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ABSTRACT
The ray dynamics of optical cavities exhibits bifurcation points: special geometries at which ray trajectories switch abruptly between stable and
unstable. A prominent example is the Fabry–Perot cavity with two planar mirrors, which is widely employed for broad-area semiconductor
lasers. Such cavities support lasing in a relatively small number of transverse modes, and the laser is highly susceptible to filamentation and
irregular pulsations. Here, we demonstrate experimentally that a slight deviation from this bifurcation point (planar cavity) dramatically
changes the laser performance. In a near-planar cavity with two concave mirrors, the number of transverse lasing modes increases drastically.
While the spatial coherence of the laser emission is reduced, the divergence angle of the output beam remains relatively narrow. Moreover,
the spatiotemporal lasing dynamics becomes significantly more stable compared to that in a Fabry–Perot cavity. Our near-planar broad-area
semiconductor laser has higher brightness, better directionality, and hence allows shorter integration times than an incandescent lamp while
featuring sufficiently low speckle contrast at the same time, making it a vastly superior light source for speckle-free imaging. Furthermore, our
method of controlling spatiotemporal dynamics with extreme sensitivity near a bifurcation point may be applied to other types of high-power
lasers and nonlinear dynamic systems.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087048

I. INTRODUCTION

The cavity is a crucial component determining the performance
of a laser. There has been much effort in tailoring the cavity geome-
try to control lasing dynamics.1 Traditional cavity design is based on
ray optics that tracks the propagation of optical rays inside a cavity.
Due to the principle of ray-wave correspondence, the ray dynamics
allows us to predict many properties of the actual cavity resonances,
such as their spatial structures and output patterns. Most solid state
and gas laser cavities have two concave mirrors arranged in such a
way that the axial orbit is stable.2–4 In contrast, Fabry–Perot cavities
with two planar facets have been widely adopted for semiconductor
edge-emitting lasers. However, planar broad-area high-power semi-
conductor lasers are highly susceptible to filamentation and irregular
pulsation due to strong nonlinear interactions of the optical field and
the gain medium.5–11

An interesting aspect of the planar Fabry–Perot cavity [see
Fig. 1(b)] with a profound impact on the lasing dynamics is that it is
situated at the bifurcation between stable cavities with concave mir-
rors [Fig. 1(c)] and unstable cavities with convex mirrors. One way
of suppressing the semiconductor laser instabilities is to destabilize
the cavity ray dynamics by tilting the planar facet12,13 or changing
it to a convex shape.14–17 Such cavities lase only in the fundamental
mode, which stabilizes the temporal dynamics.18 However, at high
pump powers, additional transverse modes can lase, nonetheless,
and their nonlinear interactions with the gain medium bring back
filaments and pulsations.

Instead of considering unstable cavities, we have moved deeply
into the regime of stable cavities for highly multimode lasing
in previous studies.19 By replacing the flat mirrors with concave
ones of large curvature, high-order transverse modes are well
confined in near-concentric cavities.20,21 Their small transverse
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FIG. 1. Optical modes in a near-planar laser cavity. (a) Schematic of a near-planar
broad-area semiconductor laser with cavity length L and width W . (b) A passive
mode of a planar cavity (g = 1) without mirror curvature, exhibiting a spatial pro-
file extended over the entire facet. (c) A passive mode of the same transverse
order in a near-planar cavity (g = 0.74), showing enhanced lateral confinement.
(d) The profile of the highest-order transverse mode confined in the near-planar
cavity (g = 0.74), featuring greatly decreased transverse wavelength. (e) The
number of transverse modes in near-planar cavities. Black dashed curve: pas-
sive resonances with a quality factor higher than 0.8Qmax. Red solid curve: lasing
modes at two times the lasing threshold in the presence of gain competition.
(f) Reduction of the transverse characteristic length scale of the passive modes
(on a logarithmic scale). Each curve stops at the highest-order transverse lasing
mode calculated in (e). The modes in (b)–(d) are indicated with arrows.

wavelength prevents filament formation and mitigates spatiotem-
poral instabilities.19,21 In contrast, such stable cavities confine ray
trajectories with a large range of propagation directions, leading to
strongly divergent far-field emission.21 For efficient collection of the
laser emission, it is desirable to also attain high output directional-
ity by staying closer to the Fabry–Perot geometry while maintaining
low spatial coherence and stable lasing dynamics.

Here, we investigate broad-area edge-emitting semiconductor
laser performance as a function of the resonator geometry in the
vicinity of the bifurcation at the planar cavity geometry. We exper-
imentally demonstrate that a tiny modification of the Fabry–Perot
cavity has a profound impact on the lasing dynamics and spa-
tial coherence. As we slightly curve the two end facets to form a
near-planar stable cavity with concave mirrors, the spatial struc-
tures of cavity resonances are strongly modified, which in turn alters
their nonlinear interactions with the gain medium (GaAs quan-
tum well). Consequently, the spatiotemporal stability of the lasing
dynamics in near-planar cavities is greatly improved. Such a sim-
ple scheme of mitigating instabilities will facilitate the stabilization
of high-power broad-area semiconductor lasers for applications in

material processing22 and laser pumping,23 as well as biomedical
applications.24

Moreover, the number of transverse lasing modes drastically
increases compared to that in the planar Fabry–Perot cavity, result-
ing in a sharp drop in the spatial coherence of the emission. At the
same time, the output beam has a far-field divergence angle notably
smaller than that of stable cavities with strongly curved facets.21 This
combination of sufficiently low spatial coherence and relatively good
emission directionality makes our laser an ideal illumination source
for speckle-free full-field imaging.25,26

II. NEAR-PLANAR CAVITY
A. Ray dynamics

Starting with the Fabry–Perot cavity, we gradually change
the planar mirrors to concave ones, while keeping the distance L
between the mirrors and the cavity width W constant. The cavity
stability parameter is given by g = 1 − L/R, where R is the radius of
curvature of the end mirrors. In a Fabry–Perot cavity with g = 1, an
optical ray is trapped only if it propagates parallel to the cavity axis
(perpendicular to the end mirrors). When the propagation direction
of a ray deviates from the cavity axis, it runs laterally out of the cavity
after a few round trips (see the supplementary material).

With concave mirrors at both ends, g becomes less than 1, and
the ray dynamics changes substantially. In a near-planar cavity with
even slightly curved mirrors [Fig. 1(a)], the axial orbit becomes sta-
ble, and additional trajectories propagating with a slight angle with
respect to the cavity axis remain confined laterally.

B. Cavity resonances
The dramatic change in the ray dynamics from planar to near-

planar cavities has a strong influence on the spatial structure of the
cavity resonances (i.e., solutions of the wave equation of the pas-
sive cavity). Due to the lack of lateral confinement in a Fabry–Perot
cavity, the cavity resonances extend laterally across the entire end
facets [Fig. 1(b)]. As the higher-order transverse modes exhibit
larger transverse wavevector components k�, their lateral leakage is
stronger, and their quality (Q) factor is lower. In contrast, the lateral
confinement of rays by concave mirrors reduces the transverse width
of the cavity resonance, as shown in Fig. 1(c). The existence of con-
fined trajectories in the vicinity of the cavity axis greatly enhances
the Q factor of high-order transverse modes. Therefore, even a near-
planar cavity can feature a relatively large number of transverse
modes [Fig. 1(e)].

The existence of high-order transverse modes and their lateral
confinement in a stable cavity lead to a sharp drop in the character-
istic length scale ξ of the optical intensity variation in the transverse
direction. This has a profound impact on the nonlinear interac-
tions between the cavity modes and the gain medium.19,27 ξ is given
by the full-width at half-maximum of the transverse intensity cor-
relation function. Since ξ varies in the longitudinal direction for
g ≠ 1, we average its value along the cavity axis. Higher-order trans-
verse modes have smaller ξ. In a Fabry–Perot cavity with a GaAs
quantum well (gain medium), only low-order transverse modes are
confined, and intensity variations on the scale ξ ≫ λ result in local
carrier-induced refractive index changes due to spatial hole burn-
ing. Optical lensing and self-focusing effects lead to the formation of
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spatial filaments, which are inherently unstable and cause irregular
pulsations.

