let us also choose δ = ϕ+ π/2 so that, for instance:

sinϕ = ϵ

√
e

c1Θ
, cosϕ = sin δ =

√
1− e

c1Θ
= 1 +O(e),

with ϵ = ±1. Then, we get

R = ϵ

√
eΘ

c1

(
1 +O(e)

)
, Y = c1 − c2 +O(e).

Finally, let us choose M = αe with α a constant to be chosen later. Inserting these
assumptions into (8.12), we check that the leading order term when e→ 0 is coming from
the second term of (8.12), so that

∆ = 4ϵ(c1 − c2)
3

√
Θ

c1
αe3/2

(
1 + o(1)

)
,

as e → 0. Taking α = −ϵ, we see that this leading order term is negative. By the same
arguments as in the previous case, this shows that there exists a constant C1 > 0 which
only depends on c1, c2 and Θ such that for all |M | < C1, we can find δ (depending on
|M |) such that ∆ < 0. This proves that the System is not hyperbolic about a state of
corresponding (ρ0, u0, z0) either.

9 Doubly periodic travelling-wave solutions: proofs

We look for a solution of the form (3.33), (3.34), (3.35). Since ρ, u and ∇xα = 2π(pe1 +
me2) are constant in space and time, Eqs (3.23) and (3.24) (with V = 0) are trivially
satisfied. The only equation left to verify is (3.25); It leads to

−λ+ (c1U1 + 2πbp)2πp+ (c1U2 + 2πbm)2πm = 0,

which, after rearrangement, is nothing but (3.36). This gives the travelling-wave solutions.
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Now, such solutions are stationary if λ = 0. In such a case, supposing (p,m) ̸= (0, 0),
U must satisfy (3.38). Letting X = pe1 +me2, this equation is written

U · X

|X|2 = −2πb

c1
. (9.1)

Using Cauchy-Schwarz inequality and the fact that |U | = 1, we find that

|X| ≤ c1
2π|b| , (9.2)

is a necessary condition for the existence of U . But this condition is exactly (3.37). It is
also a sufficient condition. If the inequality (9.2) is satisfied, we can write

U = −2πb|X|
c1

X

|X| + σ
(
1−

(2πb|X|
c1

)2)1/2( X
|X|
)⊥
,

= −2πb

c1

(
p
m

)
+ σ
( 1

p2 +m2
−
(2πb
c1

)2)1/2( −m
p

)
(9.3)

where ( X|X|)
⊥ is the vector obtained by rotating X

|X| by an angle of π/2 and σ = ±1. This

gives two solutions U except if the factor of σ is zero, which is the case where (9.2) is an
equality. In this case, the solution is given by

U = −Sign(b)X/|X| = −Sign(b)
1√

p2 +m2

(
p
m

)
.

Finally, the case (p,m) = (0, 0) is obvious, which ends the proof.

10 Numerical methods

In this section, we give additional details on the numerical methods used to produce the
simulations shown in Section 4. The code is freely available on the GitHub page of the
second author at

https://github.com/antoinediez/Swarmalators

The particle scheme is written in Python and the finite volume scheme in Julia.

10.1 Particle scheme

Simulating mean-field particle systems is relatively easy though computationally expensive
when the number of particles becomes large. In order to simulate the particle system with
up to 3.5 millions particles, we rely on the highly-efficient GPU framework introduced in
the SiSyPHE library [38] which is based on the KeOps library [13]. The SiSyPHE library
is a versatile Python library designed for the simulation of collective dynamics models
which already includes classical models such as the Vicsek model. Thanks to the object-
oriented implementation of the library and since the present model is an elaboration of
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the Vicsek model, only a simple extension of the base class Vicsek of the SiSyPHE library
is needed in order to incorporate the new phase variable and its contribution to the
dynamics. From a methodological point of view, the (stochastic) particle system (2.1)-
(2.3) is discretized using a first-order Euler-Maruyama scheme. For a given interaction
radius R and with the notations of Section 4.1.1, the time-step is taken equal to ∆t =
10−2/max(Cγ, ν,D, ν ′, D′). All the particle simulations have been run using an Nvidia
GTX 2080 Ti GPU chip on the GPU cluster of the Department of Mathematics at Imperial
College London.

10.2 Finite volume scheme

Following the methodology introduced in [71] for the SOH model, the finite volume scheme
is based on the following formulation of the system (3.4)-(3.6) as the relaxation limit ε→ 0
of a system written in conservative form.

