Ambient PM2.5 and its chemical constituents on lifetime-ever pneumonia in Chinese children: A multi-center study

Wenming Shi, Cong Liu, Isabella Annesi-maesano, Dan Norback, Qihong Deng, Chen Huang, Hua Qian, Xin Zhang, Yuexia Sun, Tingting Wang, et al.

To cite this version:

HAL Id: hal-03672798
https://hal.archives-ouvertes.fr/hal-03672798
Submitted on 19 May 2022
Ambient PM$_{2.5}$ and its chemical constituents on lifetime-ever pneumonia in Chinese children: A multi-center study

Wenming Shi a,1, Cong Liu a,1, Isabella Annesi-Maesano b, Dan Norback c, Qihong Deng d, Chen Huang e, Hua Qian f, Xin Zhang g, Yuexia Sun h, Tingting Wang i, Aaron van Donkelaar i,k, Randall V. Martin j,k, Yinping Zhang h, Baizhan Li h, Haidong Kan a,6, Zhuohui Zhao a,6, Zhaohui Zhao a,6

a Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
b Epidemiology of Allergic and Respiratory Diseases Department, IPLESP, Sorbonne Université and INSERM, Medical School Saint-Antoine, F75012 Paris, France
c Department of Medical Sciences, Uppsala University, Uppsala SE-751, Sweden
d School of Energy Science and Engineering, Central South University, Changsha 410083, China
e School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
f School of Energy & Environment, Southeast University, Nanjing 210096, China
g Research Center for Environmental Science and Engineering, Shanxi University, Taiyuan 030006, China
h Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin University, Tianjin 300072, China
i School of Nursing & Health Management, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
j Department of Physics and Atmospheric Science, Dalhousie University, B3H 4R2 Halifax, Nova Scotia, Canada
k Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
l Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138, USA
m Department of Building Science, Tsinghua University, Beijing 100084, China
n Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Yichang University, Yichang, China
o Key Laboratory of Public Health Safety of the Ministry of Education, NHC Key Laboratory of Health Technology Assessment (Fudan University), Shanghai Typhoon Institute/CMN, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China

ARTICLE INFO

Handling Editor: Hanna Boogaard

Keywords:
PM$_{2.5}$
Chemical constituents
Childhood pneumonia
Multi-level logistic regression
Air pollution

ABSTRACT

The long-term effects of ambient PM$_{2.5}$ and chemical constituents on childhood pneumonia were still unknown. A cross-sectional study was conducted in 30,315 children in the China Children, Homes, Health (CCHH) project, involving 205 preschools in six cities in China, to investigate the long-term effects of PM$_{2.5}$ constituents on lifetime-ever diagnosed pneumonia. Information on the lifetime-ever pneumonia and demographics were collected by validated questionnaires. The lifetime annual average ambient PM$_{2.5}$, ozone and five main PM$_{2.5}$ constituents, including SO$_x^2$, NO$_x$, NH$_3$, organic matter (OM) and black carbon (BC), were estimated according to preschool addresses by a combination of satellite remote sensing, chemical transport modeling and ground-based monitors. The prevalence of lifetime-ever diagnosed pneumonia was 34.5% across six cities and differed significantly among cities ($p < 0.004$). The two-level logistic regression models showed that the adjusted odds ratio for PM$_{2.5}$ (per 10 g/m3) and its constituents (per 1 g/m3)-SO$_x^2$, NO$_x$, NH$_3$, OM were 1.12 (95% CI: 1.07–1.18), 1.02 (1.00–1.04), 1.06 (1.04–1.09), 1.05 (1.03–1.07) and 1.09 (1.06–1.12), respectively. Children in urban area, aged < 5 years and breastfeeding time < 6 months enhanced the risks of pneumonia. Our study provided robust results that long-term levels of ambient PM$_{2.5}$ and its constituents increased the risk of childhood pneumonia, especially NH$_3$, NO$_x$ and OM.

1. Introduction

Acute lower respiratory infection is the leading cause of death in children, with most fatal cases occurring as pneumonia in children under 5 years old (Smith et al., 2011). According to a recent WHO estimate, pneumonia accounts for 16% of all deaths of children under 5 years old.

* Corresponding authors at: Room 331, Building 8, 130 Dong-an Road, Xuhui District, Shanghai 200032, China (Z. Zhao). Room 333, Building 8, 130 Dong-an Road, Xuhui District, Shanghai 200032, China (H. Kan).

E-mail addresses: kanh@fudan.edu.cn (H. Kan), zhzhao@fudan.edu.cn (Z. Zhao).

These two authors contribute equally to this paper.

https://doi.org/10.1016/j.envint.2020.106176
Received 20 August 2020; Received in revised form 28 September 2020; Accepted 30 September 2020
Available online 18 November 2020
0160-4120/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
particulate matter (PM$_{2.5}$) et al., 2011; Darrow et al., 2014; Jary et al., 2015). Among others, fine risk factors or triggers for childhood pneumonia in prior research (Smith 2018; Shah et al., 2017). Air pollution has been identified as potential (Rudan et al., 2013). Than that in developed countries (0.01–0.03 episodes/child-year, 2010) (Rudan et al., 2013).

