Main existing datasets for open data research on humans
Baptiste Couvy-Duchesne, Simona Bottani, Etienne Camenen, Fang Fang, Mulusew Fikere, Juliana Gonzalez-Astudillo, Joshua Harvey, Ravi Hassanaly, Irfahan Kassam, Penelope Lind, et al.

To cite this version:
Baptiste Couvy-Duchesne, Simona Bottani, Etienne Camenen, Fang Fang, Mulusew Fikere, et al.. Main existing datasets for open data research on humans. 2022. hal-03666558

HAL Id: hal-03666558
https://hal.archives-ouvertes.fr/hal-03666558
Preprint submitted on 12 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Chapter 24

Main existing datasets for open data research on humans

Baptiste Couvy-Duchesne, Simona Bottani, Etienne Camenen, Fang Fang, Mulusew Fikere, Juliana Gonzalez-Astudillo, Joshua Harvey, Ravi Hassanaly, Irfahan Kassam, Penelope A. Lind, Qianwei Liu, Yi Lu, Marta Nabais, Thibault Rolland, Julia Sidorenko, Lachlan Strike, Margie Wright

1: Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
2: Institute for Molecular Bioscience, the University of Queensland, St Lucia, QLD 4072, Australia
3: Paris Brain Institute (ICM), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Inserm U 1127, CNRS UMR
4: Karolinska Institutet (KI), Stockholm, Sweden
5: University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Exeter, UK
6: Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
7: Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Herston 4006, QLD, Australia
8: School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4006, Australia
9: School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD 4072, Australia
10: Queensland Brain Institute, the University of Queensland, St Lucia, QLD 4072, Australia
11: Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia

ORCID numbers: BCD: 0000-0002-0719-9302; PAL: 0000-0002-3887-2598; IK: 0000-0002-6150-5614; MF: 0000-0002-0404-7338; JH: 0000-0001-6423-9983; LTS: 0000-0003-2885-5898; MJW: 0000-0001-7133-4970; JGA: 0000-0003-3347-2285

Running head: Main existing datasets

*Corresponding author:
Baptiste Couvy-Duchesne
Paris Brain Institute
ARAMIS lab
ICM - Hopital de la Pitie Salpetriere, 75013 Paris
E-mail: baptiste.couvy@icm-institute.org
Abstract

Recent advances in technology have made possible to quantify fine-grained individual differences at many levels, such as genetic, genomics, organ level, behaviour, clinical. The wealth of data becoming available raises great promises for research on brain disorders as well as normal brain function. To name a few: systematic and agnostic study of disease risk factors (e.g. genetic variants, brain regions), the use of natural experiments (e.g. evaluate the effect of a genetic variant in a human population), and unveiling disease mechanisms across several biological levels (e.g. genetics, cellular gene expression, organ structure and function). However, this data revolution raises many challenges such as data sharing and management, the need for novel analysis methods and software, storage and computing. Here, we sought to provide an overview of some of the main existing human datasets, all accessible to researchers. Our list is far from being exhaustive and our objective is to publicise data sharing initiatives and help researchers find new data sources.

Keywords

Genetic, methylation, gene expression, brain MRI, PET, EEG/MEG, omics, electronic health records, wearables.

Acknowledgements & fundings

This research was supported by the Australian National Health and Medical Research Council (1078037, 1078901, 1113400, 1161356 and 1107258), the Australian Research Council (FT180100186 and FL180100072), the Sylvia & Charles Viertel Charitable Foundation, the program “Investissements d’avenir” ANR-10-IAIHU-06 (Agence Nationale de la Recherche-10-IA Institut Hospitalo-Universitaire-6) and reference ANR-19-P3IA-0001
Main existing datasets

(PRAIRIE 3IA Institute), the European Union H2020 program (project EuroPOND, grant number 666992, the joint NSF/NIH/ANR program “Collaborative Research in Computational Neuroscience” (project HIPLAY7, grant number ANR-16-NEUC-0001-01), the ICM Big Brain Theory Program (project DYNAMO, project PredictICD), and the Abeona Foundation (project Brain@Scale). BCD is supported by a CJ Martin fellowship (APP1161356).

Aims:

We sought to provide an overview and short description of some of the main existing human datasets accessible to researchers. We hope this chapter will help publicise them as well as encourage the sharing of datasets for open-science. As much as possible, we tried to provide practical aspects, such as data type, file size, sample demographics, study design as well as links towards data use/transfer agreements. We hope this can help researchers study larger and more diverse data, in order to advance scientific discovery and improve reproducibility.

This chapter does not aim to provide an exhaustive list of the dataset and data types currently available. In addition, the interested readers may refer to the complementary chapters that focus on data processing, feature extraction and existing methods for their analyses.

1. Introduction

The availability of data used in research is one of the corner-stones of open science, which contributes to improving the quality, reproducibility and impact of the findings. In addition, data sharing increases openness, transparent and collaborative scientific practices. The global push for open-science is exemplified by the recent publication of UNESCO guidelines (I), the engagement of many research institutions, and the requirements of some scientific
journals to make data available upon publication. Finally, the sharing and re-use of data also maximises the return on investment of the agencies (e.g. states, charities, associations) that fund the data collection.

In light of this, our chapter aims at providing a broad (albeit partial) overview of some of the human datasets publicly available to researchers. To assist researchers and data managers, we first describe the different file formats and the size of the different data types (Table 1). As many of these data are high-dimensional, the size of the data can cause storage and computational challenges, which need to be anticipated before download and analysis. Of note, some datasets cannot be downloaded or analysed outside of a dedicated system/server. This is the case of the UK Biobank (UKB) exome and whole genome sequencing, whose sheer size has led to the creation of a dedicated Research Analysis Platform, accessible (at some cost) by UKB approved researchers. In addition, the Swedish registry data is only accessible via national dedicated servers due to the extreme sensitive nature of the data.

This chapter breaks down into sections that focus on each data type, although the same dataset may be mentioned in several sections. Beyond a practical writing advantage (each author or group of authors contributed a section), this also reflects the fact that most datasets are organised around a central data type. For example, the ADNI (Azheimer’s disease Neuromaging Initiative) focuses on brain imaging, and later included genotyping information. Another example is the UKB, which released genotyping data of the 500K participants in 2017, is now collecting brain MRI (as well as whole body MRI), and has recently made available sequencing data. The different sections also discuss and present the specific data sharing tools and portals (e.g. LONI for brain imaging, GTEx for gene expression), or organisation of the different fields (e.g. consortia in genetics). Every time, we have tried to include the largest dataset(s) available, as well as the commonly used ones,
although the selection may be subjective and reflect the authors’ specific interests (e.g. age or disease groups).