In a stable cavity, the ξ of high-order transverse modes can be
sufficiently small, so local refractive index variations cannot focus
light and create a filament. In addition, the spatial modulation of
the refractive index on such short scales supersedes and disrupts
the large lenses induced by lower-order transverse modes, thus pre-
venting filamentation. Therefore, an efficient way of reducing the
spatiotemporal instability in a broad-area semiconductor quantum
well laser is to minimize ξ via a stable cavity.19

C. High-Q modes
To maintain a relatively narrow angular spread of the far-field

emission, we optimize the stable cavity geometry in the vicinity of
the planar cavity. In particular, we maximize the number of trans-
verse lasing modes within the range 0.5 ≤ g ≤ 1. Since the lasing
modes need to have high Q factors, we calculate the high-Q trans-
verse modes of passive cavities. Because the GaAs quantum well has
preferential gain for transverse electric (TE) polarization, we cal-
culate the modes with the electric field in the plane of incidence
(p-polarization). The simulated cavities have the same aspect ratio
L/W =

√
2 as the experimental ones, but are L = 20 μm long. The

refractive index n = 3.37 in the cavity is equal to the effective index
of the fundamental TE mode guided in the vertical direction of a
GaAs/AlGaAs epiwafer. The wavelength range of numerical simula-
tions is centered around 800 nm, which matches the gain spectrum
of the GaAs quantum well.

The fundamental transverse mode has the highest quality fac-
tor Qmax, which determines the lasing threshold. Qmax depends on
the cavity length L and mirror reflectivity. It barely changes with g,
and thus, curving the end facets has little effect on the lasing thresh-
old. However, the Q factors of the high-order transverse modes are
greatly improved in a stable cavity with concave mirrors, leading to
a drastic increase in the number of lasing modes.

We show the number Mh of transverse modes with Q > 0.8Qmax
in Fig. 1(e). As g decreases from 1, Mh increases rapidly and reaches
its maximum at g = 0.7, and then decreases. While the sharp rise
results from the better lateral confinement of high-order trans-
verse modes, the subsequent drop in Mh is caused by the reduced
reflectivity for rays with non-perpendicular incidence (see the
supplementary material). With increasing mirror curvature, the
angles of incidence θi at the semiconductor–air interface increase,
and for TE polarization, the reflectivity decreases for θi going from
0 toward the Brewster angle.21 Therefore, the number of high-Q
transverse modes is maximal for a near-planar cavity.

D. Number of lasing modes
Due to their competition for gain, not all high-Q modes will

lase eventually. Taking into account the spatial overlap of these
modes, we compute the number Ml of transverse lasing modes using
the Single-Pole-Approximation Steady-state Ab initio Lasing The-
ory (SPA-SALT).28 Figure 1(e) compares Ml at two times the lasing
threshold to Mh. The difference between Mh and Ml reflects the
strength of modal competition for gain. In the Fabry–Perot cav-
ity of g = 1, only five transverse modes manage to lase among nine
high-Q passive modes. In contrast, 21 out of 22 high-Q transverse
modes lase in a near-planar cavity of g = 0.7. Thus, slightly curving

the end mirrors raises the number of transverse lasing modes by a
factor of 4.

The transverse length scale ξ of the intensity variation is plotted
for every transverse lasing mode in Fig. 1(f). For the same trans-
verse mode order, ξ is much smaller for g = 0.74 than for g = 1
due to better lateral confinement. In addition, more higher-order
transverse modes lase, further reducing ξ. The shortest ξ, corre-
sponding to the highest-order transverse lasing mode, drops four
times from g = 1 to 0.74. The dramatic decrease in the transverse
intensity variation length scale prevents the formation of carrier-
induced optical lenses. It suppresses self-focusing that would lead
to filamentation and instabilities. As a result, the near-planar cavity
features the improved laser stability, similar to a cavity with chaotic
ray dynamics.27

III. HIGHLY MULTIMODE LASING
We fabricate near-planar laser cavities on a GaAs quantum well

epiwafer. The cavity structure is defined by dry etching with an etch
depth of 3.5 μm (see the supplementary material). While the radius
of curvature R of the two end facets is varied from device to device,
the longitudinal cavity length L = 400 μm and transverse cavity width
W = 283 μm are kept constant. The aspect ratio L/W =

√
2 is consis-

tent with the simulations in Fig. 1, even though the cavity size is 20
times larger. To reduce sample heating, we operate the lasers at room
temperature with a pulse duration of 2 μs and a repetition rate lower
than 1 Hz. All devices with different g have similar lasing thresholds
of ∼0.5 A, corresponding to a current density of 0.5 kA/cm2 (see the
supplementary material).

A. Number of transverse lasing modes
We measure the number of transverse lasing modes in cavities

of different g. The laser emission passes through a diffuser and cre-
ates a speckle pattern in the far field. The number of transverse lasing
modes Ml is estimated to be 1/C2, where C is the speckle intensity
contrast.21,29,30 Because the edge emission from the laser contains
multiple transverse modes in the horizontal direction and a single
guided mode in the vertical direction (perpendicular to the wafer),
a line diffuser (RPC Photonics, EDL-20) is used and the far-field
speckle intensity variation in the horizontal direction is recorded,
as shown in Fig. 2(a).

The speckle intensity contrast C decreases with decreasing g,
indicating an increase in the number of transverse lasing modes
Ml. For g = 1, the number of transverse lasing modes, averaged
over multiple devices, is ∼100. Once g is reduced slightly to 0.88,
Ml is enhanced 5 times to about 500. Such a rapid increase in
Ml is consistent with the numerical simulation in Fig. 1(e). Fur-
ther reducing g = 0.74 does not increase Ml any more, in contrast
to the numerical results in Fig. 1(e). We attribute this difference
to the spatially inhomogeneous current injection in our devices,
which modifies the number of transverse lasing modes Ml (see the
supplementary material). With spatially homogeneous pumping, we
expect Ml to be higher, particularly for g = 0.74. We also note that
the number of transverse lasing modes in the near-planar cavities
is close to the previously reported value for a near-concentric (g
= −0.74) cavity.21 Therefore, even minimal curvature of the end
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FIG. 2. Number of transverse lasing modes in near-planar cavities. (a) Measured
intensity fluctuations of far-field speckles created by a line diffuser illuminated with
laser emission from planar (red dashed) and near-planar (green solid) cavities. The
speckle contrast C is reduced from 0.1 at g = 1 to 0.04 at g = 0.88. (b) Number of
transverse lasing modes Ml , estimated from C, at two times of the lasing threshold.
All laser cavities have length L = 400 μm (20 times longer than the simulated
cavities in Fig. 1). Ml increases sharply as g decreases from 1. The error bars
denote variations among multiple fabricated devices of the same geometry g.

facets is sufficient to obtain a large number of transverse lasing
modes and reduce the spatial coherence.

B. Divergence of far-field emission
As more transverse modes lase, the divergence angle of the total

emission increases. We measure the far-field emission pattern I(θ)
in the horizontal direction, as shown in Fig. 3. The filaments in a pla-
nar cavity of g = 1 make I(θ) asymmetric and irregular [Fig. 3(a)].
The divergence angle Δθ is estimated by the full-width at half-
maximum of the smoothed distribution of I(θ), and it equals 12○.
With curved end facets, Δθ increases to 29○ for g = 0.88 [Fig. 3(b)]
and further to 39○ for g = 0.74 [Fig. 3(c)]. We note that the mea-
sured far-field emission patterns are narrower than the simulated
ones due to spatial inhomogeneity of current injection (see the
supplementary material). While the increase in the lateral diver-
gence angle in the near-planar cavities [Fig. 3(d)] is expected,
the emission directionality is significantly improved compared to
the near-concentric cavity21 with g = −0.74 and Δθ = 70○. More-
over, the lateral divergence of emission from the near-planar cavity
is comparable to the vertical divergence of the edge emitting laser.
Therefore, the output beam is approximately circular and, thus,
compatible with standard collection optics.