The etiology of pneumonia included multiple pathogens of microorganisms such as bacteria, viruses, and fungi et al. (Kennedy et al., 2018; Shah et al., 2017). Air pollution has been identified as potential risk factors or triggers for childhood pneumonia in prior research (Smith et al., 2011; Darrow et al., 2014; Jary et al., 2015). Among others, fine particulate matter (PM$_{2.5}$) is the most consistent and robust indicator of air pollution. As the largest developing country in the world, China is facing air pollution problems due to the rapid urbanization and industrialization. For example, the annual average of PM$_{2.5}$ was 47 µg/m3 (range 12–158 µg/m3) in 2016 in 338 cities in China (Ministry Of Environmental Protection. Report on the State of the Environment in China, 2016), close to 5 times of the WHO Air Quality Guidelines for PM$_{2.5}$ (10 µg/m3).

Certain time-series studies have examined the associations between short-term PM$_{2.5}$ levels and hospitalization or emergency visits of childhood pneumonia (Cheng et al., 2019; Nhung et al., 2017). However, investigations on the long-term effects of PM$_{2.5}$ on childhood pneumonia were scarce. Some studies indicated that long-term exposure to ambient PM$_{2.5}$ was significantly associated with the increased risk of lower respiratory tract infection, including pneumonia mortality (Pun et al., 2017) and chronic bronchitis symptoms (Abbey et al., 1995). Part of previously published studies mainly focused on the effects of PM$_{2.5}$ mass concentration on childhood pneumonia. As a complex mixture of more than 50 chemical constituents (Bell et al., 2010), PM$_{2.5}$ are supposed to play different roles in the adverse effects on pulmonary health due to different chemical constituents, and the evidence is still not yet found (Brook et al., 2010). Therefore it is crucial to differentiate the toxic constituents of PM$_{2.5}$ by analyzing the associations between PM$_{2.5}$ components and childhood pneumonia.

In the present study, we aimed to estimate the effects of long-term levels of ambient PM$_{2.5}$ on lifetime-ever doctor-diagnosed pneumonia in preschool children in China, as well as PM$_{2.5}$ chemical constituents in a multi-center study.

2. Methods

2.1. Study subjects

This study was based on the China, Children, Homes, Health (CCHH) project, a nationwide questionnaire survey covering 10 cities during 2010–2012 (N = 48,219). The introduction on the subject recruitment and study design was described in previous publications (Chen et al., 2018; Zhang et al., 2013). Because the information on preschool addresses was not collected in 4 cities in CCHH project, subjects (n = 30,759) in other 6 cities who provided complete preschool addresses were enrolled in this study. The involved cities consisted of 2 northern cities (Urumqi, latitude 43°50′ N, longitude 87°37′E and Taiyuan, latitude 37°52′N, longitude 112°33′E) and 4 southern cities (Shanghai, latitude 31°53′N longitude121°43′, Nanjing, latitude 32°37′N longitude 118°22′E, Chongqing, latitude 29°35′N longitude 106°3′E and Changsha, latitude 28°41′N longitude 114°15′E). Further, those who had missing information on diagnosed pneumonia, who were aged younger than 3 years or older than 7 years, and those who did not have complete information on demographics or related confounding respiratory factors were also excluded. Finally, a total of 30,315 subjects aged 3–7 years were recruited and analyzed (mean age 4.6 years ± standard deviation 1.1; male, n(%) = 15,694[51.8]). The flowchart of the participants enrollment in this study was showed in Fig. 1.

The 30,315 children were distributed in 205 preschools located in 23 urban and 11 non-urban (suburban or rural) districts. They were analyzed by a hierarchical multivariate logistic regression, with the aim to explore the associations between lifetime-ever diagnosed pneumonia and lifetime annual averages of PM$_{2.5}$ levels and chemical components. Data on the geographic, meteorological and social-economic characteristics in each city were obtained from China Statistical Yearbook (http://www.stats.gov.cn).
pregnancy, passive smoking, family history of allergy (FHA, defined as
2.4. Long-term ambient air pollution assessment and meteorological data
on home indoor environment were modified to fit for the Chinese resi
dential characteristics as reported previously (Zhang et al., 2013).

The prevalence of lifetime-ever diagnosed pneumonia was evaluated by a
yes/no question ‘Has your child ever been diagnosed as pneumonia by a
professional physician?’ (Zhuge et al., 2018). Additional information on
age, gender, birthweight were collected, as well as the personal life and
family factors including breastfeeding time, maternal smoking during
pregnancy, passive smoking, family history of allergy (FHA, defined as
parents/grandparents’ allergic rhinitis or asthma) (Norback et al.,
2018), and home environmental factors including home indoor damp
ness, home interior decoration (renovated wall/floor material or new
furniture during their lifetime) and residential locations. The questions
on home indoor environment were modified to fit for the Chinese resi
dential characteristics as reported previously (Zhang et al., 2013).

2.3. Questionnaire and health outcomes

Health, Fudan University, Shanghai, China (International Registered
Number: IRB00002408 & FW00002399). Written informed consents
were obtained from parents or guardians.

2.2. Ethics

This study was approved by the ethical committee of School of Public
Health, Fudan University, Shanghai, China (International Registered
Number: IRB00002408 & FW00002399). Written informed consents
were obtained from parents or guardians.

The information on respiratory diseases was collected by validated
CCHH questionnaire which was modified based on the International
Study of Asthma and Allergies in Childhood (ISAAC) (Norback et al.,
2018; Asher et al., 2006). The classification of diseases or symptoms was
based on the 10th Edition encoding of the “International Classification
of Diseases” (ICD-10) by the WHO in 2016 (Dunes et al., 2016). The
prevalence of lifetime-ever diagnosed pneumonia was evaluated by a
yes/no question ‘Has your child ever been diagnosed as pneumonia by a
professional physician?’ (Zhuge et al., 2018). Additional information on
age, gender, birthweight were collected, as well as the personal life and
family factors including breastfeeding time, maternal smoking during
pregnancy, passive smoking, family history of allergy (FHA, defined as
parents/grandparents’ allergic rhinitis or asthma) (Norback et al.,
2018), and home environmental factors including home indoor damp
ness, home interior decoration (renovated wall/floor material or new
furniture during their lifetime) and residential locations. The questions
on home indoor environment were modified to fit for the Chinese resi
dential characteristics as reported previously (Zhang et al., 2013).