All datasets are listed in a single table (Table 2), which includes information about country of origin, design (e.g. cross-sectional, longitudinal, clinical or population sample) and age range of the participants. Unless specified, the datasets presented include male and female participants, although the proportion may differ depending on the recruitment strategy and disease of interest. In addition, the table lists (and details) the different data types that have been collected on the participants. We have only focussed on a handful of data types: genetic data (incl. twin/family samples, genotyping, exome and whole genome sequencing), genomics (methylation and gene expression), brain imaging (MRI and PET), EEG / MEG, electronic health records (hospital data and national registry) as well as wearable and sensor data. However, we have included additional columns “other Omics” and “Specificities” that list other type of data being collected, such as proteomics, metabolomics, micro RNA, single cell sequencing, microbiome, and non-brain imaging.

Our main table (Table 2) also includes the URLs to the dataset websites and data transfer/agreement. From our experience, data access can take between an hour up to a few months. The agreements almost always require a review of the project, and to acknowledge the data collection team and funding sources (for example under the form of a byline, a paragraph in the acknowledgment and more rarely co-authorships). Standard restrictions of use include that the data cannot be re-distributed and that the users do not attempt to identify participants. Specific clauses are often added depending on the nature of data and the specific laws and regulations of the countries it originates from.

There is a growing scientific and ethical discussion about the representativity of the datasets being used in research. Researchers should be aware of the biases present in some datasets (e.g. “healthy bias” in the UKB (2)), which should be taken into account in study
design (e.g. analysis of diverse ancestry being collected in genetics (3)), when reporting results (2, 4), and evaluating algorithms (5, 6). Overall, our (selected) list exemplifies the need for datasets from under-represented countries or groups of individuals (e.g. disease, age, ancestry, socio-economic status) (7, 8). Our main table (Table 2) will be accessible online, in a user friendly, searchable version. Finally, we will also make this table collaborative (via github https://github.com/baptisteCD/MainExistingDatasets) in order to grow this resource beyond this book chapter.

We hope this overview could be useful to the readers wanting to replicate findings, maximise sample size and statistical power, develop and apply methods that utilise multi-level data, or even select the most relevant dataset to tackle a research question. We also hope this encourages the collection of new data shared with the community, while ensuring interoperability with the existing datasets.
<table>
<thead>
<tr>
<th>Data</th>
<th>Subtype</th>
<th>File type/extension</th>
<th>Description</th>
<th>Approx. Size of 1 sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Self-reports</td>
<td>text</td>
<td></td>
<td>~100KB</td>
</tr>
<tr>
<td></td>
<td>EHR</td>
<td>text</td>
<td></td>
<td>~100KB</td>
</tr>
</tbody>
</table>
| Neuroimaging | MRI | Nifti (.nii / .nii.gz) or Dicom (.dcm) | 3D image (.nii) 2D slices (.dcm) that compose the 3d volume | T1w ~ 50MB
| | | | | T2 Flair ~ 30MB |
| | | | | SWI ~ 30MB |
| | | | | DWI ~ 400MB (highly variable depending on sequence) |
| | | | | fMRI ~ 500 MB (100MB per minute of acquisition) |
| | | | | ~1GB after processing |
| Neuroimaging | PET | Nifti (.nii / .nii.gz) or Dicom (.dcm) | 3D image (.nii) 2D slices (.dcm) that compose the 3d volume | ~15MB |
| | EEG | .edf, .gdf, .eeg .csv, .mat | Raw EEG signal (.egg, .gdf, .edf – file formats), processed/formatted data (.csv, .mat) | ~15MB |
| | | | | ~50MB |
| | MEG | .fif, .bin .csv | Raw MEG signal (.fif, .bin) processed/formatted data (.csv, .mat) | ~50MB |
| Genetics | Twin/family sample | text | Phentypes and pedigree information | ~10KB |
| Genotyping | | | | ~5MB |
| GWAS summary | | text | Effect size, test statistic, pvalue, effect allele from association testing | Not individual level data, ~500MB for a genome-wide association summary |
| statistics | | | | |
| Exome sequencing | | cram, bcf, vcf | Each variant site with multiple sequence quality metrics and trained machine learning filters to identify and exclude inconsistencies. Followed by initial QC with various parameters and thresholds. | ~1M |
| Whole genome | | cram, bcf, vcf | Curated using TOPMed variant calling algorithm. All freezes are fully processed. | ~5MB |
| Genomics | Methylation | idats | Raw binary intensity file (two per sample, one for green and red channels) | ~16MB (450K) |
| | | | | ~27MB (EPIC) |
Couvy-Duchesne et al. Main existing datasets

<table>
<thead>
<tr>
<th>Type</th>
<th>Format examples</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
<td>bed (.bim + .bed + .fam) .text</td>
<td>Fully processed, filtered and normalized gene expression matrices (in BED format) for each tissue Covariates used in eQTL analysis. Includes genotyping principal components and PEER factors</td>
<td>~1MB per individual ~6KB</td>
</tr>
<tr>
<td>Actigraphy</td>
<td>Varies with product (e.g. GENEActiv uses .bin)</td>
<td>Raw accelerometer data</td>
<td>~500MB (GENEActiv, 14 days of recording)</td>
</tr>
</tbody>
</table>

Size of one sample may vary based on the technology used to generate the data (e.g. MRI resolution, genotyping chip).
2. Neuroimaging

2.1. Magnetic Resonance Imaging (MRI)

Brain Magnetic Resonance images are 3D images that measure brain structure (T1w, T2w, FLAIR, DWI, SWI) or function (fMRI). The different MRI sequences (or modalities) can characterise different aspects of the brain. For example, T1w and T2w offer the maximal contrast between tissue types (white matter, grey matter and cerebrospinal fluid) which can yield structural/shape/volume measurements. They can also be used in conjunction with an injection of a contrast agent (e.g. gadolinium) for detecting and characterizing various types of lesions. FLAIR is also useful for detecting a wide range of lesions (e.g. multiple sclerosis, leucoaraiosis…). SWI focuses on the neurovascular system, while DWI allows measuring the integrity of the white matter tracts. Functional MRI measures BOLD (Brain Oxygen Level Dependent) signal, which is thought to measure dynamic oxygen consumption in the different brain regions. Of note, fMRI consists of a series of 3D images acquired over time (typically 5-10 minutes).