∂tρ
ε +∇x · [ρ(c1uε + bρε∇xα

ε)] = 0, (10.4)

∂t(ρ
εuε) +∇x · [ρεuε ⊗ (c2u

ε + bρε∇xα
ε)] + Θ∇xρ

ε =
ρε

ε
(1− |uε|2)uε, (10.5)

∂t(ρ
ε cosαε) +∇x · [ρε cosαε(c1uε + bρε∇xα

ε)]

= − sinαε
[
(b− b′)|ρε∇xα

ε|2 +Θ′∇x · (ρε∇xρ
ε)
]
, (10.6)

∂t(ρ
ε sinαε) +∇x · [ρε sinαε(c1uε + bρε∇xα

ε)]

= cosαε
[
(b− b′)|ρε∇xα

ε|2 +Θ′∇x · (ρε∇xρ
ε)
]
, (10.7)

where for numerical stability reasons, we use the variable (cosα, sinα) instead of just α.
We first solve the conservative part using a custom HLLE scheme [66, 41] and we use a
splitting method for the source terms as outlined below.

1. Using a dimensional splitting, solving the conservative part

∂tρ+∇x · [ρ(c1u+ bρ∇xα)] = 0,

∂t(ρu) +∇x · [ρu⊗ (c2u+ bρ∇xα)] + Θ∇xρ = 0,

∂t(ρ cosα) +∇x · [ρ cosα(c1u+ bρ∇xα)] = 0

∂t(ρ sinα) +∇x · [ρ sinα(c1u+ bρ∇xα)] = 0,

reduces to solving two 1D equations. In order to compute the numerical flux between
two datas (ρℓ, u1ℓ, u2ℓ, cosαℓ, sinαℓ) and (ρr, u1r, u2r, cosαr, sinαr) we first need to
approximate the phase gradient (in the x1-direction). A finite difference approxi-
mation can be computed from (cosαℓ, sinαℓ) and (cosαr, sinαr) only by taking the
argument of the following complex number:

∂x1α ≃ zℓr := arg
(
cosαr cosαℓ + sinαr sinαℓ + i(sinαr cosαℓ − sinαℓ cosαr)

)
/∆x,
(10.8)

where ∆x is the space discretization step. Then, using the change of variable
(q0, q1, q2, q3, q4) = (ρ, ρu1, ρu2, ρ cosα, ρ sinα) we are led to the computation of the

45



Jacobian matrix of the flux function

f(q0, q1, q2, q3, q4) :=


c1q1 + bzℓrq

2
0

c2q
2
1/q0 +Θq0 + bzℓrq0q1
c2q1q2/q0 + bzℓrq0q2
c1q3q1/q0 + bzℓrq0q3
c1q4q1/q0 + bzℓrq0q4

 .

A direct computation shows that the Jacobian matrix of f has four eigenvalues, one
with multiplicity 2:

ν1 = c1q1/q0 + bzℓrq0,

and three with multiplicity 1:

ν2 = c2q1/q0 + bzℓrq0,

ν+ =
1

2

(
2c2q1/q0 + 3bzℓrq0 +

√
∆
)
,

ν− =
1

2

(
2c2q1/q0 + 3bzℓrq0 −

√
∆
)
,

where ∆ = 4c2(c2 − c1)(q1/q0)
2 + 4c1Θ + 4bzℓr(c1 − c2)q1 + (bzℓrq0)

2. Using these
values, the computation of the numerical flux using a HLLE scheme is explained
in [66, 41]. Note that since the eigenvalues depend on zℓr and thus on ρ and ∇xα
(which are not ensured to be bounded), we have to use an adaptive time step ∆t
in order to guarantee the CFL condition ∆t

∆x
max(|ν1|, |ν2|, |ν+|, |ν−|) ≤ 1 at each

iteration. For better stability, in the experiments, ∆t is chosen so that the CFL
number does not exceed 0.1.

2. The relaxation part reads

∂tρ
ε = 0,

∂t(ρ
εuε) =

ρε

ε
(1− |uε|2)uε,

∂t(ρ
ε cosαε) = 0,

∂t(ρ
ε sinαε) = 0.

It can be solved explicitly but as shown in [71], when ε → 0 it reduces to a mere
normalization of the velocity.