2.4. Long-term ambient air pollution assessment and meteorological data

Ambient PM$_{2.5}$ and its 5 main constituents including black carbon
(BC), organic matter (OM), sulfate (SO$_{4}^{2-}$), nitrate (NO$_{3}^{-}$) and ammonia
(NH$_{3}$) were obtained from the V4.CH.02 product of the Dalhouse
This product extends the V4.NA.02 (North America) methodology over
China (van Donkelaar et al., 2019). The detailed methodology has been
described previously (van Donkelaar et al., 2016; van Donkelaar et al.,
2015; Philip et al., 2014). In brief, this dataset combines satellite
retrievals and simulation of aerosol optical depth (AOD) from multiple
sources (MISR, MODIS Dark Target, MODIS, and SeaWiFS Deep Blue,
MODIS MAIAC, and GEOS-Chem), with the geophysically-based simu
lated relationship between AOD and near-surface PM$_{2.5}$ concentrations.
For China, approximately 1000 ground-based observations were then
incorporated at a monthly timescale between 2014 and 2016, using a
geofieldically weighted regression to produce a final PM$_{2.5}$ dataset at
approximately 0.01° × 0.01° resolution. Estimates were extended to the
earlier years used in our study based on the inter-annual changes of a
global geophysical satellite-derived PM$_{2.5}$ dataset (van Donkelaar et al.,
2015). For all years, a GEOS-Chem simulation was used to partition this
satellite-derived PM$_{2.5}$ mass into various constituents, but no further
calibration was performed for each chemical constituent owing to the
lack of available composition measurements over China. While
compositional uncertainties would be reduced if ground-based observ
ations could be included, this approach was found to be effective even
without calibration over North America in van Donkelaar et al. (2019);
as well as globally in Philip et al. (2014). The resultant annual-mean all
composition PM$_{2.5}$ concentrations were consistent with available out
sample, cross-validation annual mean observations over China ($R^2 =
0.75–0.83$; slope = 1.00–1.04).

In this study, geocoding was performed at each preschool address to
evaluate the monthly data of air pollutants at a spatial resolution of
0.01° × 0.01° (approximately 1 km × 1 km). The geocoding and air
pollution assignments were performed by the ArcMap software (ESRI,
Version 10.2). The lifetime cumulative annual averages of ambient air
pollutants were assessed, which were defined as the temporal moving
annual averages of ambient PM$_{2.5}$, O$_3$ and constituents from children’s
birth year to the year of the questionnaire survey.

As a co-pollutant, the annual average concentrations of ozone (O$_3$)
were obtained from the Global Burden of Disease (GBD) 2013 exposure
datasets, with a spatial resolution of 0.1° × 0.1° over the study period.
Briefly, O$_3$ concentrations were estimated by a combination of satellite
remote sensing, global chemical transport models, and surface calibra
tions from ground measurements with increased coverage in recent
years (Brauer et al., 2012). Model calibrations were evaluated by a
randomly excluding 10% of monitoring sites for prediction, the process
of which was repeated for a total of three separate sets, with a final
adjusted $R^2 = 0.64$. The overall cross-validation R^2 was obtained at the
global level. The lifetime annual average concentration of O$_3$ for each
child was matched with gridded O$_3$ concentrations based on geocoded
preschool addresses. Meteorological factors including annual average
temperature, relative humidity (RH) and precipitation in each selected
city during 2005–2011 were obtained from the China Meteorological Data
website (data.cma.cn). However, only the cumulative annual average
temperature was added as an indicator of climate factors in the regres
sion analysis, due to the high inter-correlations between temperature,
RH and precipitation (correlation coefficient 0.94, 0.87 and 0.81,
respectively).

3. Statistical analysis

The prevalence of lifetime-ever doctor-diagnosed pneumonia, de
mographic characteristics and home environmental factors were sum
marized in total subjects and in each of the 6 cities. The summaries of
time-average annual averages of ambient PM$_{2.5}$, O$_3$ and five main constitu
ents of PM$_{2.5}$ were described subsequently. The partial correlation
analysis was applied to analyze the correlations between any two of air
pollutants and PM$_{2.5}$ constituents controlling for city variable.

A hierarchical multivariate logistic regression model was con
structed to investigate the associations between lifetime-ever diagnosed
childhood pneumonia and lifetime annual averages of ambient PM$_{2.5}$
and its constituents. The adjusted odds ratio (aOR) and 95% confidence
intervals (CI) were used to evaluate the effects of ambient air pollutants
on pneumonia. Considering the hierarchical structures of variable levels
(subjects- preschools-cities), we first calculated the variance partition
coefficients (VPC) to quantify the proportion of observed variation in the
outcome that was attributable to the effect of clustering (Austin and
Merlo, 2017). In the current study, this was performed in the null model
to measure the proportion of the total observed individual variation of
the health outcome that was attributable to between-preschool and
between-city variation. The VPC was calculated by the formula as follow:

$$VPC = \frac{\tau^2}{\tau^2 + \frac{1}{n}}$$

where τ^2 was the random effect variance (Austin and Merlo, 2017; Weinmayr et al., 2017). According to the VPC and the significance of the
intercept variance on city-level and preschool-level, the final hierar
chical logistic regression model would be determined as 2-level or 3-
level (Weinmayr et al., 2017).