IV. SPATIOTEMPORAL DYNAMICS
Next, we investigate the lasing dynamics of near-planar cavi-

ties and compare to the planar cavity. The emission intensity on one
facet of the cavity is imaged by a ×20 objective lens onto the entrance
slit of a streak camera (Hamamatsu C5680 with a fast sweep unit
M5676). A single streak image covers a time window of 10 ns with
a temporal resolution of about 30 ps. Figure 4(a) shows exemplary
spatiotemporal intensity fluctuations of the laser emission from a
planar cavity of g = 1. Such fluctuations comprise three different
processes: (i) spatial filaments and their pulsations, (ii) spatiotempo-
ral interference of transverse and longitudinal lasing modes, and (iii)

FIG. 3. Emission directionality of near-planar cavity lasers. (a)–(c) Measured far-
field emission patterns I(θ) from cavities of (a) g = 1, (b) 0.88, and (c) 0.74. The
shaded area represents the measured intensity profile, and the solid line denotes
the smoothed profile with the maximal value normalized to 1. The angular full-
width at half maximum Δθ is indicated by arrows. (d) Divergence angles Δθ as a
function of g. All cavities have the same dimensions as those in Fig. 2. The error
bars denote variations among different cavities with the same g.

photo-detection noise of the streak camera. To separate the three
fluctuation processes, we resort to the fact that they feature distinct
spatial and temporal scales.

A. Separation of different fluctuations
After normalizing the measured intensity I(x, t) by the average

⟨I(x, t)⟩x,t , we conduct the singular value decomposition (SVD) of
the intensity fluctuation δI(x, t) = I(x, t) − ⟨I(x, t)⟩t ,

δI(x, t) =∑
α

sαuα(x)vα(t), (1)

where sα are singular values, uα(x) and vα(t) are the spatial and tem-
poral singular vectors, respectively, and α denotes the index. The
singular values sα are arranged from high to low, and they represent
the contributions of the α-th singular vector to the intensity fluc-
tuation δI(x, t). As shown in Fig. 4(b), sα first drops sharply with
increasing α, then decays more slowly for α > 20. Hence, the first
few singular vectors with large singular values dominate δI(x, t).

To distinguish the singular vectors, we analyze their character-
istic spatial and temporal scales. The correlation functions of uα(x)
and vα(t) are defined as

Cα(Δx) = ⟨uα(x)uα(x + Δx)⟩x,

Cα(Δt) = ⟨vα(t)vα(t + Δt)⟩t.
(2)
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FIG. 4. Separating spatiotemporal intensity fluctuations of different origin by singular value decomposition (SVD). (a) Streak image of emission intensity I(x, t) on one facet of
a Fabry–Perot cavity (g = 1). The pump current is two times the lasing threshold. (b) Singular values obtained by SVD of intensity fluctuations δI(x, t) = I(x, t) − ⟨I(x, t)⟩t .
(c) Correlation lengths and (d) correlation times of singular vectors. The horizontal dashed lines denote the size of a single pixel in space and time of the streak image.
The singular vectors are categorized into three groups I, II, and III, which are marked by red, yellow, and purple, respectively. (e) δI(x, t) is the sum of intensity fluctuations
caused by (I) filaments, (II) mode beating, and (III) detection noise. (f) The spatiotemporal correlation function of δI(x, t) features both short- and long-range correlations.
(g)–(i) Spatiotemporal correlation functions of intensity fluctuation for (g) group I, (h) II, and (i) III, exhibiting distinct correlation scales in space and time. Insets: close-up
around the origin. The numbers in (h) are the spatial and temporal correlation widths.

The correlation length lα is extracted from the full-width at half-
maximum of Cα(Δx), and the correlation time τα from Cα(Δt). As
shown in Figs. 4(c) and 4(d), both lα and τα decrease rapidly with
increasing α, until α reaches 20. Then, they switch to a more gradual
decay and eventually level off. When α exceeds 220, both spatial and
temporal correlation scales are equal to the single pixel size of the
streak image.

Since sα, lα, and τα exhibit similar dependency on α, we sepa-
rate the singular vectors into three groups, denoted as I, II, and III
in Figs. 4(b)–4(d). Then, the spatiotemporal intensity fluctuation of
each group is reconstructed by

δIR(x, t) =∑
α∈R

sαuα(x)vα(t), (3)

where R is one of the three groups I, II, and III. The total
intensity fluctuation is δI(x, t) = δII(x, t) + δIII(x, t) + δIIII(x, t).
In Fig. 4(e), δII(x, t), δIII(x, t), and δIIII(x, t) display different
spatial and temporal scales. To quantify the difference, we

compute the spatiotemporal correlation function for each
group,

CR(Δx, Δt) = ⟨δIR(x, t)δIR(x + Δx, t + Δt)⟩x,t. (4)

The spatial and temporal widths of CR(Δx, Δt) give the correlation
lengths and times for every group.

The first group δII(x, t) features strong intensity fluctuations
on length scales from several to tens of micrometers, and a time scale
of the order of 0.1 ns. Such scales are consistent with the typical size
of spatial filaments and their oscillation frequencies. CI(Δx, Δt) in
Fig. 4(g) reveals long-range spatiotemporal correlations as a result
of filament motion and pulsation.

The second group δIII(x, t) features fluctuations on much
shorter spatial and temporal scales. As shown in Fig. 4(e), δIII(x, t)
is stronger in the middle of the cavity (around x = 0), where the orig-
inal emission intensity I(x, t) in Fig. 4(a) is stronger. It implies that
group II also originates from the laser emission, more precisely, from
the spatiotemporal interference of all lasing modes. CII(Δx, Δt) in
Fig. 4(h) exhibits only local correlations of the intensity fluctuations.
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Both the correlation length of 0.75 μm and the correlation time of
0.03 ns are limited by the resolution of our photodetection.

For the third group, δIIII(x, t) is uniformly spread over the
entire range of the streak image. It indicates that the fluctuation is
not due to the laser emission, but from the noise generated by the
imaging apparatus. This is confirmed by CIII(Δx, Δt) in Fig. 4(i),
which shows the spatiotemporal correlation scales equal to the pixel
size of the image. Therefore, δIIII(x, t) represents the detection noise
that fluctuates on the scale of a single pixel.

B. Spatiotemporal instabilities
The SVD can efficiently separate intensity fluctuations of dif-

ferent scales and origins. In Fig. 4, the three groups contain singular
vectors with consecutive indices α. In general, the singular vectors

in each group have similar correlation scales, but not necessar-
ily adjacent indices. In the following text, we present a system-
atic way to group the singular vectors based on their correlation
scales.

We acquire an ensemble of spatiotemporal intensity distribu-
tions from the same laser cavity. Within a 2 μs-long current pulse,
we take 161 consecutive streak images, each covering a 10 ns win-
dow. The transient regime at the beginning of the current pulse is
excluded. We perform the SVD on every streak image and compute
the correlation length lα and time τα for each singular vector. A scat-
ter plot of lα and τα for all singular vectors in all streak images is
presented in Fig. 5(a). The black line denotes the average of correla-
tion times for a given correlation length. Its slope changes suddenly
at the correlation time of 0.07 ns, which is consistent with the bound-
ary between groups I and II in Fig. 4(d). Moreover, the singular
vectors with correlation times longer than 0.07 ns exhibit a large

FIG. 5. Spatiotemporal dynamics of near-planar cavity lasers. (a)–(c) Scatter plots of correlation lengths and times for all singular vectors of intensity fluctuations in laser
cavities with (a) g = 1, (b) 0.88, and (c) 0.74. The black line denotes the average correlation time at a fixed correlation length, and its slope changes suddenly at the
correlation time of 0.07 ns. The three groups of singular vectors with different origin are marked by (I) red, (II) yellow, and (III) purple, respectively. (d) The amplitude of
spatiotemporal intensity fluctuations caused by filaments (group I). The error bars denote variations among 5 fabricated cavities of the same g. (e)–(g) Spatially resolved
radio-frequency (RF) spectra for (e) g = 1, (f) 0.88, and (g) 0.74, showing a clear reduction in oscillatory power as g decreases. (h) Flatness of the spatially-averaged RF
spectrum for group I. The increase in flatness indicates the suppression of RF peaks corresponding to intensity oscillations. (i)–(k) Spatiotemporal correlation functions of
the intensity fluctuations for group I, CI(Δx, Δt), in laser cavities of (i) g = 1, (j) 0.88, and (k) 0.74. The black solid lines are CI(Δx, 0) and CI(0, Δt). Their widths give the
correlation length and time. The ellipse (black dashed line) divides the regions of local and nonlocal correlations, and its semi-axes are equal to the correlation length and
time. (l) Long-range spatiotemporal correlations in (i)–(k), given by the averaged magnitude of the correlation outside the ellipse.
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variation of the correlation length. Therefore, they belong to group I
that originates from the filaments. For each time window, we sum
all singular vectors with τα > 0.07 ns of a single streak image to
reconstruct δII(x, t) (see the supplementary material).

