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SUMMARY

Esthesioneuroblastoma (ENB) is a rare cancer of the
olfactory mucosa, with no established molecular
stratification to date. We report similarities of ENB
with tumors arising in the neural crest and perform
integrative analysis of these tumors. We propose a
molecular-based subtype classification of ENB as
basal or neural, both of which have distinct patholog-
ical, transcriptomic, proteomic, and immune features.
Among the basal subtype, we uncovered an IDH2
R172 mutant-enriched subgroup (�35%) harboring
a CpG island methylator phenotype reminiscent of
IDH2 mutant gliomas. Compared with the basal ENB
methylome, the neural ENB methylome shows
genome-wide reprogramming with loss of DNA
methylation at the enhancers of axonal guidance
genes. Our study reveals insights into the molecular
pathogenesis of ENB and provides classification in-
formation of potential therapeutic relevance.
INTRODUCTION

Esthesioneuroblastoma (ENB), also known as olfactory neuro-

blastoma, is a rare tumor that arises in the skull base and ex-
Cell
This is an open access article und
pands into the nasal cavities. The annual incidence is estimated

at 4 cases per 10 million people, and ENB accounts for approx-

imately 3% of all sinonasal tumors (Su et al., 2014). Hyams

grading establishes four categories of ENB associated with out-

comes, although ENB is often divided into low- and high-grade

tumors (Bell et al., 2015; Malouf et al., 2013). Patients with low-

grade tumors typically experience late loco-regional recurrence,

whereas those with high-grade tumors frequently develop

distant metastasis, with 2-year survival less than 40% (Malouf

et al., 2013). Thus, determining the optimal management of these

tumors remains an unmet medical need.

Several prognostic factors have been associated with poor

outcomes for patients with ENB, including TNM stage, presence

of lymph node metastasis, and tumor grade (Czapiewski et al.,

2016). However, management of aggressive ENBs is chal-

lenging, because no targetable oncogenic driver has been iden-

tified. Two recent reports analyzed ENB using next-generation

targeted sequencing of a panel of cancer genes (Gay et al.,

2017; Lazo de la Vega et al., 2017). Although Gay et al. (2017)

identified TP53 mutations as the most frequent mutation, Lazo

de la Vega et al. (2017) found no gene to be frequently mutated.

Tumor grade was not reported in either study, and several tu-

mors were pretreated prior to sequencing.

Thus, we sought to classify these tumors by molecular sub-

type and identify their cells of origin within olfactory mucosa.

We performed integrative analysis of primary ENB samples

that were well annotated regarding their pathological and clinical
Reports 25, 811–821, October 16, 2018 ª 2018 The Author(s). 811
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Figure 1. Landscape of Somatic Mutations in ENBs and Clinicopathological Characteristics of IDH2-Mutated Cases

(A) Heatmap showing individual mutations in 14 patient samples, color-coded by type of mutation. Upper panel: histogram showing the number of mutations in

each sample. Rightmost column: annotation of clinicopathological tumor characteristics and patient gender. Bottom panel: heatmap of clinicopathological tumor

characteristics and patient gender.

(B) Immunohistochemical profile of IDH2-mutated case showing focal expression of chromogranin A (CHGA), heterogeneous expression of cytokeratins in tumor

cells, high Ki67 proliferation index, and cytoplasmic expression of the IDH2 mutant protein.

(C) Immunohistochemical profile of IDH2 wild-type case showing a diffuse granular cytoplasmic expression of CHGA, no expression of cytokeratins, low-to-

moderate Ki67 proliferation index, and no expression of the IDH2 mutant protein.

(D) Bar graph showing significantly higher expression of CKAE1/AE3 in IDH2-mutated cases compared to wild-type ENBs (Mann-Whitney test, p = 0.002).

(E) Bar graph showing a significantly lower expression of CHGA in IDH2-mutated cases compared to wild-type ENBs (Mann-Whitney test, p = 0.02).

(legend continued on next page)
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features. We discovered two robust subtypes linked to cell

ontogeny that displayed specific transcriptomic and epigenetic

signatures and were associated with distinct outcomes.

RESULTS

Samples, Clinical Data, and Analytic Approach
Fifty-nine surgically resected primary ENBs were collected and

re-evaluated histopathologically by two head and neck patholo-

gists to confirm the diagnosis and establish a consensus Hyams

grade (M.W. and M.C.). Immunohistochemical staining for

neuroendocrine markers (i.e., chromogranin and synaptophy-

sin), the Ki67 proliferation marker and cytokeratin were per-

formed using whole slides. DNA (n = 42) and RNA (n = 21)

were extracted from fresh-frozen samples when available;

otherwise, DNA was extracted from formalin-fixed paraffin-

embedded samples (n = 17). Matched germline DNA from blood

or adjacent normal tissue was also collected in 14 cases. Whole-

exome sequencing was performed for 27 ENBs, including a

training set of matched tumor-normal samples (n = 14) and a vali-

dation set of 13 ENB samples without matching normal samples.

DNA extracted from the remaining samples was used for tar-

geted validation. RNA sequencing was performed on 19 ENB

cases; in addition, DNAmethylation was analyzed using Infinium

EPIC arrays on 27 ENB cases. Detailed clinical and pathologic

characteristics of the cohort matched those of the general pop-

ulation of patients with surgically resected ENB (Malouf et al.,

2013) (Table S1). The median follow-up time for the 59 patients

was 79.1 months; 12 patients had died at last follow-up. Among

the clinical variables, only higher Hyams grades (III–IV versus I–II)

were associated with significant poor overall survival (OS) time

(hazard ratio [HR] = 0.19; 95% confidence interval [CI]: 0.06–

0.59; p = 0.02); no difference in terms of OS was observed ac-

cording to the patient’s sex, age, or tumor stage.

Landscape of Genomic Alterations
Among the 14 matched ENBs for which we performed paired

whole-exome sequencing, 623 somatic non-silent mutations

implicating 575 different genes were identified (Table S2). The

median mutational load was 20 somatic mutations per sample

(range, 5–217). Nonsynonymous single nucleotide variants

were the most frequent mutations identified (86%). Hotspot

IDH2 R172 codon (n = 4, 28.6%) and TP53 (n = 3; 21.4%) muta-

tions were the most recurrent mutations identified in more than

10%of cases and in those that co-occurred (p = 0.01) (Figure 1A).

TP53 stopgain mutation in ENB-28T was confirmed by immuno-

histochemistry, showing a loss of expression (Figure S1A).

Conversely, immunohistochemistry showed that the two remain-

ing nonsynonymous TP53 mutations in ENB-59T and ENB-13T

were responsible for the overexpression of the protein (Figures

S1B and S1C). Exploring the biological functions related to the

most relevant mutations, we also identified somatic mutations
(F) Bar graph showing a significantly lower expression of synaptophysin in the IDH

(G) Stacked bar graph showing significant enrichment of IDH2mutations in ENB c

(H) Bar graph showing a significantly higher Ki67 proliferation index in the IDH2-

(I) Kaplan-Meier survival curves showing no difference in overall survival between

(p = 0.4)
in DNA repair genes, which were altered in 35.7% (n = 5) of

cases. Similar to other cancer subtypes, mutations of genes

involved in chromatin regulation were identified in 42.8%

(n = 6) of cases, including one sample which harbored delete-

rious mutations of members of SWI/SNF complex ARID1A and

SMARCA4. In addition to TP53, we identified mutations in genes

related to the cell cycle and basal cell carcinoma pathways that

were altered in 28.6% (n = 4) and 35.7% (n = 5) of cases, respec-

tively (Figure 1A). For two cases, we were able to analyze intra-

tumoral heterogeneity by sequencing two distinct sections

from the primary tumor (ENB-18T and ENB-59T). We found

56% and 93% of shared mutations, respectively (Table S2).