After determining the 2- or 3-level hierarchical model, covariates
were tested and selected to construct the final regression model,
together with the main predictors of air pollutants. We used two criteria
to select the covariates: 1) variables that were the known as potential
risk factors of childhood pneumonia based on current knowledge; 2)
variables with a change of 10% of the main effect after included in the
model (Lin et al., 2018). By the first criteria, covariates of age, gender,
birthweight, maternal smoking during pregnancy and passive smoking
were selected. By the second criteria, covariates of family history of
allergy, breastfeeding time, home indoor dampness, residential

[link to website: p://www.stats.gov.cn/tjsj/ndsj/].
Summaries (n, %) on lifetime-ever pneumonia, demographic characteristics and home environmental factors in the total subjects and in each of the 6 cities.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Shanghai</th>
<th>Nanjing</th>
<th>Urumqi</th>
<th>Taiyuan</th>
<th>Changsha</th>
<th>Chongqing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preschools Nr.</td>
<td>205</td>
<td>71</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>33</td>
<td>53</td>
</tr>
<tr>
<td>Prevalence lifetime pneumonia (%)</td>
<td>34.5</td>
<td>35.4</td>
<td>27.2</td>
<td>41.4</td>
<td>31.1</td>
<td>36.0</td>
<td>34.2</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>15694(51.8)</td>
<td>5762(50.9)</td>
<td>1992(51.1)</td>
<td>1589(53.8)</td>
<td>1980(52.5)</td>
<td>1798(53.5)</td>
<td>2573(51.2)</td>
</tr>
<tr>
<td>Female</td>
<td>14621(48.2)</td>
<td>5612(49.1)</td>
<td>1912(48.9)</td>
<td>1364(46.2)</td>
<td>1654(47.5)</td>
<td>1573(46.5)</td>
<td>2505(48.8)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5 years</td>
<td>14922(49.2)</td>
<td>5078(45.6)</td>
<td>2444(63.9)</td>
<td>1236(43.9)</td>
<td>1515(40.2)</td>
<td>1994(60.7)</td>
<td>2655(53.5)</td>
</tr>
<tr>
<td>≥5 years</td>
<td>15393(50.8)</td>
<td>6247(54.4)</td>
<td>1460(36.1)</td>
<td>1717(56.1)</td>
<td>2119(59.8)</td>
<td>1377(39.3)</td>
<td>2423(46.5)</td>
</tr>
<tr>
<td>Birthweight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><2.5</td>
<td>763(3.5)</td>
<td>306(2.7)</td>
<td>81(2.1)</td>
<td>57(1.9)</td>
<td>74(2.0)</td>
<td>97(2.9)</td>
<td>148(2.9)</td>
</tr>
<tr>
<td>≥2.5</td>
<td>28541(94.1)</td>
<td>10598(39.6)</td>
<td>3722(95.3)</td>
<td>2785(94.3)</td>
<td>3544(97.5)</td>
<td>3170(94.0)</td>
<td>4722(93.0)</td>
</tr>
<tr>
<td>Breastfeeding time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><6 months</td>
<td>14340(47.3)</td>
<td>6535(57.7)</td>
<td>1609(41.2)</td>
<td>1366(46.3)</td>
<td>1146(31.5)</td>
<td>1431(42.5)</td>
<td>2253(44.4)</td>
</tr>
<tr>
<td>≥6 months</td>
<td>15162(50.0)</td>
<td>4570(40.4)</td>
<td>2246(57.7)</td>
<td>1445(48.9)</td>
<td>2399(65.9)</td>
<td>1866(55.3)</td>
<td>2649(51.9)</td>
</tr>
<tr>
<td>Family history of allergy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>5261(17.4)</td>
<td>2636(23.3)</td>
<td>615(15.8)</td>
<td>496(16.8)</td>
<td>476(13.1)</td>
<td>505(15.0)</td>
<td>533(10.5)</td>
</tr>
<tr>
<td>No</td>
<td>23968(79.1)</td>
<td>8384(74.0)</td>
<td>3264(83.6)</td>
<td>2226(75.4)</td>
<td>3040(83.7)</td>
<td>2796(82.9)</td>
<td>4258(83.9)</td>
</tr>
<tr>
<td>Moving Home</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2941(9.7)</td>
<td>1256(11.0)</td>
<td>401(10.2)</td>
<td>281(9.5)</td>
<td>310(8.4)</td>
<td>321(9.5)</td>
<td>372(7.3)</td>
</tr>
<tr>
<td>No</td>
<td>27358(90.2)</td>
<td>10118(88.9)</td>
<td>3500(89.7)</td>
<td>2670(90.4)</td>
<td>3328(91.5)</td>
<td>3036(90.1)</td>
<td>4706(92.7)</td>
</tr>
<tr>
<td>Maternal smoking during pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12704(41.9)</td>
<td>4372(38.4)</td>
<td>1642(42.1)</td>
<td>1418(48.0)</td>
<td>1351(37.2)</td>
<td>1645(48.8)</td>
<td>2276(44.8)</td>
</tr>
<tr>
<td>No</td>
<td>16,886</td>
<td>6824(60.0)</td>
<td>2197(56.3)</td>
<td>1395(47.2)</td>
<td>1276(62.6)</td>
<td>1679(49.8)</td>
<td>2515(49.5)</td>
</tr>
<tr>
<td>Current passive smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>13769(45.4)</td>
<td>4495(39.5)</td>
<td>1892(48.5)</td>
<td>1426(48.3)</td>
<td>1773(48.8)</td>
<td>1779(52.5)</td>
<td>2413(47.5)</td>
</tr>
<tr>
<td>No</td>
<td>15554(54.6)</td>
<td>6517(57.3)</td>
<td>1957(50.1)</td>
<td>1369(46.4)</td>
<td>1781(49.0)</td>
<td>1557(46.2)</td>
<td>2373(46.7)</td>
</tr>
<tr>
<td>Residential locations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>22503(74.2)</td>
<td>8167(71.8)</td>
<td>2431(62.3)</td>
<td>2546(86.2)</td>
<td>2974(81.8)</td>
<td>3025(89.7)</td>
<td>3366(66.2)</td>
</tr>
<tr>
<td>Non-urban</td>
<td>6890(22.7)</td>
<td>2982(26.2)</td>
<td>1397(35.8)</td>
<td>287(9.7)</td>
<td>567(15.6)</td>
<td>239(7.1)</td>
<td>1418(27.9)</td>
</tr>
<tr>
<td>Indoor dampness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>19425(64.1)</td>
<td>7915(69.6)</td>
<td>2500(65.3)</td>
<td>1728(58.5)</td>
<td>2346(64.6)</td>
<td>2144(63.6)</td>
<td>2742(54.0)</td>
</tr>
<tr>
<td>No</td>
<td>6063(20.0)</td>
<td>1756(15.4)</td>
<td>680(17.4)</td>
<td>763(25.8)</td>
<td>846(23.3)</td>
<td>640(19.0)</td>
<td>1378(27.1)</td>
</tr>
<tr>
<td>Home interior decoration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>10096(33.3)</td>
<td>3860(33.9)</td>
<td>1373(35.2)</td>
<td>840(32.4)</td>
<td>1146(31.5)</td>
<td>1172(34.8)</td>
<td>1705(33.6)</td>
</tr>
<tr>
<td>No</td>
<td>15013(49.5)</td>
<td>5322(46.8)</td>
<td>2015(51.6)</td>
<td>1503(50.9)</td>
<td>2084(57.3)</td>
<td>1699(50.4)</td>
<td>2390(47.1)</td>
</tr>
<tr>
<td>Annual average of family income per capita (1000 RMB, Mean ± SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>22.0 ± 9.9</td>
<td>30.8 ± 8.9</td>
<td>0.4 ± 7.3</td>
<td>14.5 ± 3.0</td>
<td>16.1 ± 4.6</td>
<td>17.9 ± 3.2</td>
<td>14.2 ± 5.7</td>
</tr>
</tbody>
</table>

