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Introduction

→ Based on a novel method: General Reinforced Imitation (GRI) by

Chekroun et al. [1]

→ GRI-based algorithm in the CARLA Challenge 2021:

• Ranked #1 in the MAP track.

• Ranked #4 in the SENSOR track.

→ Focusing GRIAD for camera-based end-to-end autonomous driving.
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General Reinforced Imitation



The GRI method

→ Combines benefits from exploration and expert data.

→ Simplifying hypothesis: expert demonstrations can be seen as perfect

data whose underlying policy gets a constant high reward.

→ Defines two types of agents:

• The exploration agent: gather data by exploring the environment.

• The demonstration agent: send pre-generated expert data associated

with a demonstration reward.
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GRI: the algorithm

Figure 1: GRI algorithm
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GRI for Autonomous Driving



A modular end-to-end pipeline (i)

→ Pipeline inspired by Toromanoff et al. IAs method [6].
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Figure 2: Modular pipeline for end-to-end autonomous driving using

reinforcement learning. It is composed of a vision subsystem and a

decision-making subsystem.
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A modular end-to-end pipeline (ii)

Design of the vision subsystem
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Design of the vision subsystem
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Figure 3: Two encoder-decoder networks are pretrained on segmentation,

classifications and regression tasks. After training, the visual encoders serve as

fixed feature extractors with frozen weights. For the DRL backbone training,

both encoder outputs are concatenated and sent to the memory buffer as input

to DRL.
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A modular end-to-end pipeline (iii)

Design of the decision-making subsystem
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Design of the decision-making subsystem
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Figure 4: Simplified representation of the distributed GRIAD setup with a

Rainbow-IQN Ape-X [5] backbone. A central computer receives data in a

shared replay buffer from both exploration and demonstration agents running

on other computers.
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Representation of the whole system
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Figure 5: This pipeline is trained in two phases: (1) Visual encoders are

pretrained on a perception dataset on several auxiliary tasks. (2) Visual

encoders are frozen and a GRI-based DRL network is trained with both

pre-generated expert data with an offline demonstration agent and an online

exploration agent gathering data from a simulator. 9



Experimental results



Ablation study on the NoCrash benchmark

Task Town, Weather RL 12M RL 16M GRIAD

Empty 96.3 ± 1.5 98.0 ± 1.0 98.0 ± 1.7

Regular train, train 95.0 ± 2.4 98.6 ± 1.2 98.3 ± 1.7

Dense 91.7 ± 2.0 95.0 ± 1.6 93.7 ± 1.7

Empty 83.3 ± 3.7 96.3 ± 1.7 94.0 ± 1.6

Regular test, train 82.6 ± 3.7 96.3 ± 2.5 93.0 ± 0.8

Dense 61.6 ± 2.0 78.0 ± 2.8 77.7 ± 4.5

Empty 67.3 ± 1.9 73.3 ± 2.5 83.3 ± 2.5

Regular train, test 76.7 ± 2.5 81.3 ± 2.5 86.7 ± 2.5

Dense 67.3 ± 2.5 80.0 ± 1.6 82.6 ± 0.9

Empty 60.6 ± 2.5 62.0 ± 1.6 68.7 ± 0.9

Regular test, test 59.3 ± 2.5 56.7 ± 3.4 63.3 ± 2.5

Dense 40.0 ± 1.6 46.0 ± 3.3 52.0 ± 4.3

Table 1: Ablation study of GRIAD using the NoCrash benchmark. GRIAD

experimentally shows to generalize more on test weather than RL with 12M

and 16M steps and globally gives the best agent.Mean and standard deviation

over 3 evaluation seeds.
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On the CARLA Leaderboard

Cam. DS RC IS

LBC [3] 3 10.9 21.3 0.55

IAs [6] 1 24.98 46.97 0.52

Rails [2] 4 31.37 57.65 0.56

GRIAD 3 36.79 61.85 0.60

Table 2: CARLA Leaderboard’s driving metrics on camera-based systems.

GRIAD was trained on CARLA 0.9.10.

Cam. LiDAR IMU DS RC IS

TF+ [4] 1 ✓ ✓ 37.49 74.83 0.54

TF Ens. [4] 3 ✓ ✓ 37.84 72.36 0.60

LAV 4 ✓ ✓ 47.65 87.18 0.53

GRIAD 3 ✗ ✗ 36.79 61.85 0.60

Table 3: CARLA Challenge 2021 final driving metrics on the SENSOR track.

GRIAD was trained on CARLA 0.9.10.
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Conclusion & Additional information

→ GRIAD efficiently leverages expert data and exploration for end-to-end

autonomous driving.

→ GRI method generalizability and robustness assessed in Chekroun et

al. [1]:

• Robust to noisy demonstrations

• GRI further validated on the Mujoco benchmark

→ Accelerates the training: sending pre-generated expert data is almost

free compared to interaction with the CARLA simulator.

→ To go further: add LiDaR to improve the visual subsystem.
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Conclusion & Additional information

Thank you for your attention!

Do not hesitate to contact me: raphael.chekroun@minesparis.psl.eu
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