ENB-59T displayed not only both IDH2 mutations but also

TP53 and KIT mutations, which were common in both samples,

indicating these mutations could be truncal events. To identify

recurrent focal copy number alterations, GISTIC analysis was

performed; no recurrent copy numbers gain and loss alteration

were identified (Figure S2).

Sequencing an independent dataset of 13 ENB cases for

which germline DNA was not available, we identified one addi-

tional case of IDH2 hotspot mutation (Figure S1D; Table S3).

After filtering out mutations not previously reported in polymor-

phism databases and belonging to the Cancer Gene Census

catalog (n = 719), 4 genes were mutated in more than 10%

of cases. These include MUC16 (n = 5; 18.5%), ARID1A

(n = 4; 14.8%), KMT2D (n = 3; 11.1%), and NUMA1 (n = 3;

11.1%) (Figures S1D and S1E). Thus, 22.2% (n = 6) of ENB

harbored mutations affecting SWI/SNF members (ARID1A,

SMARCA4, and SMARCC1) (Figures S1D and S1E); those

were predicted to lead to deleterious proteins and were

mutually exclusive with IDH2 mutations. Likewise, mutations

affecting several H3K4 methyltransferases (KMT2D, KMT2A,

and KMT2C) were identified in 22.2% (n = 6) of cases (Figures

S1D and S1E; Table S3).

Prevalence and Clinicopathological Features of IDH2-

Mutant ENBs
To explore the prevalence of IDH2 mutations, pyrosequencing

of an independent dataset of 15 ENB cases identified 2 addi-

tional cases; thus, IDH2 R172 mutations were present in 7 of

42 ENB cases (16.7%). All IDH2 mutations were validated by

immunohistochemistry. At the pathological level, IDH2-mutant

tumors harbored higher expression of cytokeratins (p = 0.002)

and lower expression of neuroendocrine markers chromogranin

A (p = 0.02) and synaptophysin (p = 0.002) (Figures 1B and 1C).

IDH2 mutations were found exclusively in tumors with higher

grade (p = 0.009) and were characterized by higher Ki67 prolifer-

ation index (p < 0.0001) (Figures 1D–1H) and frequent necrosis

(p = 0.04) (Table S4). Age, sex, and clinical stage were not

different between IDH2 wild-type and IDH2-mutated cases. No

difference in overall survival was observed between cases with

or without IDH2 mutations (Figure 1I).
2-mutated cases compared to wild-type ENBs (Mann-Whitney test, p = 0.002).

ases displaying a high Hyams histological grade (Fisher’s exact test, p = 0.009).

mutated ENB compared to IDH2 wild-type (Mann-Whitney test, p < 0.0001).

patients with tumors harboring IDH2 wild-type and those with IDH2mutations

Cell Reports 25, 811–821, October 16, 2018 813



Figure 2. Subtype Classification of Esthe-

sioneuroblastomas

(A) Unsupervised hierarchical clustering using the

top-1,500 most variable genes, revealing two

subgroups: basal (left) and neural (right). Upper

panel: clinicopathological tumor characteristics

according to the subtype classification.

(B) Heatmap depicting genes enriched for GO

terms that were more significantly enriched in the

neural ENB subtype than in basal ENB subtype.

(C) Heatmap depicting genes implicated in the

KEGG pathways that were more significantly en-

riched in the neural ENB subtype than in basal ENB

subtype.
Subtype Transcriptomic-Based Classification
We then considered whether ENBs display a unique gene

expression signature compared to that of other sinonasal carci-

nomas and normal mucosa. We performed an unsupervised

hierarchical clustering of gene expression of 19 ENBs, 3 intesti-

nal-type adenocarcinomas, 3 squamous cell carcinomas, and

4 normal mucosa samples. All but one ENB sample (ENB-14T)

gathered indicated that ENBs are unique at the transcriptomic

level (Figure S3A). We used principal component analysis to

confirm these results (Figure S3B). To clarify ENB cell ontogeny,

we performed unsupervised clustering using a dataset from The

Cancer Genome Atlas (TCGA) comprising 29 various cancer

subtypes arising within different organs. We found that ENB

clustered with all tumor types derived from the neural crest,

namely glioblastomas, low-grade gliomas, pheochromocy-

tomas, and paragangliomas (Figures S3C and S3D).

To establish a subgroup classification of ENB, we performed

unsupervised clustering of ENBs (excluding ENB-14T), which re-

vealed two distinct subgroups that we named basal and neural

based on gene ontology (GO) and functional annotation analysis

(Figure 2A). Overall, 1,220 genes were upregulated in the neural

subtype compared to the basal subtype (fold change [FC] R 2;

false discovery rate [FDR] < 0.1). GO analysis revealed that those

genes were enriched for neuron modules, such as neuro-

transmitter secretion (p = 2.9 3 10�14) and nervous system

development (p = 8.23 10�10) (Figure 2B). Consistent with these

findings, KEGG pathway analysis revealed enrichment of those

genes for the synaptic vesicle cycle (p = 1.1 3 10�6) and neuro-

active ligand-receptor interaction (p = 1.2 3 10�4) (Figure 2C).
814 Cell Reports 25, 811–821, October 16, 2018
Conversely, 614 genes were overex-

pressed in basal compared to neural

ENBs (FC R 2; FDR < 0.1). GO analysis

revealed that those genes were enriched

for cell division (p = 4.33 10�19), cell pro-

liferation (p = 1.05 3 10�7), embryonic

morphogenesis (p = 5.7 3 10�5), neural

tube closure (p = 1.75 3 10�4), and

embryonic cranial skeleton morphogen-

esis (p = 4.03 3 10�4) (Figure 2B). KEGG

pathway analysis was consistent with

activation of the cell cycle (p = 4.6 3

10�5) and basal cell carcinoma pathways

(p = 0.002) in basal ENBs (Figure 2C).
Interestingly, only four genes (4.9%) belonging to proliferation

gene set shared an embryonic signature.

Associations between the two schemes for transcriptomic

classification and clinicopathological tumor features revealed

that neural ENBswere often well differentiated, with high expres-

sion of the endocrine markers chromogranin (p = 0.01) and

synaptophysin (p = 0.08) and the presence of S100 protein-

positive sustentacular cells (p = 0.0005) and absence of necrosis

(p = 0.01) (Table 1). In contrast, basal ENB tumors, which

comprise less differentiated cells, were often high-grade tumors

(p = 0.06) characterized by high mitotic rate (p = 0.01) and

increased Ki67 proliferation marker (p = 0.003) as compared to

neural ENBs (Table 1). The expression of CKAE1/AE3 was

observed only in basal-type ENBs (p = 0.03).