C. Relative intensity fluctuation
Using the same method, we investigate the spatiotemporal las-

ing dynamics in the near-planar cavities. Figures 5(b) and 5(c)
are the scatter plots of spatial and temporal correlation scales for
g = 0.88 and 0.74. Compared to g = 1 [Fig. 5(a)], the singular vectors
with correlation lengths exceeding 10 μm are notably fewer, indi-
cating that slight curving of the end facets leads to a reduction in
filamentation.

For a quantitative comparison, we introduce a measure of the
spatiotemporal instability. It can be shown that the square of a
singular value is proportional to the fluctuation power of the cor-
responding singular vector (see the supplementary material). Thus,
the root-mean square of the singular values sα in group I for all
time windows yields a measure for the strength of spatiotemporal
instabilities, which is called the fluctuation amplitude p.

Figure 5(d) compares p for different cavity shapes. We aver-
age over 5 fabricated lasers for each g, and the error bars reflect
the device-to-device variation. The mean fluctuation amplitude p for
g = 0.74 is about half of that for g = 1. Therefore, the spatiotempo-
ral dynamics becomes much more stable in the near-planar cavity
lasers.

D. RF spectrum
Next, we perform the Fourier transform of δII(x, t) to obtain

the spatially-resolved radio-frequency (RF) spectrum for group I,

P(x, f ) = ⟨∣ℱ {δII(x, t)}∣2⟩, (5)

where ℱ denotes the temporal Fourier transform and ⟨⋅⟩ represents
the average over different time windows. With the normalization
⟨I(x, t)⟩x,t = 1, it is possible to compare the RF power from differ-
ent cavities. In Fig. 5(e), P(x, f ) for g = 1 displays strong oscillations
at a few GHz. Such oscillations become much weaker for g = 0.88
and 0.74 in Figs. 5(f) and 5(g).

Suppression of intensity oscillations implies that the RF spec-
trum has fewer features. To quantify the shape of the RF spectrum,
we calculate the spectral flatness from the ratio between the geo-
metric mean and the arithmetic mean of the power spectrum (see
the supplementary material). Figure 5(h) shows the flatness of RF
spectra integrated spatially and averaged over five cavities for each
g. Its value increases by a factor of 2 in the near-planar cavities, con-
firming the suppression of temporal intensity oscillations of the laser
emission.

E. Spatiotemporal correlations
Finally, we compare the spatiotemporal correlations of the

laser emission intensity for different cavity shapes. Figures 5(i)–5(k)
show the spatiotemporal intensity correlation functions for group I,
averaged over different time windows.

The peak at the origin Δx = Δt = 0 is related to short-range
correlations. Its full-width at half-maximum gives the correlation

length, which reflects the average size of filaments. In the planar cav-
ity [Fig. 5(i)], the correlation length is about 6 μm, and it is halved in
near-planar cavities [Figs. 5(j) and 5(k)]. Thus, the filaments become
narrower when the end facets are curved. The correlation time (the
temporal width of the correlation function) barely changes with the
cavity geometry, as it is mostly determined by the response time of
the gain material (see the supplementary material).

As the filaments move around in space and time, they induce
nonlocal spatiotemporal correlations in the emission intensity.5,19,31

To quantify the long-range correlations, we average the magnitude
of spatiotemporal correlations beyond the peak at the origin (see the
supplementary material). Figure 5(l) shows that the long-range spa-
tiotemporal correlations are significantly reduced for g = 0.88 and
0.74 compared to g = 1. The suppression of non-local correlations
indicates that the filaments are overall weaker in the near-planar
cavity lasers, thus their spatiotemporal dynamics is more stable than
that of the planar-cavity laser.

V. DISCUSSION AND CONCLUSION
We demonstrate that the broad-area semiconductor laser char-

acteristics can be dramatically changed by a small variation in the
cavity shape. This is because the Fabry–Perot cavity with planar mir-
rors is located at a bifurcation point between stable and unstable
ray dynamics. We curve the mirrors slightly and form a near-planar
cavity with concave mirrors. As a result, the high-order transverse
modes are well confined in the cavity, leading to a vast increase in
the number of transverse lasing modes. The spatial coherence of
laser emission is greatly reduced, which suppresses the speckle noise.
Although the output beam has increased lateral divergence, its angu-
lar width is below 40○. Since the lateral divergence is comparable to
the vertical divergence of an edge-emitting laser, the nearly circular
beam can be easily collected with standard optics. Therefore, such a
laser may be used as an illumination source for full-field speckle-free
imaging. The advantage of our laser compared to, e.g., an incandes-
cent lamp, which also produces no speckle noise, is that the lamp
emits into far too many spatial modes and, thus, has a low power
per mode, whereas our laser emits into fewer modes and, thus, fea-
tures a higher power per mode and better directionality. The greatly
improved brightness facilitates high-speed imaging through absorb-
ing or scattering media and real-time monitoring of moving objects
or transient processes. In fact, the decrease in spatial coherence will
increase the focal spot size and reduce the intensity for optical pump-
ing, material processing, and other applications. However, in these
applications, not only the brightness, but also the beam profile mat-
ters; for example, the material processing usually requires a flat-top
beam, which cannot be created by tight focusing of a spatially coher-
ent beam. On the other hand, a laser with reduced spatial coherence
may directly output a flat-top beam.26

Curving the end facets also leads to a drastic modification of the
spatiotemporal dynamics of broad-area semiconductor lasers. With
many high-order transverse modes lasing, the characteristic length
scales of intensity variations in the transverse direction are greatly
reduced. Consequently, the self-focusing instability induced by spa-
tial hole burning that leads to filamentation is prevented, and the
spatiotemporal instability is mitigated. For a quantitative analysis of
the lasing dynamics, we develop a method to separate the intensity
fluctuations caused by different processes—filaments, mode beating,
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and detection noise. They have distinct spatiotemporal correlation
scales, enabling us to separate filamentation from other processes.
Compared to the planar cavity laser, the amplitude of spatiotempo-
ral intensity fluctuations in the near-planar cavity is reduced by half.
The RF spectrum (up to 10 GHz) becomes flattened as the temporal
pulsation of the emission intensity is weakened. Finally, the reduc-
tion in filamentation in the near-planar cavity lasers decreases the
long-range spatiotemporal correlations of intensity fluctuations. The
stabilized laser output with negligible long-range spatiotemporal
correlation will be useful for parallel random number generation.19

To conclude, our method efficiently controls the nonlinear las-
ing dynamics by tailoring the resonator shape in the vicinity of a
bifurcation point. The dramatic change in the spatial structures of
cavity modes strongly affects their nonlinear interactions with the
gain material. Our method is simple, robust, and works for a wide
range of pump currents. It may be applied to high-power fiber and
solid-state lasers, as well as other nonlinear dynamical systems. It can
also be employed to control the time-reversed lasing and coherent
perfect absorption.32–35

SUPPLEMENTARY MATERIAL

See the supplementary material for additional details of the
experiment and numerical simulations.
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I. MATERIALS AND METHODS

A. Numerical modeling

The passive modes of planar and near-planar cavi-
ties are calculated with the eigenfrequency analysis mod-
ule of COMSOL Multiphysics. The simulated cavities
have a longitudinal length L = 20 µm, and a transverse
width W = L/

√
2 = 14.1 µm. We calculate the op-

tical modes with transverse electric (TE) polarization,
which has preferential gain in the GaAs/AlGaAs quan-
tum wells and thus dominates the lasing emission. The
optical modes are the solutions of the scalar Helmholtz
equation

[∇2 + k2n2(x, z)]ψ(x, z) = 0 (S1)

where k is the wavevector and ψ is the out-of-plane com-
ponent Hy of the magnetic field. To impose outgoing
wave boundary conditions, we set a perfectly matched
layer surrounding the entire simulation area, with a dis-
tance larger than 2.5 µm from the cavity boundary. For
a planar cavity (g = 1), in order to simulate the finite
width W of the pumped region, perfectly matched layers
are placed at the transverse boundaries (x = ±W/2).