1. The sum of the numbers and percentages (%) in the paired groups might not be equal to the total number or 100% due to the missing values.

where \hat{Q}_1 and \hat{Q}_2 were the adjusted estimates in each stratum, and \hat{SE}_1 and \hat{SE}_2 were the corresponding standard errors (Chen et al., 2012).

3.1. Sensitivity analysis

We conducted several sensitivity analyses: 1) We examined the city effect by removing one city a time in the multi-level logistic regression model, and repeated 6 times for all 6 cities; 2) We replaced the 1 km × 1 km ambient air pollution and constituents levels based on preschool addresses by those estimated within a 3 km range of preschools, and rerun the association analyses between lifetime annual averages of PM$_{2.5}$ and constituents and lifetime-ever diagnosed pneumonia; 3) We examined and compared the associations of PM$_{2.5}$ constituents and pneumonia between those who lived in the home addresses all the time and the whole subjects, to investigate the potential bias due to migrant children.

All multi-level logistic regression analyses were performed by MLwiN statistical software (version 2.23, University of Bristol, England). The statistical tests were two-sided, and $p < 0.05$ was considered as statistically significant.

4. Results

The descriptive statistics of the 30,315 participants were presented.
in Table 1. Generally, the subjects had a balanced gender and age distribution (mean age 4.6 years ± standard deviation 1.1; male, n[%%] = 15,694[51.8%]) (Table 1). Nearly half of the children had less than 6 months of breastfeeding and had positive reports on current passive smoking and maternal smoking during pregnancy. More than 60% of children reported home dampness.

The average prevalence of lifetime-ever pneumonia at preschool-level was 34.5% across 6 cities. The highest prevalence of childhood pneumonia was observed in Urumqi (41.1%), followed by Changsha (36.0%), Shanghai (35.4%), Chongqing (34.2%), Taiyuan (31.3%) and Nanjing (27.2%) (Table 1).

The lifetime annual average concentrations of ambient air pollutants, as well as meteorological factors were estimated and summarized in Table 2. The cumulative annual average concentrations of ambient PM$_{2.5}$ and O$_3$ was 62.0 ± 9.8 and 56.8 ± 3.2 μg/m3 across 6 cities, respectively. And the cumulative annual averages of ambient PM$_{2.5}$ in urban area was higher than that in non-urban areas across 6 cities (62.1 ± 9.9 μg/m3 compared with 59.8 ± 9.4 μg/m3). Moderate and high correlations were observed between PM$_{2.5}$ and SO$_2$, and between NO$_x$, NH$_3$ and OM after controlling for cities (correlation coefficient ranged from 0.381 to 0.892) (S1 Table). Temporally, no large variation of PM$_{2.5}$, BC and NH$_3$ levels was observed year by year except for a slight decreasing trend of SO$_2$ and an increasing trend of NO$_2$ (S1 Figure).