Putative Cells of Origin of ENB Subtypes
Molecular differences between the ENB transcriptomic subtypes

should provide clues to their origin. Thus, we examined the

top-700 differential mRNAs associated with ENB transcriptomic

subtypes, using a public dataset from the FANTOM consortium

of 850 profiles representing various human cell and tissue spec-

imens (Figure 3A). The expression pattern showed that the neural

ENB subtype was associated with tissues related to the CNS

(Figure 3A). To infer a link between ENB subtypes and cells

composing olfactory mucosa, we took advantage of transcrip-

tomic profiles generated in mice olfactory cells that described

13 putative cells ranging from the more undifferentiated horizon-

tal basal cells (HBCs), globose basal cells (GBCs), and immature

neuron progenitor type 1 (INP1) tomoremature cells, such as the



Table 1. Association between Clinicopathologic Features of ENB

and the Transcriptomic Subtype Classification in Neural and

Basal Categories

Neural (n = 9) Basal (n = 9) p Value

Age p = 0.7

Mean 46.1 ± 5.1 49.2 ± 5.71

Sex p = 0.6

Male 4 6

Female 5 3

Ki67 p = 0.003

Mean 15 ± 3.2 (n = 8) 54.6 ± 9.7 (n = 9)

NA n = 1 n = 0

Mitoses/2.5 mm2 p = 0.01

Median 2 ± 2 (n = 9) 27 ± 13 (n = 8)

NA n = 0 n = 1

Necrosis p = 0.01

Yes 0 5

No 9 4

Chromogranin

A (% tumor

cells + by IHC)

p = 0.01

Median 75 ± 10 (n = 8) 5 ± 2.5

NA n = 1 n = 1

Synaptophysin

(% tumor cells +

by IHC)

p = 0.08

Median 80 ± 10 (n = 9) 20 ± 19

NA n = 0 n = 1

S100 sustentacular

cells (% + by IHC)

p = 0.0005

Median 70 ± 30 (n = 9) 5 ± 2.5

NA n = 0 n = 1

CKAE1/AE3

(% tumor

cells + by IHC)

p = 0.03

Median 0 ± 0 5 ± 5

NA n = 0 n = 0

Hyams grade p = 0.06

I, II 7 2

III, IV 2 7

Intratumoral

CD20+ cells/mm2

p = 0.04

Median 0 ± 0 (n = 9) 4 ± 4

NA n = 0 n = 1

Intratumoral

CD4+ cells/mm2

p = 0.02

Median 11 ± 8 (n = 9) 59.5 ± 43

NA n = 0 n = 1

Intratumoral

CD8+ cells/mm2

p = 0.004

Median 4 ± 4 (n = 9) 50 ± 39.5 (n = 8)

NA n = 0 n = 1

(Continued on next page)

Table 1. Continued

Neural (n = 9) Basal (n = 9) p Value

Modified Kadish p = 0.6

A–B 2 1

C–D 7 8

Dulguerov stage p = 0.9

T1–T2 3 3

T3–T4 6 6

NA, not applicable.
immature neuron progenitor types 2 and 3 (INP2-3) (Fletcher

et al., 2017). Notably, inter-correlations between those olfactory

mucosal cells and ENB profiles identified similarities between

basal ENB from one side and GBC and INP1 immature cells

from the other side (n = 4/9), all having relatively higher IDH2,

NOTCH2, MYC, MYB, GRHL2, MKi67, and KIT expression

(Figures 3B and S4A). Overexpression of KIT in basal ENB

was confirmed by immunohistochemistry (Figure S4B). We

also observed similarities between a subset of neural ENBs

(n = 4/9) from one side and INP2-3 cells, iOSN, and mOSN

from the other side, all having relatively higher chromogranin

(CHGA), synaptophysin (SYP), neural cell-adhesion molecule 1

(NCAM1), and neuronal differentiation 1 (NEUROD1) expression.

Proteomic-Based ENB Subtype Classification
Strengthened by the findings that basal ENB expressed cyto-

keratin (CKAE1/AE3) and a high level of Ki67 (R25%) compared

to neural ENB, which showed high expression levels for chro-

mogranin (CHGA) and the presence of S100 sustentacular cells,

we performed unsupervised protein-based clustering of the

18 ENB cases assessed by RNA-seq using the expression

levels of the four following markers: CHGA, cytokeratins, Ki67,

and S100 protein. Consistent with transcriptome-based clas-

sification, protein-based clustering identified two subgroups

that were highly correlated with transcriptome-based clustering

(p = 0.002) (Figure 4A). We then performed unsupervised pro-

tein-based clustering using the four markers in the whole cohort

(n = 51). We observed that the ENB samples clustered into

two groups, consistent with the basal (43.1%; n = 22) and neu-

ral (56.9%; n = 29) subtype classification (Figure 4B). Impor-

tantly, basal ENBs were less differentiated (p < 0.0001), had

a higher tumor grade (p < 0.0001), and increased Ki67 index

(p < 0.0001), as well as an overexpression of cytokeratins

(p < 0.0001) compared to neural ENBs. Conversely, the latter

ones displayed higher chromogranin and synaptophysin

expression (p < 0.0001) and were enriched for the presence

of S100 sustentacular cells (p < 0.0001). There was no dif-

ference in terms of the TNM stage between the two sub-

groups. Puzzlingly, the basal-type cluster was enriched in males

(p = 0.01) (Figure 4C). Finally, using data for ENB cases where

paired exome sequencing was performed, we found that the

basal ENB samples harbored a higher mutation load compared

to the neural ENB samples (p = 0.02). Patients with basal ENBs

had shorter median overall survival of 73 months compared to

patients with neural ENBs (median not reached) (p = 0.008)

(HR = 6.2; 95% CI: 1.7–22.1) (Figure 4D).
Cell Reports 25, 811–821, October 16, 2018 815



Figure 3. Gene Signatures Distinguishing

ENB Transcriptomic Subtypes Are Linked

to Specific Tissue Types or Cells of Origin

within Olfactory Mucosa

(A) Heatmap showing inter-sample correlations

(orange, positive) between ENB differential

expression profiles (columns) and profiles from the

Fantom consortium expression dataset of various

cell types or tissues from human specimens (rows,

n = 850 profiles). Membership of the Fantom pro-

files in general categories of ‘‘cancer,’’ ‘‘cell line,’’

‘‘immune’’ (immune cell types or blood or related

tissues), ‘‘CNS’’ (related to central nervous system

including brain), ‘‘squamous’’ (including bronchial,

trachea, oral regions, throat and esophagus

regions, nasal regions, urothelial, cervix, sebocyte,

keratin/skin/epidermis), ‘‘fibroblast,’’ or ‘‘adipo-

cyte/heart’’ is indicated. The red rectangle un-

derlies the similarities between ENB profile and

CNS cells profile.

(B) Heatmap showing inter-sample correlations

(orange, positive) between differential expression

profiles of ENBs (columns) and differential profiles

of olfactory mucosal cell types (rows, GSE95601

dataset). HBC, horizontal basal cell; GBC, globose

basal cell; INP, immature neuron progenitors;

iOSN, immature olfactory sensory neuron; mOSN,

mature olfactory sensory neuron; mSUS, mature

sustentacular cell; iSUS, immature sustentacular

cell; MV, microvillous cell.
Discovery of E-CpG Island Methylator Phenotype in
IDH2 R172 ENB
To identify specific and global differences between the genome-

wide methylation profiles of ENB subtypes, we analyzed 27 ENB

samples (5 ofwhichdisplayed IDH2mutation) using InfiniumEPIC

arrays. The Illumina EPIC DNA methylation array was chosen

because it provides a genome-scale interrogation of �850,000

probes in the human methylome, both in CpG islands (CGIs)

andoutsideCGIs.First,we focusedouranalysis onCGIsbecause

of their functional significance and the strong correlations be-

tween CGIs and transcription initiation (Deaton and Bird, 2011).