B. Device fabrication

The laser cavities, of both near-planar (g = 0.74 and
0.88) and planar geometries (g = 1), are fabricated by
etching a GaAs/AlGaAs quantum well wafer. All tested
cavities have a longitudinal length L = 400 µm and a
lateral width W = L/

√
2 =282 µm, but the radius of

curvature R of the two facets varies slightly to have dif-
ferent g. We use a commercial diode laser wafer (Q-
Photonics QEWLD-808). The gain medium is a 12 nm-
thick GaAs/AlGaAs quantum well. It is embedded at
the middle of 0.4 µm-thick Al0.37Ga0.63As guiding layer,
which is between p-doped and n-doped Al0.55Ga0.45As
cladding layers with a thickness of 1.5 µm each.

∗ hui.cao@yale.edu

The devices are fabricated with the following
process. First, the bottom metal contact, made
of Ni/Ge/Au/Ni/Au layers with thicknesses of
5/20/100/20/160 nm, is deposited and thermally
annealed at 385 ◦C for 30 s. Then a mask layer, SiO2

with a thickness of 300 nm, is deposited on the front
side of the wafer. Photolithography is used to define the
geometry of cavities. The cavity shapes are transferred
to the SiO2 mask by reactive ion etching (RIE) with a
mixture of CF4 (30 sccm) and CHF3 (30 sccm). After
removing the photoresist, inductively coupled plasma
(ICP) dry etching on the SiO2 mask is conducted to
create the cavities. Here a plasma mixture of Ar (5
sccm), Cl2 (4 sccm), and BCl3 (4.5 sccm) is used. The
etch depth is 3.5 µm, etching through the entire guiding
layer and partially into the bottom cladding layer of the
wafer. The SiO2 mask is removed by RIE afterwards.

After the cavity is formed, a metal contact is deposited
on top of the cavity. The shapes of the top metal contacts
are defined by negative photolithography. It is followed
by deposition of metal contacts, made of Ti/Au layers
with thicknesses 20/200 nm, respectively. The geometry
of the top contact is designed to match the spatial pro-
file of highest-order transverse modes, in order to maxi-
mize the current injection to the lasing modes. The top
contact boundaries are 6 µm away from the cavity side-
walls, in order to avoid the top contacts hanging down
and blocking the emission from facets. Lastly, lift-off is
performed. The sample is cleaned by O2 plasma to final-
ize the fabrication.

C. Laser testing

The device is mounted on a copper plate, and a tung-
sten needle (Quater Research H-20242) is placed on the
top metal contact for current injection. A diode driver
(DEI Scientific, PCX-7401) provides the electric current
to the device. In order to minimize the device heating,
we inject 2 µs long pulses at a repetition rate lower than
1 Hz. The emission is collected by a 20× microscope
objective lens (NA = 0.4), and then coupled into a mul-
timode optical fiber (diameter 600 µm, NA = 0.48). At
the other end of the optical fiber, the emission is coupled
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FIG. S1. Lasing characteristics. (a) The LI curve of a near-planar (g = 0.88) cavity laser shows a clear threshold at the pump
current of 500 mA. Inset: the LI curve in logarithmic scale featuring the S-shape that is typical for lasers. (b) Optical spectra
of lasing emission of the cavity in (a) at pump currents just above, 1.5 times, and 2 times the lasing threshold. Increasing
the injection current above the threshold broadens the lasing spectrum. (c) The number of transverse lasing modes Ml in the
planar (g = 1) and near-planar (g = 0.74, 0.88) cavities increases with the pump level. For each cavity, the pump current is
normalized by the lasing threshold.

into an imaging monochromator (Acton SP300i) with an
intensified CCD camera (Andor iStar DH312T-18U-73)
for measuring the emission spectrum.

An exemplary LI curve of a laser diode with g = 0.88
is shown in Fig. S1(a). The typical lasing threshold cur-
rent is about 500 mA. The threshold current densities,
averaged for multiple cavities of g = 0.74, 0.88, and 1,
are (0.52 ± 0.02) kA/cm2, (0.52 ± 0.03) kA/cm2, and
(0.49± 0.03) kA/cm2, respectively. Therefore, no signif-
icant difference in the lasing threshold current density is
found for different cavity shapes. The optical spectrum
of the lasing emission is centered at 799 nm [Fig. S1(b)].
The spectral width is about 1 nm, with individual lasing
peaks so densely packed that they cannot be resolved by
our spectrometer.

D. Spatial coherence measurement

We measure the number of transverse lasing modes
using the speckle pattern generated by our devices. The
number of transverse lasing modes Ml can be estimated
by 1/C2, where the speckle contrast C is the standard
deviation of intensity σI normalized by the mean 〈I〉 [1–
3]. The speckle pattern is created by a line diffuser (RPC
Photonics, EDL-20) that randomly scatters the emission
only in transverse direction. In our setup, the far-field
emission from the laser illuminates the line diffuser. Then
we record the scattered intensity pattern in the far-field of
the diffuser using a CCD camera (Allied Vision, Mako G-
125B). For each laser, we repeatedly measure the speckle
patterns generated at 5 different positions of the line dif-
fuser with distinct realizations of disorder, and averaged
the speckle contrasts.

Fig. S1(c) shows the measured number of transverse
lasing modes Ml as we gradually increase the injection
current up to two times of the lasing threshold. For all
cavity shapes, Ml increases with the pump strength, as

more high-order transverse modes manage to lase. The
near-planar cavities (g =0.74, 0.88) have larger Ml than
the planar cavity (g = 1) over the entire range of pump
current measured.

E. Far-field characterization

To measure the far-field emission profile, we place a
CCD camera (Allied Vision, Mako G-125B) at a distance
of 0.1 m from the cavity. This distance is on the order of
the Fraunhofer distance ∼W 2/λ = 0.1 m, thus the emis-
sion is recorded in the far-field of the laser. No optics is
placed between the cavity and the camera. We shift the
CCD camera on a rail laterally while rotating the camera
to face the laser. At every position, the lasing emission
produced by a single current pulse is recorded. As the
separation distance R between the laser and the camera
depends on the lateral position of the camera, the mea-
sured intensity is rescaled by 1/R2. The recorded images
are combined and vertically integrated to obtain the far-
field intensity distribution in the horizontal direction.

Since the measured far-field emission intensity fluctu-
ates with the far-field angle, we smooth out the intensity
profile by a moving average over 5◦, and then calculate
the full-width at half-maximum (FWHM), as shown in
Fig. 3 of the main text. For comparison, we character-
ize the divergence angle by the second-moment width,
so-called D4σ width, defined by 4 times the standard de-
viation of the intensity distribution. For cavities of g =
1, 0.88, and 0.74, the D4σ full divergence angle of the
far-field patterns are 37◦, 56◦, and 69◦, respectively.
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F. Near-field mapping

To measure the near-field profile, the laser emission on
the cavity facet is imaged by a 20× microscope objective
(NA = 0.4) and a plano-convex lens (focal length 150
mm) onto a CCD camera (Allied Vision, Mako G-125B).
To record the time-resolved near-field pattern, the emis-
sion collected with the same optical configuration is im-
aged onto the entrance slit of the streak camera (Hama-
matsu C5680). The fast sweep unit (M5676) records time
traces of emission intensities at different spatial locations.