An assumed three-level (children, preschool and city) random intercept null model was firstly performed, and the intercept variances at the preschool and city level were 0.093 (0.014) and 0.028 (0.019), respectively. The intercept variances of health outcomes were significant between preschools (VPC = 2.75%, p < 0.001) but not between cities (VPC = 0.84%, p greater than 0.05). Accordingly, we adopted a two-level binary logistic hierarchical model consisting of the individuals (the 1st level) and preschools (the 2nd level) levels. In S2 Table, 4 two-level regression models were constructed by adding no variables (null model) and variables at personal, urban/rural and city levels, respectively. Compared with other models, the model 4 showed the lowest VPC (2.1%) and highest PCV (37.4%) including all the variables under the two selective criteria (S2 Table), for which it was determined as the primary regression model.

By the determined two-level binary logistic model with PM$_{2.5}$ as the > air pollutant (single-pollutant model), each 10 μg/m3 increase of the cumulative annual averages of PM$_{2.5}$ was positively associated with an increased risk of doctor-diagnosed pneumonia by aOR (95% CI) of 1.13 (1.06–1.20) (1.07–1.10), 1.05 (1.03–1.07) and 1.08 (1.06–1.11), respectively (Model I, Table 3). All the above significant associations remained consistent in the two-pollutant model (Model II, Table 3). The significant associations of NO$_2$, NH$_3$ and OM remained consistent with additional adjusting for PM$_{2.5}$ mass concentration in the PM$_{2.5}$-constituent joint models (Model III, Table 3). No significant positive effects were observed for ambient SO$_2$ except in the single-pollutant model (aOR = 1.02, 95% CI 1.00–1.03, p = 0.024) (Model I, Table 3).

Stratified analyses showed that age < 5 years, urban areas and breastfeeding time < 6 months might be important effect modifiers on the associations between PM$_{2.5}$ constituents and childhood pneumonia (Figs. 2 and 3). We observed younger children aged < 5 years had a higher risk of pneumonia than those aged ≥ 5 years in association with SO$_2^-$ (p = 0.046) and OM (p = 0.048) (Fig. 2). We also observed that PM$_{2.5}$ and water-soluble ion constituents, particularly the NO$_x$, NH$_3$ and OM were significantly associated with childhood pneumonia in urban areas by aOR (95% CI) of 1.15 (1.06–1.20), 1.07 (1.04–1.10), 1.05 (1.03–1.07) and 1.10 (1.06–1.13), respectively (Fig. 3). Children who had less than 6 months of breastfeeding had a significantly higher risk of pneumonia with ambient levels of PM$_{2.5}$ and NO$_2$ (Fig. 3). No significant differences were observed on the associations of PM$_{2.5}$, NO$_2$, NH$_3$, OM with childhood pneumonia, stratified by other factors including passive smoking, indoor dampness and home interior decoration (S2 Figure).

Finally, we performed the sensitivity analyses. First, we tested the associations of PM$_{2.5}$ and its constituent and childhood pneumonia by removing one city each time in the multivariate models (S3 Table). The significant associations for ambient PM$_{2.5}$ and its constituents (NO$_x$, NH$_3$ and OM) remained unchanged. Second, by using the air pollution levels in a 3 km range of preschools, instead of the 1 km estimated levels, the significant associations remained almost the same (S4 Table). Last, by comparing the associations in children who had not moved homes (n = 27,358, 90.2%) during their whole life and the whole participants, no significant changes were observed (S5 Table.)

5. Discussion

In this study, the lifetime annual averages of ambient PM$_{2.5}$ were significantly associated with lifetime-ever doctor-diagnosed childhood pneumonia across six cities of China. The PM$_{2.5}$ constituents, in particular NO$_2$, NH$_3$, and OM, showed significant associations with childhood

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Descriptive statistics of the estimated lifetime annual averages of ambient PM$_{2.5}$, constituents, O$_3$ and meteorology data in each city during the entire period.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factors</td>
<td>Total</td>
</tr>
<tr>
<td>Air pollutants (μg/m3)</td>
<td></td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>O$_3$</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>PM$_{2.5}$ constituents</td>
<td></td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>OM</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>BC</td>
<td>Mean ± SD</td>
</tr>
<tr>
<td>Meteorology Data</td>
<td></td>
</tr>
<tr>
<td>Average annual T (°C)</td>
<td>Mean</td>
</tr>
<tr>
<td>R.H. (%)</td>
<td>Mean</td>
</tr>
<tr>
<td>Precipitation (dm)</td>
<td>Mean</td>
</tr>
</tbody>
</table>

T refers to temperature; R.H refers to relative humidity.
Table 3

Associations of lifetime-ever doctor-diagnosed pneumonia and lifetime annual averages of ambient PM$_{2.5}$ and its components across six cities in China (two-level hierarchical regression model).