Brain MRI are available as a series of DICOM files (brain slices, traditional format of the MRI machines) or a single NIFTI (single 3D image) format (Table 1). The two formats are roughly equivalent and most image processing pipelines allow both data sources as input. MRI images are composed of voxels (3D pixel), and their size (e.g. 1x1x1mm) corresponds to the image resolution.

In practice, most MRI images are archived and shared via web-based applications and more rarely using specific software (e.g. UKB). The two major web-platforms are XNAT (eXtensible Neuroimaging Archive Toolkit) (9), an open source platform developed by the Neuroinformatics Research Group of the Washington University School of Medicine (Missouri, (1, 2)) and IDA (Image & Data Archive) created by the Laboratory of Neuro
Couvy-Duchesne et al. Main existing datasets

Imaging of the University of South California (LONI, https://loni.usc.edu/). Of note, XNAT also allows to perform some image processing (9).

The neuroimaging community has developed BIDS (Brain Imaging Data Structure), a standard for MRI images organisation to accommodate multimodal acquisitions and facilitate processing. In practice, few datasets come in BIDS format, and tools have been developed to assist with download and conversion (e.g. https://clinica.run) (10).

We have listed a handful of datasets (Table 1), which is far from being exhaustive but aims at summarising some of the largest and/or most used samples. Our selection aims at presenting diverse and complementary samples in terms of age range, populations and country of origin.

First, we have described three clinical elderly samples from the US and Australia, with a focus on Alzheimer's disease and cognitive disorders. The Alzheimer’s Disease Neuroimaging Initiative (ADNI), was launched in 2004 and funded by a partnership between private companies, foundations, the National Institute of Health and the National Institute for Ageing. ADNI is a longitudinal study, with data collected across 63 sites in the USA and Canada. To date, four phases of the study have been funded, which makes ADNI one of the largest clinical neuroimaging samples to study Alzheimer’s and cognitive impairment in ageing. ADNI collected a wide range of clinical, neuropsychological, cognitive and biomarkers, in addition to multimodal imaging and genotyping data (11). Sites contribute data to the LONI, which is automatically shared with approved researchers without embargo. The breadth of data available and its accessibility have made ADNI one the most used neuroimaging samples, with more than 1000 scientific articles published to date.

The Australian Imaging Biomarkers and Lifestyle Study of Aging (AIBL) started in 2006 and has since recruited about 1,100 participants over 60 years of age, who have been followed over several years (Table 1) (12). AIBL collected data across the different
Australian states and, similar to ADNI, consisted in an in depth assessment of individuals cognition, clinical status, genetics, genomics as well as multimodal brain imaging (12). In 2010, AIBL partnered with ADNI to release the AIBL imaging subset and selected clinical data via the LONI platform. Having the same MRI protocols and similar fields collected, AIBL represents a great addition to the ADNI study, by boosting statistical power or allowing for replication. The full clinical information, as well as genetics, genomics and wearable data (actigraphy watches) are not available via the LONI and require a direct application to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) (Table 1).

The Open Access Series of Imaging Studies v3 (OASIS3) is another longitudinal sample comprising almost 1,100 adult participants (Table 1)(13). Its main focus is around ageing and neurological disorders, and the application/approval process is extremely fast (typically a couple of days). OASIS3 is hosted on XNAT, and is the third dataset to be made available by the Washington University in Saint Louis (WUSTL) Knight Alzheimer’s Disease Research Center (ADRC), although the three datasets are not independent and cannot be analysed together. Contrary to ADNI and AIBL, OASIS3 is a retrospective study that aggregates several research studies conducted by the WUSTL over the past 30 years. As a result, the data collected may vary from one individual to the next, with a variable time window between visits. In that sense, OASIS3 resembles data from clinical practice, with individual specific care/assessment pathways.

The UK Biobank (UKB) imaging study (14) is the largest brain imaging study to date, with around 50,000 individuals already imaged (target of 100,000). The imaging wave complements the wealth of data already collected in the previous waves (Table 1, see also Genetic section for a description of the full dataset). Considering the sheer size of the data, the biobank shares raw and processed images as well as structured data (measurements of regions of interest) (15). Data is accessible upon request by all bona-fide researchers, with
certified profiles. Data access requires payment of a fee, which only aims to cover the biobank functioning costs. The UKB has developed proprietary tools for secure download and data management (https://biobank.ndph.ox.ac.uk/showcase/download.cgi).

The Adolescent Brain and Cognitive Development (ABCD) is an ongoing longitudinal study of younger individuals, recruited age 9-10 and who will be followed over a decade (16, 17). The ABCD focusses on cognition, behaviour, physical and mental health (e.g. substance use, autism, ADHD) of adolescents. It includes self and parental rating of the adolescents as well as a description of the familial environment (17). ABCD data is hosted on the NIMH data archive and requires obtaining and maintaining an NDA Data Use Certification, which requires action from a signing official (SO) from the researcher institution, as defined in the NIH eRA Commons (https://era.nih.gov/files/eRA-Commons-Roles-10-2019.pdf).

The Enhancing NeuroImaging Genetics Through Meta-Analysis (ENIGMA) disease working groups have stemmed from the ENIGMA genetics project (see Genetic Consortia) to perform world-wide neuroimaging studies for a wide range of disorders (e.g. major depressive disorder (18), attention deficit and hyperactivity disorder (19), autism (20), post-traumatic stress disorder (21), obsessive-compulsive disorder (22), substance dependence (23), schizophrenia (24), bipolar disorder (25)) as well as traits of interest (e.g. sex, healthy variation (26)), see (27) for a review. Each working group may conduct simultaneously several research projects, proposed and led by its members. Each site of the working group choses the project(s) they contribute to, and performs the analyses. Of note, most ENIGMA working groups still rely on a meta-analytic framework, even if recent projects (e.g. machine learning) now require sharing data onto a central server. Interested researchers can contribute new data, propose analyses or new image processing pipelines to the different working groups. The ENIGMA samples typically comprise thousands of participants (controls and/or
cases, Table 1) and data are inherently heterogeneous, each site having specific recruitment and protocols.