Finally we comment on the beam parameter product,
the product of the beam waist size and the far field an-
gular spread of partially coherent light. While the low
spatial coherence corresponds to a large beam parame-
ter product, a large beam parameter product does not
necessarily mean low spatial coherence. For example, a
spatially coherent beam passing through an optical dif-
fuser will spread in the far-field, making the beam param-
eter product large, even though the fields at all spatial
locations remain coherent according to the mutual coher-
ence function. Therefore, the beam parameter product is
larger or equal to a minimal value given by the degree of
spatial coherence. That is why we use the speckle inten-
sity contrast, instead of the beam parameter product, to
characterize the degree of spatial coherence of our laser
emission.

II. RAY DYNAMICS

As mentioned in the main text, one interesting aspect
of the ray-wave correspondence in optical resonators is
the influence of bifurcation points, that is, geometries
at which new periodic orbits are created or change their
stability when the cavity shape is varied. Bifurcations
of classical orbits have a significant effect on the prop-
erties of wave systems and require special treatment in
semiclassical theories [4, 5]. For example, they lead to
increased fluctuations of the density of states in microres-
onators [6, 7]. Here we investigate broad-area semicon-
ductor lasers as function of the resonator geometry in the
vicinity of a bifurcation.

We concentrate on the well-known case of a Fabry-
Perot cavity with two planar facets, which is situated
at the bifurcation between stable cavities with concave
mirrors and unstable cavities with convex mirrors. In a
stable cavity, rays in the vicinity of the axial orbit are
trapped forever (assuming perfectly reflecting mirrors),
while in an unstable cavity these rays will escape quickly
(see Fig. S2). Even though the passive modes change
continuously with the cavity geometry, a small pertur-
bation of the Fabry-Perot cavity can thus cause a large
change in the laser properties, which is useful for sensing
applications [8, 9].

A. Stability

Figure S2 shows examples of ray trajectories in a stable
(−1 < g < 1), a Fabry-Perot (g = 1) and an unstable
cavity g > 1. It should be noted that the terms stable and
unstable actually refer to the axial periodic orbit (shown
in red) and how it reacts to perturbations of its initial
conditions, not to the cavity itself. In general, an optical
cavity can exhibit several periodic orbits with different
stability [3, 7], hence it is misleading to call a cavity itself
stable or unstable. In the following we restrict ourselves
to the axial orbit which is the only relevant one here.

A perturbation of the initial conditions can be a small
change of the initial position and/or propagation direc-
tion of a trajectory. If a periodic orbit is stable, a slightly
perturbed trajectory will stay close to it forever. This be-
havior is shown in Fig. S2(a) for a cavity with g = 0.74:
the blue trajectory, which is launched with a direction
deviating by 3◦ (but at the same position) always stays
close to the axial orbit as it travels back and forth in
the cavity. The same behavior is obtained when slightly
changing the initial position. An important consequence
of the stability of the axial orbit is that trajectories in its
vicinity do not leave the cavity laterally and can hence
support higher-order transverse modes with high Q fac-
tors.

If a periodic orbit is unstable, a slightly perturbed tra-
jectory will travel away from it at an exponential rate.
This case is exemplified in Fig. S2(c) for a cavity with
g = 1.26: the blue trajectory propagates away from the
axial orbit very rapidly without returning. Since the ax-
ial orbit is unstable, trajectories in its vicinity leave the
cavity very quickly in the lateral direction, which greatly
reduces the Q factors of higher-order transverse modes.

At the bifurcation point where the stability of the axial
orbit changes from stable to unstable is the Fabry-Perot
cavity (g = 1), for which the axial orbit is marginally sta-
ble. For marginally stable orbits, different perturbations
of the initial conditions yield different results. When the
initial direction of the axial orbit is changed, the per-
turbed trajectory propagates away linearly in time and
leaves the cavity after a few round trips as shown by the
blue trajectory in Fig. S2(b). This reduces the lifetime
of higher-order transverse modes in the Fabry-Perot cav-
ity. In contrast, perturbations of the initial position (but
not direction) yield again periodic orbits as exemplified
by the three red orbits in Fig. S2(b). So the axial or-
bit is part of a family of periodic orbits, consisting of all
trajectories perpendicular to the planar end mirrors. In
contrast, the axial orbit is called isolated when it is sta-
ble or unstable since it is the only periodic orbit in its
vicinity in these cases.

Since the Fabry-Perot cavity is at a bifurcation point,
small changes of the cavity geometry will strongly impact
the behavior of trajectories around the axial orbit and
lead to significant changes in lasing behavior because the
stability of the axial orbit is related to the Q factors of
higher-order transverse modes.
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(a) (b) (c)

FIG. S2. Stability of ray dynamics in (a) a stable cavity (g = 0.74), (b) a Fabry-Perot cavity (g = 1), and (c) an unstable
cavity (g = 1.26). The axial orbit is indicated in red, and a trajectory launched with an angular deviation of 3◦ is indicated in
blue. The cavities have an aspect ratio of W/L = 1/

√
2, and the mirrors of the cavities in (a) and (c) have a radius of curvature

or R/L ' 3.85.

B. Ray trajectories and transverse modes

In the following we compare the same transverse mode
of order m = 7 in cavities with three different stability
parameters, in order to evaluate the effect of mirror cur-
vature on the transverse mode profile and the Q factor.
The real-space intensity distributions for g = 0.94, 0.80
and 0.50 are shown in Figs. S3(a, c, e), respectively. With
decreasing g (increasing mirror curvature), the transverse
mode profile becomes narrower, indicating modes with
increasingly high order can be confined in the cavities.
However, the Q factor decreases from Q = 420.8 for
g = 0.94 to Q = 399.8 for g = 0.5 (cf. Table I). The
dependency of the mode width and the Q factor on g
can be explained by analyzing the corresponding ray tra-
jectories.

A useful tool for analyzing the ray-wave correspon-
dence in optical microcavities are the so-called Husimi
functions [10, 11], which can be considered as a phase-
space representation of a mode. They are obtained by
calculating the overlap of the wave function with a wave
packet of minimal uncertainty with specific position and
momentum. Here we use the Husimi function for dielec-
tric resonators introduced in Ref. [11]. The Poincaré sur-
face of section is given in Birkhoff coordinates (s, sinχ) as
shown in Fig. S3(g): s denotes the location of incidence
of a ray on the right mirror (normalized by the total cir-
cumference of the resonator, st), where s = 0 is at the
center of the mirror, and χ is the angle of incidence with
respect to the surface normal.

The Husimi functions of the three modes considered
here are shown in Figs. S3(b, d, f). They have a roughly
elliptic structure, where the semi-axes in s direction de-
crease with increasing g since the modes become nar-
rower. The semiaxes in sinχ direction increase, which
means that the modes contain wave components with
higher angles of incidence. Table I gives the angles χmax

at which the maxima in the s = 0 section of the Husimi
distributions are found. The increase of χmax with de-
creasing g can explain the decline of the Q factors since
the reflectivity at the semiconductor-air interface de-
creases towards the Brewster angle for p-polarization as
shown in Fig. S3(h).

We calculate the corresponding trajectories by launch-
ing rays at the center of the mirror (s = 0) with the

angles χmax given in Table I. Their time evolution for
2000 reflections is computed. The real space and phase
space representations of these trajectories are superim-
posed in red in Figs. S3(a-f). Each reflection at the right
mirror is indicated as a point in phase space [Figs. S3(b,
d, f)], though the points are so dense that they appear as
a continuous line. The agreement with the Husimi func-
tions is excellent, demonstrating that these are indeed
the trajectories on which the modes are based. In real
space [Figs. S3(a, c, e)], only the first few reflections are
shown for better visibility.

The trajectories cover a finite transverse region of the
cavity, and the outmost segments of the trajectories coin-
cide with the most intense regions of the wave functions.
Furthermore, the maximal angles of incidence χ of the
trajectories (at the center of the mirror) increase with
decreasing g. The intensity of a trajectory decreases at
each reflection according to the Fresnel reflection coef-
ficients for p polarization [cf. Fig. S3(h)], leading to an
exponential decay in time [12]. The fitted lifetimes τ
as well as the corresponding quality factors Qray for a
L = 20 µm long cavity are given in Table I and show ex-
cellent agreement with the Q factors of the modes. This
demonstrates that refraction at the semiconductor-air in-
terfaces is the dominant loss mechanism responsible for
the decrease of the Q factors as the mirror curvature in-
creases. The slightly smaller Q factors of the modes can
be attributed to diffraction losses not considered in the
ray tracing simulations.