Hierarchical clustering analysis using M-values of the 1000

most differentially methylated probes located in CGIs revealed

two epi-clusters that were highly correlated with our protein-

based classification (p = 0.0001) (Figure 5A). Remarkably, all the

IDH2-mutant cases clustered together, consistent with an ENB

CGI methylator phenotype (E-CIMP) that is reminiscent of CIMP

observed in other tumors such as glioblastomas and colon can-

cers. Overall, using stringent criteria (b-value < 0.2 in IDH2 wild-

type and R 0.5 in IDH2-mutant), 6827 probes were found to

be hypermethylated in E-CIMP, compared to only 7 probes in

E-CIMP-negative samples. GO analysis revealed that hyperme-

thylated genes in E-CIMP were enriched for chemical synaptic

transmission (p = 7.93 10�17), negative regulation of neuron dif-

ferentiation (p=8.4310�9) andneuropeptide signalingpathways

(p = 9.43 10�9), suggesting that IDH2mutation inhibits neural dif-

ferentiation through epigenetic genome-wide reprogramming. To

determine whether methylome reprogramming of IDH2-mutant

ENB was specific to CGI regions, we analyzed the enrichment of

differentially methylated probes according to their CpG genomic
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and functional annotations in IDH2-mutant versus wild-type

ENBs. Importantly, no enrichment was observed according

to genomic distributions ofCpGsites in islands, shoresor shelves

(Figure 5B). In contrast, we observed an enrichment of CpG

sites located in exon 1 (3.2-fold enrichment) (Figure 5B) that

was tightly linked to transcriptional gene silencing. GO analysis

of methylated genes enriched in exon 1 were enriched for chem-

ical synaptic transmission (p = 3.5 3 10�12), neuropeptide

signaling pathway (p = 6.73 10�9) and nervous systemdevelop-

ment (p = 1.4 3 10�5) pathways, consistent with blockade

of neuronal differentiation. To determine whether E-CIMP has

a methylome similar to that of IDH1-2-mutant glioblastoma

(G-CIMP),weperformed supervisedclustering usingdifferentially

methylatedprobesbetweenE-CIMPandother ENBsamples.We

found that G-CIMP samples clustered according to their IDH1-2

status, which implied that similar epigenetic programing occurs

in IDH1-2-mutant tumors (Figure S5).

Methyl Divergence of ENB Subtypes
To analyze methylation changes related to cell ontogeny, we

excluded E-CIMP samples from further analysis and performed

unsupervised clustering using differentially methylated probes

of the remaining ENB samples (n = 22) (Figure 5C). We observed

that the basal samples showed greater clustering than the neu-

ral samples. Overall, 55,824 (6.7%) autosomal genes were

significantly differentially methylated between the neural and

basal clusters (Db-value R 0.2 or % �0.2, FDR < 0.1); 30,576

(3.6%) probes were hypermethylated and 25,248 (2.9%) probes

were hypomethylated in the basal compared to the neural sub-

group. Among the probes that lost methylation in the neural



Figure 4. Protein-Based Expression Clustering of ENBs
(A) Hierarchical unsupervised clustering based on 4 protein markers (Ki67, S100, cytokeratins, and chromogranin A) applied to 18 ENBs assessed by RNA-seq.

Each column represents one ENB sample, and each row represents one protein marker. Upper panel: clinicopathological tumor features, patient gender, IDH2

status, and the mRNA-based classification subtype (neural or basal).

(B) Hierarchical unsupervised clustering based on the same 4 protein markers applied to 51 ENB samples with available data. Upper panel: clinicopathological

tumor features, patient gender, IDH2 status, and the mRNA-based classification subtype whenever available.

(C) Interval bar graph showing proportion of male and female patients with each ENB subtype within the dataset (Fisher’s exact test, p = 0.01).

(D) Kaplan-Meier curves showing shorter overall survival times for a greater proportion of patients with tumors belonging to the basal cluster compared to those

belonging to the neural cluster (p = 0.008).
ENB subgroup, no enrichment was identified according to

genomic distribution of CpG sites. Conversely, we identified

striking enrichment for probes located in enhancers (FC = 2.2)

(Figure 5D). GO analysis revealed that those enhancers were

enriched for signal transduction (p = 2.2 3 10�12), platelet acti-

vation (p = 1.1 3 10�6), and axonal guidance (p = 5.2 3 10�6).

Next, we concentrated on probes located in CGIs because of

their known correlation with gene expression. Overall, for the

1,377 probes differentially methylated between the ENB sub-

types (Db-value R 0.2 or % �0.2, FDR < 0.1), we observed a

higher methylation of probes located in CGIs in the basal

ENB (mean b = 0.38 ± 0.005) than in the neural ENB (mean

b = 0.30 ± 0.006) (p < 0.0001) (Figure S6A). We also observed

significant enrichment for probes with low-level methylation in

the neural subtype (Figure S6B). GO enrichment analysis

showed that promoters that lost DNA methylation in the neural

subgroup compared to the basal subgroup were related to
genes involved in chemical synaptic transmission (p = 6.9 3

10�8); furthermore, this was associated with their increased

expression (Figure S6C).

Charting Immune Tumor Profiles
The significance of T lymphocyte infiltration in ENB is not known.

To investigate the immune microenvironment of ENBs, we

explored CD4 (+) and CD8 (+) tumor-infiltrating lymphocytes

(TILs) in 42 ENBs classified as neural (n = 25) or basal (n = 17).

We found that the mean counts of both CD4+ and CD8+ T cells

were significantly higher in basal ENBs than in neural ENBs

(p = 0.007 and p < 0.0001, respectively) (Figures 6A–6F). CD8A

mRNA expression levels assessed by RNA sequencing (RNA-

seq) were highly correlated with CD8+ TILs (Pearson r = 0.8;

p = 0.0001). We then investigated the expression of cytotoxicity

markers, inflammatory cytokines, and immune checkpoints

according to our two subtypes. Consistent with CD8 infiltration
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Figure 5. Methylation Landscape of ENB

Subtypes

(A) Unsupervised hierarchical clustering of ENB

samples (n = 27) using M-values of 1000 most

variable probes in CpG islands. All IDH2 mutated

ENB cases clustered together and display a CpG

island methylator phenotype (E-CIMP).

(B) Bar graph showing enrichment of genomic and

functional distribution of differentially methylated

probes between IDH2 mutated and IDH2 wild-

type ENBs.

(C) Unsupervised hierarchical clustering of ENB

samples without IDH2 mutations (n = 22) accord-

ing to the most variable 8,000 probes (using

M values), showing that neural and basal ENB

samples cluster together.

(D) Bar graph showing the enrichment of genomic

and functional distribution of methylated probes

that differentiates between neural and basal

ENBs. Note the striking enrichment for enhancers

in probes losing methylation in neural ENBs

compared to basal ENBs.
in the basal subtype, we also identified higher expression levels

of cytotoxic cell markers (GZMA, GZMB), T cell invasion chemo-

kine factors (CXCL13, CXCL10, and CXCL9), immune check-

points (notably PD1 [PDCD1] and its ligands PD-L1 [CD274],

PD-L2 [PDCD1LG2], CTL4A, ICOS, TIM3 [HAVCR2], and

LAG3), and suppressive factors (notably IDO1, TGFB, IL-10,

and FOXP3) (Figure 6G).