Other neuroimaging MRI datasets have focussed on twins and siblings (see Twin Samples), and include the Queensland Twin Imaging study (QTIM), Queensland Twin Adolescent Brain Project, the Vietnam Era Twin Study of Aging (VETSA) (28) and the Human Connectome Project (HCP) (29) (see section 4.1). In addition, there are many more datasets available on neurological disorders, which may be explored via XNAT, LONI or the Dementias Platform UK (DPUK) platform. To name a few: PPMI (Parkinson’ Progression Markers Initiative) (30), MEMENTO (determinants and Evolution of Alzheimer’s disEase and related disOrder) (31), EPAD (European Prevention of Alzheimer’s Dementia) (32) and ABIDE (Autism Brain Imaging Data Exchange) (33, 34).

2.2. Positron emission tomography (PET – MRI)

Positron Emission Tomography (PET) images are 3D images that highlight the concentration of a radioactive tracer administered to the patient. Here, we will focus on brain PET images, although other parts of the body may also be imaged. The different tracers allow to measure several aspects of brain metabolism (e.g. glucose) or spatial distribution of a molecule of interest (e.g. amyloid).

PET relies on the nuclear properties of radioactive materials that are injected in the patient intravenously. When the radioactive isotope disintegrates, it emits a photon that will be detected by the scanner. This signal is used to find the position of the emitted positrons which allow us to reconstruct the concentration map of the molecule we are tracing (Sharp & Welch, 2005).

As for MRI, PET images are available as a series of DICOM files or a single NIFTI format. They are composed of voxels (3D pixel), and their size (e.g. 1x1x1mm) corresponds
Couvy-Duchesne et al. Main existing datasets

to the image resolution. A BIDS extension has also been developed for Positron Emission Tomography, in order to standardise data organisation for research purposes.

PET is considered invasive due to the injection of the tracer, which results in very small risk of potential tissue damage. Overall, the quantity of radioactive isotope remains small enough to make it safe for most people, but this limits its widespread acquisition in research, especially on healthy subjects or in children. Moreover, PET requires to have a high-cost cyclotron to produce the radiotracers nearby because the half-life of the radio-isotopes are typically short (between a few minutes to few hours).

Several tracers are used for brain PET imaging, one of the most common ones being the 18F-fluorodeoxyglucose (18F-FDG). 18F-FDG concentrates in areas that consume a lot of glucose, and will thus highlight brain metabolism. In practice, 18F-FDG PET images are often used to study neurodegenerative disease by revealing hypometabolism that characterise some dementia (35, 36). Other diseases such as epilepsy and multiple sclerosis can be studied through this modality but since it is not part of clinical routine, data are rare and we are not aware of publicly available datasets.

In whole-body PET scans, 18F-FDG is used to detect tumours, which consumes a lot of glucose. However, the brain consumes a lot of glucose as part of its normal functioning and brain tumours are not noticeable using this tracer. Instead, clinicians would use 11C-Choline that will also accumulate in the tumour area but is not specifically used by the brain otherwise. In addition to glycemic radiotracers, oxygen-15 is also used to measure blood flow in the brain, which is thought to be correlated with brain activity. In practice, this tracer is less used than 18F-FDG because of its very short half-life. Other tracers are used to show the spatial concentration of specific biomarkers: for instance, 18F-florbetapir (AV45), 18F-flutemetamol (Flute), Pittsburgh compound B (PiB), 18F-florbetaben (FBB) are amyloid tracers used to highlight β-amyloid aggregation in the brain, which is a maker of Alzheimer’s
Main existing datasets

Disease. Finally, 11C 5-hydroxytryptamine (5-HT) neurotransmitter is used to expose the serotonergic transmitter system.

We have made a non-exhaustive list of publicly available datasets containing PET scans with different tracers. Most datasets focused on neurodegenerative disorders and also collected brain MRI (see previous section). The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is one the largest dataset with PET images for Alzheimer’s disease (11). They used 18F-FDG -PET as well as amyloid tracers PET: FBB, AV45 and PiB. The Australian Imaging Biomarkers and Lifestyle Study of Ageing (AIBL) only collected amyloid tracers PET images: PiB, AV45 and Flute (12). The Open Access Series of Imaging Studies v3 (OASIS3) includes PET imaging from 3 different tracers, PIB, AV45, and 18F-FDG (13).

In addition to those neurodegenerative datasets, PET is available in the Lundbeck Foundation Centre for Integrated Molecular Brain Imaging (CIMBI) database and biobank established in 2008 in Copenhagen, Denmark (37). CIMBI shares structural MRI, PET, genetic, biochemical and clinical data from 2,000 persons (around 1,600 healthy subjects and almost 400 patients with various pathologies). Tracer used for PET is the 11C-5-HT which is relevant to study the serotonergic transmitter system. Applications to access the data can be made on their website by completing a form (see Table 2).

The ChiNese brain PET Template (CNPET) dataset has been developed by the Medical Imaging Research Group (https://biomedimg-dlut-edu.cn/), from Dalian University of Technology (China) (38). The database contains 116 records of 18F-FDG -PET from healthy patients, which has been used to make a Chinese population-specific Statistical Parametric Mapping (SPM, i.e. average template used for PET processing). The data used to build the PET brain template have been released and are available on NeuroImaging Tools & Resources Collaboratory (NITRC, https://www.nitrc.org/) platform.
3. EEG / MEG

Electroencephalography (EEG) measures the electrical activity of the brain (39–41). Signals are captured through sensors distributed over the scalp (non-invasive) or by directly placing the electrodes on the brain surface, a procedure that requires a surgical intervention (42). This technique is characterised by its high temporal resolution, enabling the study of dynamic processes such as cognition or the diagnosis of conditions such as epilepsy. Yet, EEG signals are nonstationary and have a non-linear nature, which makes it difficult to get useful information directly in the time domain. Nonetheless, specific patterns can be extracted using advanced signal processing techniques.

Another technique that captures brain activity is magnetoencephalography (MEG). This technology maps the magnetic fields induced above the scalp surface. Similar to EEG, MEG provides high time resolution, but it is preferentially sensitive to tangential fields from superficial sources (43, 44). This could be considered as an advantage, since magnetic fields are less sensitive to tissue conductivities, facilitating source localization. However, MEG instrumentation is more expensive and not portable (45, 46).