3. The other source terms reads

∂tρ = 0,

∂tu = 0

∂t cosα = − sinα
[
(b− b′)ρ|∇xα|2 +Θ′(∆ρ+ |∇x

√
ρ|2)
]
,

∂t sinα = cosα
[
(b− b′)ρ|∇xα|2 +Θ′(∆ρ+ |∇x

√
ρ|2)
]
.

We solve this part using an explicit Euler scheme. We use a finite difference approx-
imation of the spatial derivatives on the right-hand side, with a classical five-point
discretisation of the Laplacian term and using the same method as before (10.8) for
the gradient in α.
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11 List of supplementary videos

The videos can be found using the following link:
https://figshare.com/projects/Topological_states_and_continuum_model_for_swarmalators_

without_force_reciprocity/139912

The videos show the outcome of the simulations discussed in Sections 4.2 and 4.3. For each
video, the left panel shows the spatial density and the right panel the average phase. These
quantities are computed using a spatial discretization on a uniform grid with constant step
∆x = 0.01. For the particle simulations, the value of the density in a cell is computed as
the proportion of particles in this cell and the phase is their average phase (it is arbitrarily
set to 0 if the cell is empty). Similarly the average velocity is computed on a spatial grid
with step size ∆x = 0.05 and depicted by black arrows. For the particle simulations, three
particles are represented on the right panel by three disks (of arbitrary radius) colored
according to the phases of these particles.

11.1 Particle simulations

The following videos supplement the results presented in Section 4.2.2 and discussed in
Section 4.2.3. Note that the phases of the particles range from 0 to 2π but they have been
rescaled so that the range of the colorbar of the right-panel is between 0 and 1.

Video 1 (Very low noise NA) Particle simulation starting form a NA configuration
with k′ = k′hi+ = 10000 and the other parameters given in Section 4.2.1. The particles
segregate into small regions of equal phase separated by thin low-density regions. The
systems eventually reaches a stable state where well-separated band-like structures char-
acterized by a constant phase travel at a constant speed in the direction opposite to the
phase gradient. See Figs. 6a and 6b.

Video 2 (Very low noise PA) Particle simulation starting form a PA configuration
with k′ = k′hi+ = 10000 and the other parameters given in Section 4.2.1. The particles
segregate into small regions of equal phase separated by thin low-density regions. After 40
units of time, well-separated band-like structures characterized by a constant phase can be
identified. They travel at a constant speed in the same direction as the phase gradient but
their shapes are not stable.

Video 3 (Very low noise OT) Particle simulation starting form a OT configuration
with k′ = k′hi+ = 10000 and the other parameters given in Section 4.2.1. The particles
segregate into small regions of equal phase separated by thin low-density regions. The global
velocity of the particles transitions from (1, 0)T to (0, 1)T. Although band-like structures
can be identified, they are not as stable as in the NA case.

Video 4 (Very low noise UF) Particle simulation starting form a UF configuration
with k′ = k′hi+ = 10000 and the other parameters given in Section 4.2.1. The particles
segregate into small regions of equal phase separated by thin low-density regions. These
regions are very dynamic with a lot of merging and mixing. After about 10 units of time,
the system reaches a flocking state in which all the phases and velocity equal.
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Video 5 (Low noise NA) Particle simulation starting form a NA configuration with
k′ = k′hi = 200 and the other parameters given in Section 4.2.1. The behavior is the same
as the one described in the caption of Video 1 but the bands are larger and their phase
slowly varies in time. See Figs. 6c and 6d.

Video 6 (Low noise PA) Particle simulation starting form a PA configuration with
k′ = k′hi = 200 and the other parameters given in Section 4.2.1. The behavior is initially
the same as the one described in the caption of Video 2 but the bands are not stable and
the systems finally reaches a flocking phase.

Video 7 (Low noise OT) Particle simulation starting form a OT configuration with
k′ = k′hi = 200 and the other parameters given in Section 4.2.1. The behavior is initially
the same as the one described in the caption of Video 3 but the systems finally reaches a
stable state which is the same state as the one starting from the NA configuration.

Video 8 (Low noise UF) Particle simulation starting form a UF configuration with
k′ = k′hi = 200 and the other parameters given in Section 4.2.1. The behavior is the same
as the one described in the caption of Video 4 but the segregation regions are larger.

Video 9 (Medium noise NA) Particle simulation starting form a NA configuration
with k′ = k′med = 10 and the other parameters given in Section 4.2.1. The initial doubly
periodic travelling wave persists during about 5 units of time. Then thin low-density
regions emerge and delimitate band-like structures. Unlike the cases with less noise in
the phase equation, the bands are larger and an inner gradient in phase can be identified
inside each band.