To further estimate tissue-infiltrating immune and other stro-

mal populations’ abundances using gene expression, we used

MCP counter. We found higher cytotoxic cells lymphocytes

(p = 0.06), fibroblast (p = 0.01), and more monocytic cells

(p = 0.01) in basal versus neural ENB. These data highly corrob-

orate the findings observed by immunohistochemistry (IHC) for

CD8+ cells. To consider possible drug targets, we explored the

PD-L1 expression levels in our dataset and found that PD-L1

was expressed by both tumor cells and immune cells, predom-

inantly within tumor areas (Figure 6H). Of 36 evaluable cases,

14 cases (39%) showed positive staining (R1%), including

9 cases with PD-L1 expression levels ranging from 5%–50%.

Importantly, 64% of basal ENBs showed high PD-L1 expres-

sion (R1%), compared to 27% of neural ENBs (p = 0.06)

(Figure 6I).

DISCUSSION

This study represents, to our knowledge, the first integrative

analysis of ENBs using a multi-omic approach, which led to
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our classifying these tumors into two ma-

jor subtypes with distinct clinicopatho-

logical features. In addition, it provides a

link between distinct development stages

of normal olfactory mucosa and ENB tu-

mor subtypes defined by gene expres-

sion profiling. This model is consistent

with carcinogenesis in other organs,

where normal development of the pri-
mary organ has been shown to meet cancer ‘‘intrinsic’’ subtypes

(Prat and Perou, 2009). We note that in a study of young rats,

GBCs, but not HBCs, are the neuronal progenitors of the

olfactory epithelium (Caggiano et al., 1994). Herein, the immature

GBC cell signature was found to be highly enriched in the basal

subtype. Conversely, the more mature neural signature was

found to be enriched in the neural ENB subtype. These findings

provide support for the cancer stem cell (CSC) paradigm. Ac-

cording to this model, a heterogeneous population of cancer

cells can develop from the transformation of normal stem cells

or progenitor cells (tumors cells that exhibits stem cells proper-

ties) (Ebben et al., 2010). Alternatively, a differentiated cancer

cell may acquire stem cell properties and develop into a hetero-

geneous tumor population (Prat and Perou, 2009). However, in

both situations, the CSC paradigm states that the bulk of the

tumor cells exhibit limited proliferation potential; whereas enrich-

ment with a CSC compartment favors tumor aggressiveness and

contributes to treatment resistance, which is a characteristic of

the basal ENB subtype. Thus, the different profiles displayed

by neural and basal ENBs could be explained by two hypothe-

ses. The first one is that basal ENBs derive from basal cells

(HBC and/or GBC) while neural ENBs derive from immature ol-

factory neuron progenitors (INP). The second one is that basal

ENBs are stuck in a basal state, whereas neural ENBs manage

to initiate an incomplete neuron maturation process. Mecha-

nistic data ore needed to decipher the molecular basis linking

ontogeny with oncogenesis in these tumors. In addition, we



Figure 6. Immune Microenvironment of ENBs

(A–C) Immunohistochemical illustrations (A and B) and scatterplot (C) showing a tendency toward greater number of intratumoral CD4+ T cells in basal ENBs than

in neural ENBs (p = 0.06).

(D–F) Immunohistochemical illustrations (D and E) and scatterplot (F) showing a greater number of intratumoral CD8+ T cells in basal ENBs than in neural ENBs

(p < 0.0001).

(G) Heatmap of immune genes in neural and basal ENBs. ENB cases are ordered by CD8+ cell count in each subtype. The number of tumor-infiltrating lym-

phocytes (TILs) was not available for ENB-59T case.

(H) Example of the immunohistochemical expression of PD-L1 in a basal-type ENB.

(I) Bar graph showing enrichment of PD-L1 expression in basal compared to the neural ENB subtype (p = 0.06).
must keep in mind the experimental limitations of the study of

normal stem cells and CSCs, specifically in ENBs because

gene expression profiles were obtained from subpopulations of

cells with different tumor grades and at different putative stages

of differentiation in the neuronal hierarchy within the human

olfactory mucosa.
At the genetic level, we discovered that �17% of ENBs

harbored the IDH2 R172 hotspot mutation previously reported

in a subset of glioblastomas (Balss et al., 2008), leukemia (Mar-

cucci et al., 2010), and osteosarcomas, expanding the spectrum

of cancerous organs with such oncogenic mutations (Dang and

Su, 2017). We note that�5% of ENBs in the cohort evaluated by
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Gay et al. (2017) also harbored IDH2 mutations. However, as

tumor grade was not reported in that study, we cannot rule out

the possibility that this might confound the prevalence of IDH2

mutations (Gay et al., 2017). More importantly, in our cohort,

IDH2 mutations were found exclusively in almost one third of

basal ENBs, and those samples displayed unique pathological

features. Recently, IDH2 mutations were also reported in the

vast majority of sinonasal undifferentiated carcinomas and in

variable proportions of other poorly differentiated sinonasal car-

cinomas (Dogan et al., 2017; Jo et al., 2017). As these tumors

might overlap pathologically, future efforts are needed to better

classify the IDH2-mutated subset. Beyond diagnostic implica-

tions, these findings have significant implications for therapy

with IDH inhibitors, which have been recently approved to treat

acute myeloid leukemia with a companion diagnostic along

with the drug for IDH2 mutation detection (Mullard, 2017).

In our study, we found that IDH2 mutation underlies global

epigenomic divergence in ENBwith pervasive DNA hypermethy-

lation enriched in enhancers of axonal guidance genes, possibly

leading to failure of GBCs to differentiate into the neuronal line-

age, which is consistent with previous studies that demonstrated

that IDH mutations result in a block of cell differentiation in vitro

and in vivo (Lu et al., 2012, 2013). Furthermore, our results sug-

gest a mechanism for cancer-related DNA hypermethylation that

may be similar to the one proposed in glioblastomas and leuke-

mia. Generation of a novel genetically engineered mice model by

inducing IDH2 mutations on the relevant targeted cell popula-

tionsmight help clarify the cell of origin of these tumors and allow

mechanistic studies.

A key finding of our study is the similarity between gene

expression in ENBs and that in most tumors arising from neural

crest cells (Maguire et al., 2015). Those tumors are also charac-

terized by mutations of genes involved in the Krebs cycle, as is

the case for SDH mutations in gastrointestinal stromal tumors

and paragangliomas and pheochromocytomas.

Finally, investigation of the immune microenvironment in ENBs

shedsa light on thedivergent infiltrationofTILsbetweenbasal and

neural ENBs. Despite the higher rate of intratumoral CD8+ T cells,

basal ENBs were associated with worse prognosis, which might

be due to activation of the checkpoint inhibitors, providing a ratio-

nale for the use of immune checkpoint inhibitors in this setting.

Whether a higher mutational load in basal ENBs can be linked to

immune infiltration is worthy of analysis in a larger dataset.