Therefore, maximizing the number of transverse las-
ing modes requires balancing two effects. On one hand,

g λ (nm) Q χmax (deg) τ(L/c) Qray

0.94 798.4 420.8 5.5 2.68 421.2
0.80 799.8 410.8 7.4 2.62 411.2
0.50 800.0 399.8 8.7 2.56 402.2

TABLE I. Properties of the passive cavity modes and corre-
sponding ray trajectories shown in Fig. S3 for different stabil-
ity parameters g. λ and Q are the resonance wavelength and
the quality factor, respectively, and χmax is the maximal angle
of incidence in the Husimi function. τ is the fitted lifetime of
the trajectory and Qray the corresponding quality factor for
a L = 20 µm long cavity at λ = 800 nm.
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FIG. S3. Comparison of transverse modes of order m = 7 in L = 20 µm long cavities with (a, b) g = 0.94, (c, d) g = 0.8,
and (e, f) g = 0.5. (a, c, e) Field intensity profiles in real space with (a) λ = 798.4 nm and Q = 420.8, (c) λ = 799.8 nm
and Q = 410.8, and (e) λ = 800.0 nm and Q = 399.8. Exemplary parts of the corresponding trajectories are superimposed as
red lines. (b, d, f) Husimi distributions of the modes shown in panels (a, c, e), respectively. The corresponding trajectories in
Birkhoff coordinates are superimposed as red points. The vertical white dashed lines indicate the endpoints of the right mirror
and the horizontal gray lines indicate the critical angle. (g) Definition of the Birkhoff coordinates: the position s on the right
mirror and the angle of incidence χ. The blue dashed line indicates the optical axis (s = 0). (h) Reflectivity for p-polarized
light at a semiconductor-to-air interface with refractive index contrast 3.37. The vertical dashed lines marks the Brewster angle
at 16.5◦.

increasing the mirror curvature reduces the width of the
modes so transverse modes of higher order can fit into the
cavity laterally. This leads to the strong increase of the
number of lasing modes when transitioning from a Fabry-
Perot cavity with g = 1 to a stable cavity with g < 1. On
the other hand, the refractive losses for high-order modes
of p-polarization grow with the mirror curvature, leading
to an increase of the lasing threshold. Both effects are in-
tuitively explained by the corresponding ray trajectories
as shown above. It should furthermore be noted that the
optimal stability parameter g depends both on the aspect
ratio W/L of the cavity and the refractive index.

III. SPATIALLY NONUNIFORM PUMPING

Figure 2(b) of the main text shows a similar number
of transverse lasing modes Ml for g = 0.88 and g = 0.74.
This experimental result deviates from the simulation
which predicts a larger Ml for g = 0.74 in Fig. 1(e) of
the main text. The numerical simulation assumes spa-
tially uniform pump. Experimentally, the current injec-
tion through the top contact may be nonuniform, which
will modify Ml. To resolve the discrepancy of Ml, we
investigate spatially nonuniform pumping in this section.

A. Spatial mapping of current injection

To map the spatial profile of current injection, we mea-
sure the emission intensity distribution on the cavity
facet at a pumping level well below the lasing thresh-
old. The spontaneous emission dominates over the stim-
ulated emission, and its spatial profile directly reflects
the current distribution. Figure S4(a) shows the near-
field emission patterns for g = 1, 0.88 and 0.74. The
emission spectra do not change with the pump current,
confirming that stimulated emission is negligible. In all
three cavities, the spontaneous emission is stronger in the
center, reflecting larger current density there than close
to the boundaries.

B. Number of transverse lasing modes

To analyze how the spatially nonuniform pumping af-
fects lasing, we use the SPA-SALT (single-pole approxi-
mation steady-state ab-initio theory) [13–15] to calculate
the number of lasing modes and the modal intensities.
Simulating the experimental cavities of length L = 400
µm and width W = 283 µm is computationally demand-
ing. Therefore we reduce the cavity dimension to L =
40.0 µm and W = 28.3 µm, but keep the aspect ratio
L/W =

√
2.

With spatially uniform pumping, the number of trans-
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FIG. S4. Spatially nonuniform pumping. (a) At the pumping level of 0.4 times of the lasing threshold, the spontaneous emission
dominates. Its nonuniform intensity distribution at the cavity facet reflects the nonuniform current density profile. Each curve
is averaged over 5 cavities of the same geometry g. The field of view covers 90% of the entire facet. (b) Simulated spatial profile
of pump strength, which varies only in the transverse direction (x). The cross-section of the pump is shown as white line. The
cavity length L is 40 µm and the width W is L/

√
2 = 28.3 µm. (c) The number of transverse lasing modes, calculated by

SPA-SALT, for spatially uniform pumping (square) and nonuniform pumping (circle). The red arrows mark the drop in the
number of transverse lasing modes due to spatially nonuniform pumping. (d, e) Narrowing of the far-field intensity profiles
caused by spatially nonuniform pumping in near-planar cavities of (d) g = 0.88 and (e) g = 0.74. The shaded area indicates
the experimentally measured far-field pattern in Fig. 3 of the main text, and the solid line represents the smoothed profile.

verse lasing modes at a pumping level of two times the
lasing threshold are 44 and 30 [squares in Fig. S4(c)] for
g = 0.74 and g = 0.88, respectively. We note that these
numbers are twice of those in Fig. 1(e) of the main text
for cavities of half the size, L = 20 µm. Thus, the num-
ber of transverse lasing modes increases linearly with the
cavity size.

Here we apply the spatially nonuniform pumping in the
transverse direction. As shown in Fig. S4(a), the pump
strength is maximal at the center and decays towards
the lateral boundaries. The transverse pump profile in
simulations [Fig. S4(b)] is approximated by a Gaussian
function with its full width at half maximum of 19.8 µm,
which is 0.7 times the cavity width W . Such a profile pro-
motes lasing in the lower order transverse modes which
are concentrated in the center and have larger overlap
with the pump than the higher order transverse modes.
As the lower order modes lase efficiently and saturate the
optical gain, it is harder for higher-order modes to lase.
Consequently, the number of transverse lasing modes ml

decreases [circles in Fig. S4(c)].

The reduction in the number of transverse lasing
modes is larger for g = 0.74 than g = 0.88. This is at-
tributed to the different strength of lateral confinement
of lasing modes, which affects their competition for gain.
The g = 0.74 cavity has stronger lateral confinement

and supports a larger number of transverse modes than
g = 0.88. The transverse nonuniform pumping further
enhances the mode competition, as the low-order trans-
verse modes become dominant and more effectively pre-
vent the high-order transverse modes from lasing. This
effect is more severe in g = 0.74, which has a larger num-
ber of high-order transverse modes and tighter lateral
confinement than g = 0.88. It leads to a larger decrease
of the number of transverse lasing modes for g = 0.74.
As a result, the number of transverse lasing modes of
g = 0.74 becomes more similar to that of g = 0.88.

C. Far-field divergence

The far-field emission patterns are also affected by the
spatially nonuniform pumping. As low-order transverse
modes start to dominate lasing, the divergence of far-field
emission becomes narrower. We calculate the far-field
intensity patterns for near-planar cavities with L = 40
µm. Figures S4(d) and (e) show narrowing of the far-field
emission once the pump becomes spatially nonuniform.
The divergence angle (full width at half maximum) drops
from 63◦ to 29◦ for g = 0.88, and from 82◦ to 40◦ for g
= 0.74.
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IV. SPATIO-TEMPORAL DYNAMICS

A. Filament-induced fluctuations

As discussed in the main text, the measured intensity
fluctuations are caused by three distinct processes: (i) fil-
amentation and pulsation, (ii) spatio-temporal beating of
lasing modes, and (iii) photo-detection noise of the streak
camera. We apply singular value decomposition (SVD)
on the streak camera images to separate filament-induced
fluctuations from the other two. Below we elaborate on
the separation procedure based on distinct spatial and
temporal scales of these fluctuations.

