Regret-based calibration using GPs
Victor Trappler, Élise Arnaud, Laurent Debreu, Arthur Vidard

To cite this version:
Victor Trappler, Élise Arnaud, Laurent Debreu, Arthur Vidard. Regret-based calibration using GPs. Journées CIROQUO 2022, May 2022, Grenoble, France. hal-03681091

HAL Id: hal-03681091
https://hal.archives-ouvertes.fr/hal-03681091
Submitted on 30 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
How to calibrate a numerical model so that it performs reasonably well for different random operating conditions?

Objectives
▶ Define the notion of regret in a calibration context
▶ Develop efficient methods and algorithms in order to estimate those parameters

Background: estimation of the bottom friction in a shallow water model

Let \(u \) be some operating conditions (configuration, boundary conditions...)

\[
G: \Theta \rightarrow \mathbb{R}^2, \quad u \rightarrow G(\theta, u) \quad \text{bottom friction}
\]

Given some observations \(y_{\text{obs}} \), the MSE is

\[
J(\theta) = \frac{1}{2} \| G(\theta, u) - y_{\text{obs}} \|^2,
\]

and the estimate \(\hat{\theta} \) is defined as

\[
\hat{\theta} = \arg \min_{\theta} J(\theta)
\]

Now, \(u \in U \sim U \) of density \(p_U \)

For all \(\theta \), the loss function is now

\[
J(\theta, U) = \frac{1}{2} \| G(\theta, U) - y_{\text{obs}} \|^2,
\]

or equivalently,

\[
(J(\theta, U) | \theta \in \Theta) \text{ is a family of random variable indexed by } \theta.
\]
▶ How to choose a \(\tilde{\theta} \in \Theta \), such that "\(\tilde{\theta} = \arg \min_{\theta} J(\theta, U) " ?

(\text{Relative})-regret based calibration

▶ For a fixed \(u \in U \), the best attainable value is

\[
J^*(u) = \min_{\theta \in \Theta} J(\theta, u)
\]

We want to find \(\tilde{\theta} \) so that

\[
J(\tilde{\theta}, U) \rightarrow J^*(U) \quad \text{with high probability}
\]

\(\alpha \)-acceptability [TAVD20]

Given \(u \in U \),

\(\hat{\theta} \) is \(\alpha \)-acceptable if \(J(\hat{\theta}, U) \leq \alpha \cdot J^*(u) \)

▶ Find \(\hat{\theta} \) which is \(\alpha \)-acceptable with the highest probability:

\[
\hat{\theta}_\alpha = \arg \max_{\theta \in \Theta} P\{ J(\theta, U) \leq \alpha \cdot J^*(U) \}
\]

Large \(\alpha \): Conservative, performances controlled with high probability
Small \(\alpha \): Optimistic, good performances but less frequently
Good knowledge of \(J \) globally and around the conditional minimisers is required.

Computing regret-based estimates using GP regression

Two approaches:
▶ Reduce approximation error of \(J - \alpha J^* \)
▶ Improve estimation of the set \(\Delta_\alpha = \{ J - \alpha J^* \leq 0 \} \)

Let \(Z \sim \text{GP}(m_z, \Sigma_z) \) modelling \(J \) over \(\Theta \times U \)
▶ Define \(\Delta_\alpha(\theta, u) = Z(\theta, u) - \alpha Z^*(u) \) with \(Z^*(u) \) approximation of \(J^* \) computed using \(m_2^* \):

\[
Z^* \sim \text{GP}(m_2^*, \Sigma_z^2)
\]

Reduction of the expected IMSE

Approximation error \(\theta, u \) comes from:
▶ Uncertainty on the value of the function \(J: \Theta \times U \rightarrow \mathbb{R} \)
▶ Uncertainty on the conditional minimiser \(J^*: \Theta \times U \rightarrow \mathbb{R} \)

\[
\text{IMSE}(\Delta_\alpha) = \int_{\Theta \times U} \alpha^2 \text{P}(\theta, u) \text{d}(\theta, u)
\]

→ global measure of the approximation error. We want the smallest IMSE once a point is added to the design:

\[
(\hat{\theta}_{\text{new}}, U_{\text{new}}) = \arg \min_{\theta, U} \text{P}(\text{IMSE}(\Delta_\alpha \cup Z(\theta, u)))
\]

\(k \)-batch approach ([DSB11])

Improve the "classifier" \(\tilde{\theta}, u \in \Delta_\alpha \) by sampling in margin of uncertainty based on \(\Delta_\alpha
▶ Define the probability of coverage

\[
\mathbb{P}(\tilde{\theta}, u \in \Delta_\alpha) = \mathbb{P}[Z(\theta, u) - \alpha Z^*(u) \leq 0]
\]

▶ Define \(M = \{ \mathbb{E} \in [0,1] - \alpha \} \) – points where the classifier is not too "confident"
▶ Sample points in \(M \), and find centers of clusters using \(k \)-means.
▶ Adjust centroids to reduce either uncertainties on \(\Theta \) or on \(Z^* \)

Conclusion and perspectives
▶ Many criteria of robustness can be defined
▶ We propose adaptive enrichment methods to compute those estimates
▶ Alternatively, we can consider the optimization of the quantile \(Q_{u}(\frac{\text{IMSE}}{\text{IMSE}^*}) \)
▶ Similar iterative methods can be derived using a GP approximation of \(Z^* / Z^* \)

References