We describe the multi-omic analysis of ENBs, which allowed

us to chart a two-subtype classification of ENBs. This study

provides a framework for future studies in this area, with clinical

implications for the diagnosis, treatment, and management of

patients with ENBs. We linked ontogeny with oncogenesis,

which might have implications for our understanding of cancer

development in general.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal CK AE1/AE3 clone AE1/AE3 Dako Cat# M351501-2; RRID: AB_2631307

Mouse monoclonal CD 56 (NCAM) clone 1B6 Novocastra_Leica Biosystem Cat# NCL-L-CD56-1B6; RRID: AB_563906

Mouse monoclonal Chromogranin A clone DAK-A3 Dako M086901-2

Mouse monoclonal Synaptophysin clone DAK-SYNAP Dako Cat# M731529-2; RRID: AB_2687942

Rabbit polyclonal PS100 Dako Z031101-2

Mouse monoclonal Ki67 clone MIB1 Dako Cat# M724001-2; RRID: AB_2631211

Mouse monoclonal P53 clone DO-7 Dako M700101-2

Mouse monoclonal IDH2 Ms-Mab1 Millipore MABC1103

Rabbit monoclonal CD4 clone SP35 Ventana Medical Systems Cat# 790-4423; RRID: AB_2335982

Mouse monoclonal CD8 clone 144B Dako M710301-2

Mouse monoclonal Anti-CD20 clone L26 Dako IS60430-2

Rabbit monoclonal PD-L1 clone E1L3N Cell Signaling Technology Cat# 13684; RRID: AB_2687655

Biological Samples

Primary tumor samples Biological Ressource Center of

4 French Hospitals: CHRU-Lille,

Institut Curie, Lariboisière and La

Pitié-Salpétrière - Assistance

Publique Hôpitaux de Paris

N/A

Matched blood samples Biological Ressource Center of

Lariboisière hospital,

N/A

Critical Commercial Assays

ChargeSwitch gDNA Micro Tissue Kit Invitrogen Cat# CS11203

Infinium MethylationEPIC BeadChip kit Illumina N/A

Illumina barcoded Paired-end Library Preparation kit Illumina N/A

Deposited Data

RNA sequencing raw and analyzed data Illumina GSE118995

GSE95601 single cell RNASeq signature GEO https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE95601

FANTOM5 data repository FANTOM project http://fantom.gsc.riken.jp/5/data/

Oligonucleotides

PCR IDH2: Forward primer: ACATCCCACGC

CTAGTCCC

Arita et al., 2015 https://www.ncbi.nlm.nih.gov/

pubmed/24748374

PCR IDH2: Reverse primer: bio-TCTCCACCC

TGGCCTACCTG

Arita et al., 2015 https://www.ncbi.nlm.nih.gov/

pubmed/24748374

PCR IDH2: Pyrosequencing primer: CCCATC

ACCATTGGC

Arita et al., 2015 https://www.ncbi.nlm.nih.gov/

pubmed/24748374

Software and Algorithms

Venny 2.1 Juan Carlos Oliveros (oliveros@cnb.

csic.es) BioinfoGP Service Centro

Nacional de Biotecnologı́a, (CNB-CSIC)

http://bioinfogp.cnb.csic.es/

tools/venny/

DAVID Bioinformatics resources database (v6.7) N/A https://david.ncifcrf.gov/

Mutation assessor cBio@MSKCC http://mutationassessor.org/r3/

Aperio ImageScope Leica, Biosystem https://www.leicabiosystems.com/

digital-pathology/manage/aperio-

imagescope/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

GraphPad GraphPad Software, La Jolla, CA, USA https://www.graphpad.com/scientific-

software/prism/

Gene set enrichment Analysis N/A http://software.broadinstitute.org/gsea/

index.jsp

Pathcards Weizmann Institute of Science http://pathcards.genecards.org/

Deseq package N/A https://bioconductor.org/packages/

release/bioc/html/DESeq.html

MCP counter N/A https://omictools.com/mcp-counter-tool
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Gabriel G.

Malouf (gabriel.malouf@igbmc.fr).

EXPERIMENTAL MODELS AND SUBJECTS DETAILS

All tumors and clinical information were collected through a French collaborative network (see the STAR Methods) with consent as

per protocol approved by the ethical committee of the Pitié-Salpêtrière Hospital (IDF-6, Ile de France). In total, 59 ENBs were

collected for genomic, transcriptomic and/or proteomic analyses (Table S1). All ENBs were diagnosed according to theWorld Health

Organization classification criteria and reviewed by two pathologists. DNA or RNA from snap frozen tumor were investigated with one

ormore ofWES (n = 27), RNA-seq (n = 19) andmethylation array (n = 26) analyses; 15 samples with DNA from formalin-fixed, paraffin-

embedded materials were analyzed for IDH2 mutations by pyrosequencing and immunohistochemistry. Exome-sequencing and

RNA sequencing were done using previously described pipelines (Malouf et al., 2014). Analysis of CD8 and PD-L1 expression

was also done in all samples for which tissues were available (n = 42). Significance of differences in gender, stage and immunohis-

tochemistry markers between ENB subgroups were analyzed using a two-sided Fisher’s exact test. Recurrence-free survival and

overall survival were estimated using Kaplan-Meier curves. All analyses were done using GraphPad Prism. A p value of < 0.05

was regarded as significant for all analyses.

METHOD DETAILS

Sample collection and histopathological analysis
Patient samples with confirmed diagnosis of ENBwere collected from several pathology departments in France after local committee

approval. All cases were reviewed by two experts head and neck pathologists (M.C and M.W) who confirmed the diagnosis and

reported Hyams grading; in case of discrepancy for the grading between the two pathologists, the final grade was reached by

consensus. The diagnosis was confirmed using H&E stain and a panel of immunohistochemical markers performed on formalin-fixed

paraffin-embedded tumor blocks. The IHC panel included at least 2 neuroendocrine (NE) markers (comprising chromogranin A,

synaptophysine and CD56 (NCAM1)), S100 protein, pan-cytokeratin (AE1/AE3) and the proliferation marker Ki67. Cases for which

the expression of CKAE1/AE3 was observed were considered as ENB if at least one NE marker was expressed by tumor cells

and focal expression of S100 was observed in sustentacular type cells. When necessary, immunohistochemistry for selected

markers was performed (i.e., c-KIT, TP53, IDH2) using the most representative paraffin block. For the cases displaying available

cryopreserved material, a frozen section stained by hematoxylin eosin was used to assess tumor purity; only cases with tumor purity

greater than 70% were used for nucleic acid extraction.

All patients in the participating centers provided informed written consent for tumor collection and analysis. Clinical data were

collected in each participating institution and correlated with pathological and molecular tumor features. The study was approved

by the ethical committee of the Pitié-Salpêtrière Hospital (IDF-6, Ile de France). The collection and use of tissues followed procedures

in accordance with the ethical standards formulated in the Declaration of Helsinki.

Immunohistochemistry procedures
All immunohistochemical analyses were performed on serial freshly cut 5 mm sections of the selected block. All IHC were performed

with a Ventana Benchmarck automatedmethod. Markers used for a diagnostic purposewere chromogranin A (clone DAK-A3, Dako),

synatophysin (clone DAK-SYNAP, Dako), CD56 (NCAM1) (Clone 1B6, Novocastra), S100 protein (Z 0311, polyclonal, Dako) and pan-
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cytokeratin (clone E1/AE3, Dako). The Ki67 proliferation index was studied using the clone MIB1 (Dako). To characterize TILs, whole

sectionswere stained for CD4 (clone SP35 VentanaMedical System) andCD8 (clone 144BDako). The expression of PD-L1was stud-

ied using the clone E1L3N (Cell Signaling).