We first acquire an ensemble of spatio-temporal inten-
sity distributions from the same laser cavity. Within a
2-µs-long pump current pulse, we measure 161 consecu-
tive 10 ns-long streak camera images, which constitute a
1.61 µs-long total time window. The transient regime at
the beginning of the current pulse is excluded. We denote
the intensity fluctuations δI(i)(x, t) with the superscript
i = 1, ..., 161 to indicate a series of streak camera im-
ages acquired at 161 measurement start times t(i). The
difference between consecutive start times t(i+1) − t(i) is
10 ns, equal to the duration of the individual streak im-
ages. The SVD of δI(i)(x, t) yields the singular values

s
(i)
α and the spatial and temporal singular vectors u

(i)
α (x)

and v
(i)
α (t), where α is the SVD index.

The characteristic length scales of the spatial and tem-
poral singular vectors are given by the full-width at half-
maximum (FWHM) of the correlation function given in
Equation (2) of the main text. Figure S5 is a scatter plot

of the correlation length l
(i)
α vs. the correlation time τ

(i)
α

of every singular vector of index α in the time window
t(i). The gray line denotes the averaged correlation time
at a fixed correlation length. For all cavity geometries,
these lines exhibit a sharp change in slope. In order to
define this transition, linear fitting is applied to find its
exact position, which gives the critical correlation time
τc. Typical τc is between 70 ps and 80 ps, and there is
no systematic dependence of τc on the cavity geometry
g. Group I includes all singular vectors with correlation
times exceeding τc [on the right side of the dashed purple
line in Fig. S5]. For the i-th time window, the group I of
singular vectors is given by:

I(i) := {α|τ (i)α > τc}. (S2)

The spatio-temporal intensity fluctuation δI
(i)
I (x, t)

caused by filaments is reconstructed by summing the sin-
gular vectors in group I,

δI
(i)
I (x, t) =

∑
α∈I(i)

s(i)α u(i)α (x)v(i)α (t). (S3)

B. Fluctuation amplitude

Figure S5 shows the magnitude of singular values by
color. The planar cavity g = 1 has a larger number of
singular vectors with higher singular values. Here the
singular value represents the fluctuation power carried
by the corresponding spatio-temporal singular vector, as
described below.

The SVD of the spatio-temporal intensity fluctuation
δI(x, t), of dimension Nx×Nt, is given by [the superscript
(i) is dropped for simplicity],

δI(x, t) =
∑
α

sαuα(x)vα(t), (S4)

where sα is the singular value with index α, uα is the
coresponding spatial singular vector, and vα the temporal
singular vector. The singular vectors are ortho-normal:

〈uα(x)uβ(x)〉x = δαβ/Nx (S5)

〈vα(t)vβ(t)〉t = δαβ/Nt (S6)

where δαβ is the Kronecker delta. The fluctuation power
of the spatio-temporal intensity is given by the variance
of the intensity fluctuation 〈δI(x, t)2〉x,t, where the aver-
age fluctuation 〈δI(x, t)〉x,t = 0. Using the definition of
SVD in Equation (S4), the fluctuation power is

〈δI(x, t)2〉x.t = 〈{
∑
α

sαuα(x)vα(t)}2〉x,t

=
∑
α,β

〈sαuα(x)vα(t)sβuβ(x)vβ(t)〉x,t

=
∑
α,β

sαsβ〈uα(x)uβ(x)〉x〈vα(t)vβ(t)〉t.

(S7)

Using the orthonormality of the singular vectors [Equa-
tions (S5) and (S6)],

〈δI(x, t)2〉x.t =
1

NxNt

∑
α,β

sαsβδαβ

=
1

NxNt

∑
α

s2α

(S8)

where Nx and Nt are the total numbers of spatial and
temporal sampling points in a streak image. This result
shows that the singular value squared s2α represents the
contribution of the α-th singular vector to the spatio-
temporal intensity fluctuation.

The fluctuating power S(i), carried by the filaments

δI
(i)
I (x, t) in a time window i, can be written as

S(i) = 〈{δI(i)I (x, t)}2〉x,t =
1

NxNt

∑
α∈I(i)

[s(i)α ]2, (S9)

This relation indicates that the intensity fluctuation
caused by filaments can be described by summing over
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the square of singular values belonging to group I. The
fluctuation amplitude p is hence defined as

p =
√
〈S(i)〉i, (S10)

where 〈·〉i is the average over different time windows.

C. RF spectrum

We compute the radio-frequency (RF) spectrum of the
intensity fluctuations caused by filaments. The spatially-
resolved RF spectrum, shown in Figs. 5(e)-(g) of main
text, is given by,

P (x, f) = 〈|F{δI(i)I (x, t)}|2〉i (S11)

where F is the Fourier transform in time. We emphasize
that the averaged intensity 〈I(i)(x, t)〉x,t is normalized to
1 for all cavities in order to compare the RF power.

Before calculating the RF spectrum flatness, we spa-
tially integrate the RF spectrum 〈P (x, f)〉x. The RF
spectrum flatness Fs is defined by the geometric mean
divided by the arithmetic mean in a frequency domain,

Fs =
exp
{
〈ln[〈P (x, f)〉x]〉f

}
〈P (x, f)〉x,f

. (S12)

As the filament-induced intensity fluctuations are on the
order of a few GHz, the flatness is computed within the
frequency range up to 10 GHz.

D. Spatio-temporal correlations

The spatio-temporal correlation of laser intensity fluc-
tuations caused by filaments (group I) is defined by,

CI(∆x,∆t) = 〈C(i)
I (∆x,∆t)〉i

= 〈δI(i)I (x, t)δI
(i)
I (x+ ∆x, t+ ∆t)〉x,t,i.

(S13)

It is peaked at the origin ∆x = 0, ∆t = 0. This
peak represents the local correlations of intensity fluc-
tuations, and its width gives the characteristic scale of
the filaments. Beyond this peak are the nonlocal spatio-
temporal correlations introduced by transverse move-
ment and temporal pulsation of filaments [16].

Figure S6(a) shows the spatial correlation function
CI(∆x, 0) for different cavity geometries. Its FWHM
gives the correlation length. The planar cavity (g = 1)
has a correlation length of 6.0 µm, while in the near-
planar cavities (g = 0.88 and 0.74) the correlation length
is reduced by a factor of 2 to 3.2 µm. It reflects
the decrease of filament size, as more high-order trans-
verse modes lase in the near-planar cavity. Moreover,
CI(∆x, 0) for g = 1 exhibits a long tail at large ∆x, re-
flecting the long-range correlations induced by filaments.
In the near-planar cavities, the long tail of CI(∆x, 0) is
removed as a result of filament suppression.

Figure S6(b) shows the temporal correlation function
CI(0,∆t), averaged over 5 different cavities for each g. Its
width gives the correlation time, which is approximately
0.3 ns, with little dependence on the cavity geometry.
It is dictated by the inherent response time of carrier
dynamics in the GaAs quantum well. For g = 1, the
negative correlation at |∆t| = 0.5 ns is more pronounced
than for g = 0.74 or 0.88, reflecting stronger long-range
temporal correlations in the planar cavity.

To examine the nonlocal spatio-temporal correlations,
we separate the regions of short-range and long-range cor-
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FIG. S6. (a) Spatial correlation function CI(∆x, 0) and (b) temporal correlation function CI(0,∆t) of intensity fluctuations
caused by filaments in different cavity geometries. The correlation functions are averaged over 5 different cavities for each value
of g, to account for device-to-device variations. The FWHM of the correlation functions is indicated with arrows. The spatial
correlation width decreases by a factor of 2 for the near-planar cavities (g = 0.88, 0.74), whereas the temporal correlation width
remains nearly identical to that for the planar cavity (g = 1).

relations in Figs. 5(i-k) of the main text. Their boundary
is set by an ellipse whose semi-axes are the spatial and
temporal FWHM of the peak at origin. Then we average

the modulus of CI(∆x,∆t) outside the ellipse but within
the range of |∆x| < 30 µm and |∆t| < 1 ns, where most
correlations exist.
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