During signal recording, undesirable potential coming from sources other than the brain, may alter the quality of the signals. These artefacts should be detected and removed in order to improve pattern recognition. Multiple methods could be applied depending on the artefact to be eliminated: re-referencing with common average reference (CAR), ICA decomposition to remove other physiological sources as eye movements or cardiac components; notch filter to get rid of power line noise, pass-band filtering to keep the physiological rhythms of interest, among others (47–50). Other spatial filters such as common spatial pattern (CSP) for channel selection or filter bank CSP (FBCSP) for band elimination, are largely used in motor decoding (51, 52).
Other signal processing tools allow the user to extract features describing relevant information contained in the signals. Subsequently, those patterns may be used as input for a classification pipeline. The target features vary according to the condition under study. Generally, the domain of clinical diagnostics focuses either on event-related potentials (ERP) or on spectral content of the signal (53, 54). The first refers to voltage fluctuations associated with a specific sensory stimuli (e.g. P300 wave) or task, like motor preparation and execution, covert mental states, or other cognitive processes. The amplitude, latency and spatial location of the resulting waveform activity reveal the underlying mental state (55). On the other side, spectral analysis refers to the computation of the energy distribution of the signals in the frequency domain. Most spectral estimates are based on Fourier Transform, this is the case of non-parametric methods, such as Welch periodogram estimation, which based their computation on data windowing (56).

Another approach is to study the interactions across sources (inferring connection between two electrodes by means of temporal dependency between the registered signals), which is known as functional connectivity. Multiple connectivity estimators have been developed to quantify this interaction (57). Through these functional interactions complex networks analysis can also be implemented, where sensors are modelled as nodes and connectivity interactions as links (58–60).

EEG and MEG are essential to evaluate several types of brain disorders. One of the most documented is epilepsy, based on seizures detection and prediction (61–63). Other neurological conditions can be characterised like Alzheimer’s disease, associated with changes in signal synchrony (64, 65). Furthermore, motor task decoding in brain computer interfaces (BCI) offers a promising tool in rehabilitation (66). This type of data, from healthy to clinical cases, can be found on multiple open-access repositories, such as zenodo (https://zenodo.org) or physionet ([1]), as well as via collaborative projects such as the BNCI Horizon 2020
Main existing datasets

(http://bnci-horizon-2020.eu) which gathers a collection of BCI datasets (see Table 2). These repositories are also valuable in that they contribute to establishing harmonisation procedures in processing and recording. All dataset collected informed consent and data were anonymized to protect the participants privacy. Moreover, regulations may vary from one country to another, which require for example studies to be approved by ethics committees. Additionally, licensing (that define copyrights of the dataset) must be considered depending on the intended use of the open-access datasets.

Data come in different formats according to the acquisition system or the preprocessing software. The most common formats for EEG are .edf, .gdf, .eeg, .csv or .mat files. For MEG it is very often .fif and .bin (Table 1). The different formats can create challenges when working with multiple datasets. Luckily, some tools have been developed to handle this problem, for example Fieldtrip (67) or Brainstorm (68) implemented in matlab, or the python modules mne (69) and moabb (70). Of note, these tools also contain sets of algorithms and utility functions for analysis and visualisation.

4. Genetics

4.1. Twin samples

Twins provide a powerful method to estimate the importance of genetic and environmental influences on variation in complex traits. Monozygotic (MZ; aka identical) twins develop from a single zygote and are (nearly) genetically identical. In contrast, dizygotic (DZ; aka fraternal) twins develop from two zygotes and are, on average, no more genetically related than non-twin siblings. In the classical twin design, the degree of similarity between MZ and DZ twin pairs on a measured trait reveals the importance of genetic or environmental influences on variation in the trait. Twin studies often collect
several different data types, including brain MRI scans, assessments of cognition and behaviour, self-reported measures of mental health and wellbeing, as well as biological samples (e.g. saliva, blood, hair, urine). Datasets derived from twin studies are text-based and include phenotypic data and background variables (e.g. individual and family IDs, sex, zygosity, age). Notably, the correlated nature of twin data (i.e. the non-independence of participants) should be considered during analysis as it may violate statistical test assumptions (71, 72).

Raw data is typically stored locally by the data owner, with de-identified data available upon request. In larger studies, data is stored and distributed through online repositories. Recently, the sharing of publicly available de-identified data with accompanying publications has become commonplace.

Several extensive twin studies combine imaging, behavioural, or biological data (Table 2. These studies cover the whole lifespan (STR) as well as specific age periods, for example, children/adolescents (QTAB), young (QTIM, HCP-YA), middle-aged (VETSA) or older (OATS) adults.

The Swedish Twin Registry (STR) was established in the late 1950s with the primary aim to explore the effect of environmental factors (e.g., smoking and alcohol) on disorders (73). Data were first collected through questionnaires and interviews with the twins and their parents. Later, the STR incorporated data from biobanks, clinical blood chemistry assessments, genotyping, health check-ups and linkages to various Swedish national population and health registers (73). The STR is now one of the largest twin registers in the world (74) with information on more than 87,000 twin pairs (https://ki.se/en/research/the-swedish-twin-registry). It has been used extensively for the research of health and illness, including various neurological disorders, including dementia (75), Parkinson’s disease (76), and motor neuron disease (77).
The Queensland Twin Adolescent Brain study (QTAB; 2015-present) was enabled through funding from the Australian National Health and Medical Research Council (NHMRC). It focuses on the period of late childhood/early adolescence, with brain imaging, cognition, mental health, and social behaviour data collected over two waves (age 9-14 years at baseline, \(N = 427 \)). A primary objective is to chart brain changes and the emergence of depressive symptoms throughout adolescence. Biological samples (blood, saliva), sleep (self-report) and motor activity measures (see Smartphones & Sensors) were also collected. Data is available from the project owners upon request.

The Queensland Twin IMaging study (QTIM; 2007-2012), funded through the National Institute of Health (NIH) and NHMRC, was a collaborative project between researchers from QIMR Berghofer Medical Research Institute, the University of Queensland, and the University of Southern California, Los Angeles. Brain imaging was collected in a large genetically informative population sample of young adults (18-30 years, \(N > 1200 \)) for whom a range of behavioural traits, including cognitive function, were already characterised (as a component of the Brisbane Adolescent Twin Study, QIMR Berghofer Medical Research Institute \(^{78}\)). Notably, the dataset includes a test-retest neuroimaging subsample (\(n = 75 \)) to estimate measurement reliability. Data is available from the project owners upon request.

The Human Connectome Project Young Adult study (HCP-YA; 2010-2015), funded by the NIH, is based at Washington University, University of Minnesota, and Oxford University. Investigators spent two years developing state-of-the-art imaging methods \(^{29}\) before collecting high-quality neuroimaging, behavioural and genotype data in ~1,200 healthy young adult twins and non-twin siblings (22-35 years). HCP-YA data has been used widely in twin-based analyses, examining genetic influences on network connectivity \(^{79}\), white matter integrity \(^{80}\), and cortical surface area/thickness \(^{81}\). Open access HCP-YA data is available from the Connectome Coordination Facility following registration.
Couvy-Duchesne et al. Main existing datasets

(https://db.humanconnectome.org), with additional data use terms applicable for restricted data (e.g. family structure, age by year, handedness).