Quantification of IHC markers
All slides were digitalized using Aperio AT2 slide scanner (Leica Biosystems). Quantification of the Ki67 index was achieved by

counting hotspots. On digitalized slides, hotspot areas were determined at low magnification and the area of interest was de-

limited at x20 magnification. A minimum of 1000 nuclei was necessary to determine the percentage of positive nuclei. Quantifica-

tion was then achieved by counting the positive cells among all tumor cells present in the area of interest with Aperio Imagescope

Software (Leica Biosystems) (counting tool). To consider Ki67 relevance, we compared it to a mitotic count for 10 high-power

fields ( = 2.5 mm2).

For the quantification of TILs, hotspot areas were determined at low magnification. On digitalized slides, 5 fields of 0.2 mm2 were

delimited in the hotspots using Aperio Imagescope Software (Leica Biosystems). Lymphocytes were counted in the delimited areas

using Aperio Imagescope counting tool. Lymphocytes were counted, blinded to the clinical data, within the stromal area of the tumor

and within the tumor lobules themselves. CD4+ cells displaying macrophages features were excluded. PD-L1 expression was eval-

uated on digital slides, globally without distinction between tumor or immune cells. It was quantified by a pathologist (M.C.) in the

following five categories: negative, positive in less than 1% of cells, positive in 1% to 5% of cells, positive in 5% to 50% of cells

or positive in more than 50% of cells. The expression level of cytokeratin, synoptophysin and chromogranin proteins was analyzed

in all ENB samples; the percentage of positive tumor cells was used for protein based clustering.

Nucleic acid extraction
DNA extraction was performed using the DNeasy Blood & Tissue Kit (QIAGEN) according to the manufacturer’s instructions. RNA

extraction was performed using the RNeasy Kit (QIAGEN) according to the manufacturer’s instructions. Quality control of extracted

nucleic acids was done using Agilent� bioanalyzer.

Whole-exome sequencing and somatic mutation detection
Exome capture was performed using Agilent SureSelect Human All Exon 50Mb according to themanufacturer’s instructions. Briefly,

3 mg of DNA from each sample were used to prepare the sequencing library through shearing of the DNA followed by ligation of

sequencing adaptors. Whole-exome sequencing was performed, and paired-end sequencing (2 3 76 bp) was carried out using

the Illumina HiSeq 2000; the resulting data were analyzed with the Illumina pipeline to generate raw fastq files. The coverage of

our germline samples and tumor samples varied between 43x-80x and 79x-158x, respectively. The technical details and mutation

detection were done according to the pipeline we previously reported (Malouf et al., 2014). When germinal DNA was not available,

the comparison was done according to the reference genome. We filtered out all known single-nucleotide variants (SNVs)/indels in

the UCSC dbSNP 135 and 1000 Human Genome Project SNP databases, and kept any mutations, which are in the Catalogue of

Somatic Mutations in Cancer (COSMIC) database, curated by the Wellcome Trust Sanger Institute. Each somatic mutation or indel

was annotated with its functional effect by SIFT to determine whether a mutation candidate was synonymous or nonsynonymous

(benign or deleterious).

Validation of IDH2 mutations
IDH2R172mutations were confirmed by pyrosequencing, as previously described (Arita et al., 2015). In addition, immunohistochem-

istry for IDH2was performed on 5-mm–thick formalin-fixed, paraffin-embedded sections with an antibody specific to themutant IDH2

(R132/172) (clone MsMab-1, Millipore) according to the manufacturer’s instructions. A labeled streptavidin biotin kit was used as a

detection system (DAB Detection Kit - Ventana Medical Systems, Inc.). Combined cytoplasmic and nuclear staining was interpreted

as immunopositive.

RNA sequencing and bioinformatics analysis
Total RNA for each samplewas converted into a library of templatemolecules for sequencing on the Illumina HiSeq 2000 according to

the NuGen Ovation RNA-Seq System V2 protocol. In brief, first, single-stranded cDNA was synthesized from 100 ng of DNase1-

treated total RNA using a mix of DNA/RNA chimeric primers that hybridize to both the 50 portion of the poly (A) sequence and

randomly across the transcript. Second, strand synthesis produced double-stranded cDNA, which was amplified using single-primer

isothermal strand-displacement amplification. The resultant cDNA was fragmented to 200 bp (mean fragment size) with the

S220 Focused-ultrasonicator (Covaris) and used to make barcoded sequencing libraries on the SPRI-TE Nucleic Acid Extractor

(Beckman-Coulter). Libraries were quantitated by qPCR (KAPA Systems), multiplexed and sequenced, 4 samples per lane, on the

HiSeq2000 using 75 bp paired-end sequencing. The resulting data were analyzed with the current Illumina pipeline to generate

raw fastq files. Overall, a median of 5.8 million reads was obtained per sample
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Unsupervised classification of gene expression
The variance stabilizing transformations implemented in the DESeq package were performed on the count data to conduct sensible

distance calculation (Anders and Huber, 2010). For each gene, the dispersion was calculated to measure its variance among

samples, and thus the 2,000 genes with highest dispersions were selected for clustering analysis. Regarding the 29 distinct

TCGA tumor samples used to characterize the lineage of ENB, 15 samples from each cancer dataset were randomly selected. To

remove the systematic difference between ENB and TCGA samples, the median expression values of each batch per gene were

scaled to the same level. Hierarchical clustering analysis was performed using the Pearson correlation coefficient as the distance

metric and Ward’s linkage rule. Principal component analysis was also applied to investigate the multivariate pattern. The

consensus-clustering algorithm with the hierarchical clustering method was used to perform clustering analysis for ENBs, sinonasal

carcinomas and normal sinonasal mucosa.

Analysis of differentially expressed genes
To perform normalization and test for differential expression with a negative binomial model between conditions, we chose to use the

Bioconductor package DESeq (version 1.11.0) (Anders and Huber, 2010). Specifically, for each gene, a generalized linear model was

fit to compare the expressions of basal and neural ENBs. The Benjamini-Hochberg method was used to control the false discovery

rate (FDR). The Holm method was applied to calculate the adjusted P values of pairwise comparisons.

The Fantom human dataset of gene expression by cell type were analyzed using a previously utilized approach (Chen et al., 2018).

Briefly, logged expression values (base 2) for each gene in the fantom dataset were centered on the median of sample profiles. For

each fantom differential expression profile (genes centered within the fantom dataset), the inter-profile correlation (Pearson’s, based

on15990genes sharedbetween the twodatasets)was takenwith that of eachENBdifferential expressionprofile (with genes centered

on the median across samples). The same type of analysis was also carried out using the GSE95601 gene expression dataset.

Pathway enrichment analysis
GeneOntology (GO) enrichment for biological processes andpathways (KEGG)wereperformed though theDAVIDBioinformaticsRe-

sources database (Huang et al., 2009), using the default setting. Gene categories associated with p value < 0.05 and FDR < 0.05were

considered statistically significant.

Estimation of immune infiltrate
To estimate tissue-infiltrating immune and other stromal populations’ abundances using our mRNA dataset, we used the MCP

counter pipeline using default setting (Becht et al., 2016). In total, the abundance of 10 cell populations (8 immune populations, endo-

thelial cells and fibroblasts) is predicted by this method.