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Single-pollutant model (Model I)</th>
<th>p-value</th>
<th>Two-pollutant model (Model II)</th>
<th>p-value</th>
<th>PM$_{2.5}$-Constituent joint model (Model III)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aOR (95% CI)</td>
<td></td>
<td>aOR (95% CI)</td>
<td></td>
<td>aOR (95% CI)</td>
<td></td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>1.12 (1.07–1.18)</td>
<td><0.001</td>
<td>1.13 (1.05–1.21)</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SO$_{2}^+$</td>
<td>1.02 (1.00–1.04)</td>
<td>0.017</td>
<td>1.00 (0.98–1.03)</td>
<td>0.179</td>
<td>0.92 (0.85–1.01)</td>
<td>0.859</td>
</tr>
<tr>
<td>NO$_{2}^+$</td>
<td>1.06 (1.04–1.09)</td>
<td><0.001</td>
<td>1.05 (1.03–1.08)</td>
<td><0.001</td>
<td>1.04 (1.01–1.08)</td>
<td>0.009</td>
</tr>
<tr>
<td>NH$_{4}^+$</td>
<td>1.05 (1.03–1.07)</td>
<td><0.001</td>
<td>1.04 (1.02–1.07)</td>
<td><0.001</td>
<td>1.03 (1.00–1.06)</td>
<td>0.039</td>
</tr>
<tr>
<td>OM</td>
<td>1.09 (1.06–1.12)</td>
<td>0.001</td>
<td>1.09 (1.05–1.13)</td>
<td><0.001</td>
<td>1.15 (1.06–1.24)</td>
<td>0.001</td>
</tr>
<tr>
<td>BC</td>
<td>1.09 (0.98–1.20)</td>
<td>0.099</td>
<td>0.95 (0.82–1.09)</td>
<td>0.353</td>
<td>0.82 (0.67–1.01)</td>
<td>0.873</td>
</tr>
</tbody>
</table>

Abbreviations: CI: Confidence interval, aOR: adjusted odds ratio for each increase of 10 µg/m3 PM$_{2.5}$ and 1 µg/m3 of PM$_{2.5}$ chemical components. $P < 0.05$ in bold text.

- **Model I**: A single-pollutant regression model adjusting for gender, age, family history of allergy, birthweight, breastfeeding time, maternal smoking during pregnancy, current passive smoke, home indoor dampness, home interior decoration, annual household income per capita, residential locations and cumulative annual average temperature.
- **Model II**: A two-pollutant regression model with additional adjustment for O$_3$ based on Model I.
- **Model III**: PM$_{2.5}$-constituent regression model joint models with additional adjustment for the mass concentration of PM$_{2.5}$ based on Model I.

Fig. 2. The associations (aOR and 95% CI) between lifetime annual averages of ambient PM$_{2.5}$ and its components with lifetime-ever childhood pneumonia stratified by age and gender. *The aOR were statistically different between two groups ($p < 0.05$).

Fig. 3. The associations (aOR and 95% CI) between lifetime annual averages of ambient PM$_{2.5}$ and its components and childhood pneumonia stratified by residential locations and breastfeeding time. *The aOR were statistically different between two groups ($p < 0.05$).
pneumonia. The health estimates were more pronounced in children who lived in urban areas and those who had less than 6 months' breastfeeding. Children aged younger than 5 years old were more susceptible to OM levels. This is one of few studies investigating the effects of long-term levels of ambient PM_{2.5} on childhood pneumonia in China.

A heavy burden of childhood pneumonia was observed in this study (34.5%) which was consistent with a previous study in 8 cities in China (32.3%) (Zhu et al., 2018). The prevalence of lifetime-ever pneumonia in our study was higher than that reported in Beijing (26.9%) (Qu et al., 2017) and in Shandong (25.9%) (Chang et al., 2018), China.

The cumulative annual averages of ambient PM_{2.5} across 6 cities was 6 times higher than the annual WHO guideline (10 µg/m³). The fuel combustion, traffic gas and industry emissions were the common major resources of pollution in six cities, and biofuel combustion in Changsha and Chongqing additionally influenced the PM_{2.5} chemical constituents (Zhai et al., 2014; Li et al., 2008; Meng et al., 2007). As reported by Jimenez and colleagues, sulfate, nitrate and ammonium (SNA) were the predominant constituents of water-soluble inorganic ions (WSI) in PM_{2.5}, where China has serious SNA polluted areas in the world (Jimenez et al., 2009). A study conducted in Shanghai also implicated that SNA contributed 86% and 77% of total WSI in PM_{2.5} during haze and non-haze days, respectively (Behera et al., 2015). Consistent with the prior studies, the sum of water-soluble ions, SO_4^{2-}, NO_3^- and NH_4^+, accounted for 67.4% (range 51.7%-69.6%) across 6 cities in our study. Theses constituents were mainly produced as “secondary” compounds from the acidification and oxidation of sulfate dioxygen (SO_4) or nitrogen oxides (NO_x) (Huang et al., 2014). Typically, SO_4, NO_3 and NH_4 in PM_{2.5} are largely presented in the atmosphere as sulfate ammonium (NH_4)_2SO_4, ammonium nitrate, NH_4NO_3 (Wang et al., 2018). For carbon components (OM and BC), the pollution sources were mainly from the exhaust gas of gasoline vehicles, biomass or coal combustion in China (Peng et al., 2018).

In our study, we found that lifetime annual averages of ambient PM_{2.5} were significantly associated with childhood pneumonia across 6 cities. Generally, consistent results on the association between PM_{2.5} exposure and childhood pneumonia have been reported in previous literature. A two-year analysis conducted in Ningbo, China found a significant association between PM_{2.5} and increased hospital visits for childhood pneumonia (Peng et al., 2018). Glick et al. found that a high level of PM_{2.5} was significantly associated with serious pneumonia hospitalization in children (Glick et al., 2019). A retrospective cohort study conducted in USA showed modest but positive association between PM_{2.5} exposure and pediatric pneumonia during early childhood (Kennedy et al., 2018). On the other hand, a combined study consisting of 10 European birth cohorts by meta-analysis, no positive associations were found on ambient PM_{2.5} and parents’ reports of physician-diagnosed pneumonia in early childhood (up to 3 years old) (MacIntyre et al., 2014). For PM_{2.5} constituents, a multi-center study performed in six California counties showed that 3-lag day levels of PM_{2.5}, OC, NO_3 and sulfate were positively associated with increased risk of respiratory admissions, including childhood pneumonia, acute bronchitis and asthma (Ostro et al., 2009), which were consistent with our study.