Video 10 (Medium noise PA) Particle simulation starting form a PA configuration
with k′ = k′med = 10 and the other parameters given in Section 4.2.1. The behavior is
similar to the one presented in the caption of Video 9 except that the bands are moving
in the opposite direction. Moreover, the bands shape is less stable.

Video 11 (Medium noise OT) Particle simulation starting form a OT configuration
with k′ = k′med = 10 and the other parameters given in Section 4.2.1. The behavior
is initially similar to the one presented in the caption of Video 9 except that the global
velocity of the particles transition from (1, 0)T to (0, 1)T and the systems finally reaches
the same stable state as the one starting from a NA configuration.

Video 12 (Medium noise UF) Particle simulation starting form a UF configuration
with k′ = k′med = 10 and the other parameters given in Section 4.2.1. The behavior is the
same as the one described in the caption of Video 8.

Video 13 (Large noise NA) Particle simulation starting form a NA configuration with
k′ = k′lo = 3 and the other parameters given in Section 4.2.1. The initial doubly periodic
travelling wave is stable and persists during the 40 units of time of the simulation. The
theoretical travelling wave speed is λ ≃ 0.03. The measured speed is approximately equal
to 0.05.
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Video 14 (Large noise PA) Particle simulation starting form a PA configuration with
k′ = k′lo = 3 and the other parameters given in Section 4.2.1. The initial doubly periodic
travelling wave is stable and persists during the 40 units of time of the simulation. The
theoretical travelling wave speed is λ ≃ −1.75. The measured speed is approximately equal
to −1.72.

Video 15 (Large noise OT) Particle simulation starting form a OT configuration with
k′ = k′lo = 3 and the other parameters given in Section 4.2.1. The initial doubly periodic
travelling wave is stable and persists during the 40 units of time of the simulation. The
theoretical travelling wave speed is λ ≃ −0.86. The measured speed is approximately equal
to −0.84.

Video 16 (Large noise UF 1) Particle simulation starting form a UF configuration
with k′ = k′lo = 3 and the other parameters given in Section 4.2.1. The system reaches a
flocking state (although two phases can be identified)

Video 17 (Large noise UF 2) Particle simulation starting form a UF configuration
with k′ = k′lo = 3 and the other parameters given in Section 4.2.1. The system reaches a
state close to a doubly periodic travelling wave but there are also waves of velocities.

Video 18 (Large noise UF 3) Particle simulation starting form a UF configuration
with k′ = k′lo = 3 and the other parameters given in Section 4.2.1. The system reaches a
kind of doubly periodic travelling wave solution but with a much more complex shape.

11.2 Simulations of the SH system

The following videos supplement the results presented in Section 4.3.2.

Video 19 (Low noise NA) Simulation of the SH system starting from a perturbed NA
configuration with k′ = k′hi = 200 and the other parameters given in Section 4.2.1. The
initial noise quickly resorbs and the system finally reaches a stable doubly periodic travel-
ling wave with no perceptible inhomogeneities.

Video 20 (Low noise PA) Simulation of the SH system starting from a perturbed PA
configuration with k′ = k′hi = 200 and the other parameters given in Section 4.2.1. The
initial noise quickly resorbs and the system finally reaches a stable doubly periodic travel-
ling wave although small inhomogeneities in the density are perceptible.

Video 21 (Low noise OT) Simulation of the SH system starting from a perturbed OT
configuration with k′ = k′hi = 200 and the other parameters given in Section 4.2.1. The
initial noise quickly resorbs but small inhomogeneities in the density are perceptible and
eventually degenerate into thin very-low density regions. After a transition period during
which the global velocity transitions towards a limit value close to (0, 1)T, these structures
disappear and the system reaches the corresponding stable doubly periodic travelling wave
solution (although although small inhomogeneities in the density remain perceptible).
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Video 22 (Medium noise NA) Simulation of the SH system starting from a perturbed
NA configuration with k′ = k′lo = 10 and the other parameters given in Section 4.2.1.
The initial noise quickly resorbs and the system finally reaches a stable doubly periodic
travelling wave with no perceptible inhomogeneities.

Video 23 (Medium noise PA) Simulation of the SH system starting from a perturbed
PA configuration with k′ = k′lo = 10 and the other parameters given in Section 4.2.1.
Same observations as Video 22.