DNA methylation and bioinformatics analysis
Global DNA methylation was assessed using the Infinium HumanMethylation850� (HM850) BeadChip Array. Briefly, genomic DNA

(500-1000 ng) was bisulfite converted using the Zymo EZ DNA methylation kit (Zymo Research, Irvine, CA) according to the manu-

facturer’s recommendations. The amount of bisulfite-converted DNA and the completeness of bisuflite conversion for each sample

were assessed using a panel of MethyLight-based real-time PCR quality control assays as described previously (Campan et al.,

2009). Bisulfite-converted DNA was then used as a substrate for the Illumina EPIC BeadArrays, as recommended by the manufac-

turer and first described byMoran et al. (2016). Specifically, each samplewaswhole-genome amplified (WGA) and then enzymatically

fragmented. Samples were then hybridized overnight to an 8-sample BeadArray, in which the WGA-DNA molecules annealed to

locus-specific DNA oligomers linked to individual bead types. After the chemical processes, BeadArrays were scanned and the

raw signal intensities were extracted from the *.IDAT files using the ‘noob’ function in the minfi R package. The ‘noob’ function cor-

rects for background fluorescence intensities and red–green dye bias (Triche et al., 2013). The beta (b) value for each probe was

calculated as (M/(M+U)), in whichM andU respectively refer to the (pre-processed) meanmethylated and unmethylated probe signal

intensities. Probes with measurements in which the fluorescent intensity was not statistically significantly above the background

signal (detection p value > 0.05) were removed from the dataset.

The average b value reports a methylation signal ranging from 0 to 1, respectively representing completely unmethylated to

completely methylated values. In addition to b values, we used M-values in this report (M-value = log (b /1� b) because of stronger

signals for quantifying methylation levels (Du et al., 2010). Hierarchical unsupervised clustering analysis was performed using the

Pearson correlation coefficient as the distance metrics andWard’s linkage rule. First, we selected the top 1000 most variable probes

located in CGIs to perform unsupervised clustering analysis. To avoid bias related to E-CIMP samples, those samples were excluded

and unsupervised clustering analysis using the M values of the top 5000 most variable probes was performed.

Probeswith adjusted p values < 0.05, andDbR 0.2 or%�0.2were considered statistically significant and differentially methylated

between the two epi-clusters identified. Probeswith b-value% 0.2 were considered unmethylated and thosewith b-valueR 0.3 were

considered methylated. GO enrichment analysis was performed using differentially methylated probes from the DAVID Bioinformat-

ics Resources database. Categories that displayedR 2-fold enrichment, p value < 10�3 and FDR < 0.05 were considered statistically

significant.
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QUANTIFICATIONS AND STATISTICAL ANALYSIS

Statistical analysis was performed using Fisher’s exact test for categorical variables and the Mann Whitney test for continuous

variables. Correlation between two continuous parameters was evaluated by Pearson’s coefficient when the distribution was normal

and by Spearman’s coefficient otherwise. Cumulative survival time was calculated by the Kaplan-Meier method and analyzed by the

log-rank test. All statistical tests were two-sided and conducted at the significance level of 0.05 using Prism v.7 (GraphPad Software,

Inc., La Jolla, CA, USA).

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data reported in this study is GEO: GSE118995.
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Figure S1, related to Figure 1: Immunohistochemical features of TP53 mutated cases and landscape 

of somatic mutations in the validation set. 

(A) TP53 stopgain mutation in ENB-28T associated with loss of expression. 

(B) TP53 mutation R248W in ENB-13T associated with overexpression. 

(C) TP53 mutation C135F in ENB-59T associated with overexpression. 

(D) Heatmap of somatic mutations in frequently mutated genes and family members in the whole 
esthesioneuroblastoma dataset assessed by whole-exome sequencing 

(E) Venn diagram showing the intersection of genes belonging to Cancer Gene List (n=719) list, the 
matched (n=14) and the unmatched esthesioneuroblastomas samples (n+13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S2, related to Figure 1: GISTIC analysis showing no recurrent focal copy-number changes in 

the 14 matched esthesioneuroblastomas  

  



 

Figure S3, related to Figure 2: Unique profiles of esthesioneuroblastomas across cancer subtypes. 

(A) Unsupervised hierarchical clustering using the 1500 most highly variable genes between 
esthesioneuroblastoma (ENB), squamous cell carcinoma (SCC), intestinal-type adenocarcinoma (ITAC) 
and healthy sinonasal mucosa. 

(B) Principal component analysis using the 1500 genes most highly variable between ENB, SCC, ITAC 
and healthy sinonasal mucosa. 

(C) Unsupervised hierarchical clustering using ENB and 29 tumor subtypes extracted from TCGA 
database (adrenocortical carcinoma [ACC], bladder urothelial carcinoma [BLCA], breast invasive 
carcinoma [BRCA], cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC], colon 
adenocarcinoma [COAD], lymphoid neoplasm diffuse large B-cell lymphoma [DLBC], esophageal 
carcinoma [ESCA], glioblastoma multiforme [GBM], head and neck squamous cell carcinoma [HNSC], 
kidney chromophobe [KICH], kidney renal clear cell carcinoma [KIRC], kidney renal papillary cell 



carcinoma [KIRP], acute myeloid leukemia [LAML], brain lower grade glioma [LGG], liver hepatocellular 
carcinoma [LIHC], lung adenocarcinoma [LUAD], lung squamous cell carcinoma [LUSC], mesothelioma 
[MESO], ovarian serous cystadenocarcinoma [OV], pancreatic adenocarcinoma [PAAD], 
pheochromocytoma and paraganglioma [PCPG], prostate adenocarcinoma [PRAD], rectum 
adenocarcinoma [READ], sarcoma [SARC], skin cutaneous melanoma [SKCM], stomach 
adenocarcinoma [STAD], thyroid carcinoma [THCA], uterine corpus endometrial carcinoma [UCEC], 
uterine carcinosarcoma [UCS]). Note that ENB, glioblastoma and paraganglioma clustered together. 

(D) Circular dendrogram representing ENB and 29 tumor subtypes extracted from TCGA showing that 
tumors derived from the neural crest and ENB cluster together. 

  



 

 

Figure S4, related to Figure 3: Focus on overexpression of key genes differentiating neural from basal 
ENBs. 

(A): Heatmap showing the expression level (z-score) in each ENB sample (column) of genes (row) highly 
expressed in globose basal cells (IDH2, KIT, NOTCH2, MYC, MYB, GRHL2 and MKi67) and immature 
neuron progenitors (INP2-3) (NEUROD1, UNCX, NHLH1, CGHA, NCAM1, and SYP).  

(B) KIT overexpression shown by immunohistochemistry in a basal ENB (cytoplasmic stain with 
membrane strengthening). 



 

Figure S5, related to Figure 5: Supervised clustering of TCGA glioblastoma (GBM) samples using the 
1500 most differentially methylated probes between IDH2-mutated and wild-type 
esthesioneuroblastomas. This signature was capable of distinguishing GBM with IDH1-2 mutations from 

the remaining cases. 
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Figure S6, related to Figure 5: Methylation divergence between neural and basal ENB subtypes. 

(A) Box-plot of mean methylation level of probes located in CGI in both basal and neural ENB subtypes. 

(B) Distribution of probes located in CGI in both neural and basal ENB subtypes. 

(C) Gene expression changes associated with gain or loss of DNA methylation in neural as compared 
to basal ENB subtype. 
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