The Vietnam Era Twin Study of Aging (VETSA; 2003-present), funded by the NIH, started as a study of cognitive and brain ageing but has since pivoted to the early identification of risk factors for mild cognitive impairment and Alzheimer’s disease (28). In addition to neuroimaging and cognitive data, the VETSA study includes health, psychosocial, and neuroendocrine data collected across three waves (baseline mean age 56 years, follow-up waves every 5-6 years) (82). VETSA data is available following registration (https://medschool.ucsd.edu/som/psychiatry/research/VETSA/Researchers/Pages/default.aspx).

The Older Adult Twins Study (OATS; 2007-present) (83), funded by the NHMRC and Australian Research Council, is a longitudinal study of genetic and environmental contributions to brain ageing and dementia. The project includes neuroimaging and cognitive data collected across four waves (baseline mean age 71 years, follow-up waves every two years). OATS was expanded in wave 2 to include positron emission technology (PET) scans to investigate the deposition of amyloid plaques in the brain. Data is available from the project owners upon request.

There is a wealth of twin studies worldwide in addition to those mentioned here (see (84) for an overview). Foremost is the Netherlands Twin Registry (85), a substantial data resource with dedicated projects investigating neuropsychological, biomarker, and behavioural traits. In addition, several extensive family/pedigree imaging studies exist, including the Genetics of Brain Structure and Function study (86) and the Diabetes Heart Study-Mind Cohort (87). Further, the previously mentioned ABCD study (88) includes embedded twin subsamples.
Twin datasets have been used to estimate the heritability (the proportion of observed variance in a phenotype attributed to genetic variance) of phenotypes derived through machine learning, such as brain ageing (89–91) and brain network connectivity (92). Further, machine learning models have been trained to discriminate between MZ and DZ twins based on dynamic functional connectivity (93) and psychological measures (94). In addition, machine learning has been used to predict co-twin pairs based on functional connectivity data (95).

4.2. Molecular genetics

4.2.1 The UK Biobank

The UK Biobank (UKB) is one of the largest population-based cohorts, comprising nearly half a million adult participants (aged over 40 at the time of recruitment), recruited across over 20 assessment centres in the UK. The UKB resource is accessible to the research community through application (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access) and, as of the end of 2021, counted more than 28,000 registered approved researchers worldwide. In 2021, UKB launched a cloud-based Research Analysis Platform (RAP), which provides computational tools for data visualisation and analysis, thereby aiming to democratise access for researchers lacking such infrastructure. The associated fees for using the UKB resource include the yearly tier-based access fees, depending on the type of data accessed, as well as the cost of running the analyses and storing the generated data, while the storage of the UKB dataset itself is provided free of charge. Certain emerging datasets (e.g., whole exome and genome sequences) will be only available for analysis through the platform, both due the enormous size and tighter regulation around those datasets. Upon publication researchers are required to return their results, including the
methodology and any essential derived data-fields back to the UKB, which are subsequently incorporated into the resource in order to promote reproducible research.

The cohort is deeply phenotyped with thousands of traits measured across multiple assessments. The initial assessment visit took place from 2006 to 2010, where ~502,000 participants consented to participate (each keeping the right to withdraw their consent and be removed from the study at any time), completed the interview, filled questionnaires, underwent multiple measurements, and donated blood urine and saliva samples (See https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/Reception.pdf). The first repeat assessment was conducted in 2012-2013 and included approximately 120,000 participants. Next, the participants were invited to attend the imaging visits: the initial (2014+) and the first repeat imaging visit (2019+). So far, 50,000 initial imaging visits have been conducted, with a target to image 100,000 participants (10,000 repeat). The imaging data includes brain (14, 96), heart (97), and abdominal MRI scans (98), with both bulk images and image derived measures available for analysis, as well as retinal OCT images (99). Finally, follow-up information from the linked health and medical records is regularly collected and updated in the resource, including data for COVID-19 research. The showcase of the available anonymous summary information is available at https://biobank.ndph.ox.ac.uk/showcase/.

The interim release of the genotyping data comprised ~150,000 samples and was released in 2015, followed by the full release of 488,000 genotypes in the middle of 2017. The available genotype data included variant calls from UK BiLEVE and UKBiobank Axiom arrays (autosomes, sex-chromosomes, and mitochondrial DNA), as well as phased haplotype values and imputation to a combined panel of Haplotype Reference Consortium (HRC) and the merged UK10K and 1000 Genomes phase 3 reference panels (100), also knowns as v2 release. Subsequently, the v2 imputation was replaced by imputation to HRC and UK10K haplotype resource only (v3), after a problem was discovered for the set imputed to UK10K +
1000 Genomes panel (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100319). The genotypes of approximately 3% of the participants remained not assayed due to DNA processing issues. To note, ~50,000 individuals included in the interim genotype release were involved in the UK Biobank Lung Exome Variant Evaluation (UK BiLEVE) project and their genotypes were assayed on a different but very closely related array than the rest of the participants (https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/genotyping_qc.pdf). The UK BiLEVE focused on genetics of respiratory health and the participants were selected based on lung function and smoking behaviour (101).

Whole Exome Sequencing (WES) and Whole Genome Sequencing (WGS) have been funded through the collaboration between the UK Biobank and biotechnology companies Regeneron and GlaxoSmithKline (GSK). The first UKB release WES data, included 50,000 participants, prioritised based on the availability of MRI imaging data, baseline measurements, linked hospital and primary care records and enriched in patients diagnosed with asthma (102). Recently (November 2021), the new data release included N=200,000 WGS and N=450,000 WES (103). WGS for the remaining participants is currently underway. For all the past and future timelines see https://biobank.ctsu.ox.ac.uk/showcase/exinfo.cgi?src=timelines_all.