Video 24 (Medium noise OT) Simulation of the SH system starting from a perturbed
OT configuration with k′ = k′lo = 10 and the other parameters given in Section 4.2.1.
Same observations as Video 22.

Video 25 (Large noise NA) Simulation of the SH system starting from a perturbed
NA configuration with k′ = k′lo = 3 and the other parameters given in Section 4.2.1.
Same observations as Video 22.

Video 26 (Large noise PA) Simulation of the SH system starting from a perturbed PA
configuration with k′ = k′lo = 3 and the other parameters given in Section 4.2.1. Same
observations as Video 22.

Video 27 (Large noise OT) Simulation of the SH system starting from a perturbed OT
configuration with k′ = k′lo = 3 and the other parameters given in Section 4.2.1. Same
observations as Video 22.
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near low densities. J. Comput. Phys., 92(2):273–295, 1991.

[42] A. Figalli, M.-J. Kang, and J. Morales. Global well-posedness of the spatially homo-
geneous Kolmogorov–Vicsek model as a gradient flow. Arch. Ration. Mech. Anal.,
227(3):869–896, 2018.

[43] A. Frouvelle. A continuum model for alignment of self-propelled particles with
anisotropy and density-dependent parameters. Math. Models Methods Appl. Sci.,
22(07):1250011, 2012.

[44] A. Frouvelle and J.-G. Liu. Dynamics in a kinetic model of oriented particles with
phase transition. SIAM J. Math. Anal., 44(2):791–826, 2012.

[45] I. M. Gamba, J. R. Haack, and S. Motsch. Spectral method for a kinetic swarming
model. J. Comput. Phys., 297:32–46, 2015.

[46] I. M. Gamba and M.-J. Kang. Global weak solutions for Kolmogorov–Vicsek type
equations with orientational interactions. Arch. Ration. Mech. Anal., 222(1):317–342,
2016.

[47] J. Gautrais, F. Ginelli, R. Fournier, S. Blanco, M. Soria, H. Chaté, and G. Theraulaz.
Deciphering interactions in moving animal groups. PLoS Comput. Biol., 2012.

53



[48] Q. Griette and S. Motsch. Kinetic equations and self-organized band formations. In
Active Particles, Volume 2, pages 173–199. Springer, 2019.

[49] S.-Y. Ha, J. Jung, J. Kim, J. Park, and X. Zhang. Emergent behaviors of the
swarmalator model for position-phase aggregation. Math. Models Methods Appl.
Sci., 29(12):2225–2269, 2019.

[50] S.-Y. Ha, J. Jung, J. Kim, J. Park, and X. Zhang. A mean-field limit of the particle
swarmalator model. Kinet. Relat. Models, 14(3):429, 2021.

[51] S.-Y. Ha and J.-G. Liu. A simple proof of the Cucker-Smale flocking dynamics and
mean-field limit. Commun. Math. Sci., 7(2):297–325, 2009.

[52] S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of
flocking. Kinet. Relat. Models, 1:415–435, 2008.

[53] M. Z. Hasan and C. L. Kane. Colloquium: topological insulators. Rev. Modern Phys.,
82(4):3045, 2010.

[54] C. K. Hemelrijk and H. Hildenbrandt. Schools of fish and flocks of birds: their shape
and internal structure by self-organization. Interface Focus, 2(6):726–737, Aug 2012.

[55] C. K. Hemelrijk, H. Hildenbrandt, J. Reinders, and E. J. Stamhuis. Emergence of
oblong school shape: models and empirical data of fish. Ethology, 116(11):1099–1112,
2010.

[56] H. Hildenbrandt, C. Carere, and C. K. Hemelrijk. Self-organized aerial displays of
thousands of starlings: a model. Behavioral Ecology, 21(6):1349–1359, 2010.

[57] H. Hong. Active phase wave in the system of swarmalators with attractive phase
coupling. Chaos, 28(10):103112, 2018.

[58] H. Hong, K. Yeo, and H. K. Lee. Coupling disorder in a population of swarmalators.
Phys. Rev. E, 104(4):044214, 2021.

[59] E. P. Hsu. Stochastic Analysis on Manifolds, volume 38 of Graduate Studies in
Mathematics. American Mathematical Soc., 2002.

[60] N. Jacobson. Basic Algebra I. Courier Corporation, 2012.
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