The strong associations between water-soluble nitrates and ammonium and childhood pneumonia were observed in the total subjects and in those living in urban areas. The rapid urbanization in China has resulted in a sharp increase in traffic and vehicle ownership (Zhao and Yu, 2017), of which urban areas have a much higher level. The NOx in the air can cause the conversion of SO_2 into sulfuric acid (H_2SO_4) or other organic acids that might be produced by secondary reactions during pollution days in Chinese urban areas (He et al., 2014). A prior study indicated the number concentration of particles near busy freeway was 3 times higher than the background value in urban environment (Boogaard et al., 2010), and decreased rapidly along with the increasing distance from the roadside (Durant et al., 2010). The fuel burning in urban areas could emit large amounts of both trace gases and ultra-fine particles into the atmosphere (Wu et al., 2017), which resulted in pulmonary inflammation and even lung destruction (Chang et al., 2011). NO_3 and OM played important roles in particle formation in urban areas due to traffic mobility and emissions (Liu et al., 2017; Wang et al., 2016). A prior study showed that primary traffic pollutants exacerbate the lower respiratory infections during early life in Children (Darrow et al., 2014). All the above data indicated the nitrates and ammonium related pollution, more commonly in urban areas, had adverse pulmonary effects. In perspective of toxicological studies, since nitrates are acidic in nature, it showed that acidic aerosols lowered the PH values within the airways by depositing hydrogen ions, thereby triggering adverse reactions (Reiss et al., 2007). On the other hand, other components that were not able to quantify in our study, such as heavy metals, were positively associated with increased risk of respiratory admissions. In perspective of toxicological studies, since nitrates are acidic in nature, it showed that acidic aerosols lowered the PH values within the airways by depositing hydrogen ions, thereby triggering adverse reactions (Reiss et al., 2007). On the other hand, other components that were not able to quantify in our study, such as heavy metals, were positively associated with increased risk of respiratory admissions.
further increase the exposure levels, could exert adverse effects on childhood pneumonia in China. Furthermore, the temporally-adjusted cumulative air pollution estimation, the large sample size, and the application of multi-level logistic regression models presented more convincing results with adequate statistical power.

This study has several limitations. First, the diagnosed pneumonia was collected by parents’ reports and the information about the severity and diagnosis age of pneumonia was not available, which might have potential information bias compare with clinical diagnosis. However, the pneumonia prevalence level in our survey was reasonable by comparing to the data calculated from the incidence rate in China by Rudan et al. (2013). Second, we estimated air pollution levels (1 km × 1 km) based on preschools’ addresses, which might introduce potential exposure misclassification. However, preschools are usually close to homes in China (within 3 km), and the sensitivity analysis, by using the air pollution levels estimated within 3 km range of preschool addresses, showed no significant changes on the associations between ambient air pollution and pneumonia (Jiang et al., 2018). Third, the estimation on the lifetime accumulated air pollution levels might not be appropriate in migrant children who ever moved from other places since birth. However, we found these subjects only accounted for a small proportion (<10%) and by comparing the non-migrant subjects and the whole subjects, there was almost no differences. Fourth, the information on indoor burning of solid/gas fuel in participants’ homes were not available, which did not allow us to adjust for potential confounding in the model. So we must be particularly cautious in explaining the potential effects of indoor air pollution (Accinelli et al., 2017). Finally, the same as all other cross-sectional studies, we cannot identify the chronological sequence between exposure and outcome, which limits the power to establish a causal relationship between air exposure and health assessment. For all these limitations mentioned above, the findings should be interpreted with caution before extension to other population and research.

6. Conclusions

This multi-center study suggested the adverse health effects of long-term levels of ambient PM2.5 and its chemical components on childhood pneumonia in China. The traffic-related constituents, in particular NO2, NH3, and OM, could dominate the health effects of ambient PM2.5 on childhood pneumonia. Living in the urban areas, breastfeeding time < 6 months and age < 5 years could increase the risks of pneumonia by ambient air pollutants. The findings strengthened the rationale to further reduce air pollution and limit the emission of sources, in particular the traffic related air pollutants.

Author contributions

WS did the statistical analysis, drafted and revised the article, CL provided air pollution data from modelling predictions and revised the article. WS, HK and ZZ contributed the concept and the design of the study. IAM, DN, QD, CH, HQ, ZX, YS, TW, RVM, AVD, YZ, BI, HK and ZZ participated the field work and edited the article. All authors contributed in giving the comments and revised the article.

Funding

This work was supported by the National Natural Science Foundation of China (grant number: 81861138005).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Great appreciation to all the participants in the CCHH study and the participating parents and guardians.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.envint.2020.106176.

References

Abhey, D.E., Ostro, B.L., Petersen, F., Burchette, R.J., 1995. Chronic respiratory symptoms associated with estimated long-term ambient concentrations of fine particulates less than 2.5 microns in aerodynamic diameter (PM2.5) and other air pollutants. J. Expo. Anal. Environ. Epidemiol. 5 (2), 137–159.