Most of the UKB participants reported their ethnic background as White British/Irish or any other white background (~94%), which was coherent with the observed genetic ancestries (100). For example, the ancestries identified from genetic markers showed a predominant European ancestry (N~464,000), followed by South-Asian (~12,000), African (~9,000) and East-Asian ancestry (~2,500) (104). As a population-based cohort, the UKB mostly comprises unrelated participants. While the pedigree information was not collected as a part of assessment, the genetic analysis has identified approximately 100,000 pairs of close relatives (3rd degree or closer, including 22,000 sibling pairs and 6,000 parent-offspring pairs)
This amount of relatedness is however larger than expected for a random sample from a population and reflects a participation bias towards the relatives of the participants. Moreover, the UKB sample is, on average, healthier, more educated and less deprived than the general UK population (2).

4.3. Genetic consortia

4.3.1 ENIGMA Consortium
The Enhancing NeuroImaging Genetics Through Meta-Analysis (ENIGMA) consortium was formed in 2009 with the goal of conducting large-scale neuroimaging genetic studies of human brain structure, function, and disease (27). Currently, more than 2,000 scientists from 400 institutions around the world with neuroimaging (including structural and functional MRI) and electroencephalography (EEG) data have joined the consortium and formed fifty Working Groups that focus on different psychiatric and neurological disorders as well as healthy variation, method development, and genomics (27).

To date, the ENIGMA Genetics Working Group (for and overview see (105)) have conducted genome-wide association meta-analyses for hippocampal and intracranial volume (106–108), subcortical volume (109, 110), and cortical surface area and thickness (111). The ENIGMA Genetics Working Group provides researchers imaging and genetic protocols to enable each group to conduct their own association analyses before contributing summary statistics to the meta-analysis. While these genome-wide association studies have focused on structural phenotypes and the analysis of common single nucleotide polymorphisms (SNPs), the ENIGMA EEG Working Group have recently conducted a genome-wide association meta-analysis for oscillatory brain activity (112) and the ENIGMA Copy Number Variant (CNV) Working Group, which formed in 2015, is currently investigating the impact of rare
CNVs beyond the 22q11.2 locus on cognitive, neurodevelopmental and neuropsychiatric traits (113).

The sample sizes of the ENIGMA Genetics and CNV Working Groups continuously increase as new cohorts with MRI and genetic data join the consortium. As of 2020, the CNV Working Group sample comprises of 38 ENIGMA cohorts (113) while the latest Genetics Working Group genome-wide association meta-analysis (111) consisted of a discovery sample of 49 ENIGMA cohorts and the UK Biobank (N = 33,992 individuals of European ancestry), a replication sample of two European ancestry cohorts (N = 14,729 participants), and eight ENIGMA cohorts of non-European ancestry (N = 2,994 participants). This meta-analysis identified 199 genome-wide significant variants that were associated with either the surface area or thickness of the whole human cortex and 34 cortical regions with known functional specialisations. They also found evidence that the genetic variants that influence brain structure also influence brain function, such as general cognitive function, Parkinson’s disease, depression, neuroticism, ADHD, and insomnia (111).

Importantly, all imaging, EEG, and genetic (imputation and association analysis) protocols are freely available from the ENIGMA website (http://enigma.ini.usc.edu/). However, to access the summary statistics for each published genome-wide association meta-analysis, researchers need to complete an online Data Access Request Form (http://enigma.ini.usc.edu/research/download-enigma-gwas-results/). If a researcher wants to propose new genetic analyses that cannot be conducted with these publicly available summary statistics, they need to become a member of ENIGMA. Researchers can join the consortium by (a) contributing a cohort with MRI and genetic data, (b) collaborating with another research group that does have MRI and genetic data, or (c) contributing their expertise in genomic or methodological areas that are inadequately addressed by other
consortium members. Of note, since storage of the MRI and genetic data is not centralised, each ENIGMA cohort can choose to contribute or not to new proposed analyses.

4.3.2. The Psychiatric Genomics Consortium (PGC)

The Psychiatric Genomics Consortium (PGC) began in 2007. The central idea of the PGC is to use a global cooperative network to advance genetic discovery in psychiatric disorders in order to identify biologically, clinically, and therapeutically meaningful insights. To date, the PGC is one of the largest, most innovative, and productive consortium in the history of psychiatry. The Consortium now consists of workgroups on 11 major psychiatric disorders, a Cross-Disorder Workgroup, and a Copy-Number Variant Workgroup. In addition, the PGC provides centralised support to the PGC researchers with a Statistical Analysis Group, Data Access Committee, and Dissemination and Outreach Committee. To increase ancestral diversity, the Consortium established the Cross-Population Workgroup in 2017 for outreach and developing/deploying trans-ancestry analysis methods (114). The Consortium outreach expands ancestry diversity by adding non-European cases and controls. The PGC continues to unify the field and attract outstanding scientists to its central mission (800+ investigators from 150+ institutions in 40+ countries). PGC work has led to 320 papers, many in high-profile journals (Nature 3, Cell 5, Science 2, Nat Genet 27, Nat Neurosci 9, Mol Psych 37, Biol Psych 25, JAMA Psych 12). The full results from all PGC papers are freely available, and the findings have fueled analyses by non-PGC investigators (sample sizes and findings for eight major psychiatric disorders are summarised in Figure 1).
Computation and data warehousing for the PGC are non-trivial. The PGC uses the Netherlands “LISA” computing cluster. LISA compute cluster in Amsterdam which is used for most analyses (occasional analyses are done on other clusters but 90% of PGC computation is done on LISA). The core software is the Ricopili data analytic pipeline (115). This pipeline has explicit written protocols for uploading data to the cluster in the Netherlands that one uses for quality control, imputation, analysis, meta-analysis, and
bioinformatics. The actual mega-analyses are conducted by PGC analysts under the direction of a senior statistical geneticist, geneticist, or highly experienced analyst.

The PGC has a proven commitment to open-source, rapid progress science. All PGC results are made freely available as soon as a primary paper is accepted (GWAS summary statistics available at https://www.med.unc.edu/pgc/download-results/). The researchers can obtain access to the individual-level data either through controlled-access repositories (e.g. the Database of Genotypes and Phenotypes, dbGaP, or the European Genome-phenome Archive) or via the PGC streamlined process for secondary data analyses (https://www.med.unc.edu/pgc/shared-methods/data-access-portal/) (116).

PGC analyses have always been characterised by exceptional rigour and transparency. PGC analysts will enhance this by publishing markdown notebooks for all papers on the PGC GitHub site (https://github.com/psychiatric-genomics-consortium) to enable precise reproduction of all analyses (containing code, documentation of QC decisions, analyses, etc.).

5.2. Exome and Whole genome Sequencing - Trans-Omics for Precision Medicine (TOPMed)

The Trans-Omics for Precision Medicine (TOPMed) program, sponsored by the National Institutes of Health (NIH) National Heart, Lung and Blood Institute (https://topmed.nhlbi.nih.gov) is part of a broader Precision Medicine Initiative, which aims to provide disease treatments tailored to an individual’s unique genes and environment. TOPMed contributes to this Initiative through the integration of whole-genome sequencing (WGS) and other omics data. The initial phases of the programme focused on whole-genome sequencing of individuals with rich phenotypic data and diverse backgrounds. The WGS of the TOPMed samples was performed over multiple studies, years and
Main existing datasets

sequencing centres (117, 118). Available data are processed periodically to produce genotype data ‘freezes’. Individual level data is accessible to researchers with an approved dbGaP data access request (https://topmed.nhlbi.nih.gov/data-sets), via Google and Amazon cloud services. More information about data availability and how to access it can be found on the data set page (https://topmed.nhlbi.nih.gov/data-sets).

As of September 2021, TOPMed consists of ~180k participants from >85 different studies with varying designs. Prospective cohorts provide large numbers of disease risk factors, subclinical disease measures, and incident disease cases; case-control studies provide improved power to detect rare variant effects. Most of the TOPMed studies focus on HLBS (heart, lung, blood and sleep) phenotypes, which leads to 62K (~35%) participants with heart phenotype, 50K (~28%) with lung data, 19K (~11%) with blood, 4K (~2%) with sleep and 43K (~24%) for multi-phenotype cohort studies. TOPMed participants diversity is assessed using a combination of self-identified or ascriptive race/ethnicity categories, and observed genetics. Currently, 60% of the 180k sequenced participants are of non-European ancestry (i.e., 29% African ancestry, 19% Hispanic/Latino, 8% Asian ancestry, 4% other/multiple/unknown).

Whole Genome Sequencing is performed by several sequencing centers to a median depth of 30X using DNA from blood, PCR-free library construction and Illumina HiSeq X technology (https://topmed.nhlbi.nih.gov/group/sequencing-centers). Randomly selected samples from freeze 8 were used for whole-exome sequence using Illumina v4 HiSeq 2500 at an average 36.4× depth. A trained machine learning algorithm with known variants and Mendelian-inconsistent variants is applied by The Informatics Research Center for joint genotype calling across all samples to produce genotype data “freezes” (https://topmed.nhlbi.nih.gov/group/irc). In TOPMed data freeze 8 (N~180k) (https://topmed.nhlbi.nih.gov/data-sets), variant discovery identified 811 million single
nucleotide variants and 66 million short insertion/deletion variants. In the latest data freeze 9 (https://topmed.nhlbi.nih.gov/data-sets), variant discovery was initially made on ~206k samples including data from Centers for Common Disease Genetics (CCDG). This data was re subset to ~158,470 TOPMed samples plus 2,504 from 1000 Genomes samples were used for variant re-discovery. Then, a total of 781 million single nucleotide variants and 62 million short insertion/deletion variants we identified and passed variant quality controls. These variant counts in freeze 9 are slightly smaller than that of freeze 8 due to monomorphic sites in TOPMed samples. A series of data freezes is being made available to the scientific community as a genotypes and phenotypes via dbGaP (https://www.ncbi.nlm.nih.gov/gap/); read alignments are available via the Sequence Read Archive (SRA); and variant summary information via the Bravo variant server (https://bravo.sph.umich.edu/freeze8/hg38/) and dbSNP (https://www.ncbi.nlm.nih.gov/snp/).

TOPMed studies provide unique opportunities for exploring the contributions of rare and noncoding sequence variants to phenotypic variation. For instance, (118) used 53,831 samples from freeze 5 (https://topmed.nhlbi.nih.gov/data-sets) to investigate the role of rare variants into mutational processes and recent human evolutionary history. The recent TOPMed freeze 8 were used (together with WGS from the UK Biobank) to assess effect size of casual variants for gene expression using 72K African-African and ~298K European-American (119). Similarly, a large set of multi-ethnic samples from freeze 5, 8 and 9 were used to develop comprehensive tools such as a STAAR and SCANG, pipelines used to identify noncoding rare variants (120); to build predictive models for protein abundances (121) and discovery of causal genetic variants for different phenotypes (122, 123). Overall, the Trans-Omics for Precision Medicine (TOPMed) programme has the potential to help improving diagnosis, treatment and prevention of major diseases by adding WGS and other ‘omics’ data to existing studies with deep phenotyping.
5. Genomics

5.3. Methylation

DNA methylation (DNAm) is a covalent molecular modification by which methyl groups (CH$_3$) are added to the DNA. In vertebrates – and eukaryotes in general – the most common methylation modification occurs at the fifth carbon of the pyrimidine ring (5mC) at cytosine-guanine dinucleotides (CpG). Most bulk genomic methylation patterns are stable across cell-types and throughout life, changing only in localised contexts – for example, due to disease-associated processes.

There are numerous ways of measuring DNAm at a genome-wide level, with bisulfite conversion-based methods being the most popular in the field of epidemiological epigenetics. These methods consist of bisulfite-induced modifications of genomic DNA, which results in unmodified cytosine nucleotides being converted to uracil, whilst 5mC remain unaffected. Of all these bisulfite conversion-based technologies – including sequencing-based methods –, hybridization arrays are the most widely used, primarily due to their low cost and high-throughput nature.

The current Illumina Infinium® HumanMethylation450 (or 450K) and Illumina Infinium® HumanMethylation850 (or EPIC) arrays assess around 450,000 and 850,000 methylation sites across the genome, respectively, covering 96% of the CpG islands (i.e., genomic regions with high CpG frequency), 92% of the CpG islands shores (124, 125) (<2kb flanking CpG Islands) and 86% of the CpG islands shelves (<2kb flanking outwards from a CpG shore), which have been shown to be more dynamic than CpG islands (126). Although most current studies have used the 450K array (127), the EPIC array covers >90% of the 450K sites plus additional CpG sites in the enhancer regions identified by the ENCODE and FANTOM5 projects (128).
After probe hybridization and extension steps, the array is scanned, and the intensities of the unmethylated and methylated bead types are measured. DNAm values are then represented by the ratio of the intensity of the methylated bead type to the combined locus intensity. These are known as Beta (β) values and are continuous variables between 0 and 1 (Equation 1), although a value of 1 is impossible to achieve in practice, due to the addition of a stabilising α offset (to handle low-intensity signals):

Equation 1 – DNA methylation β values as measured by the Illumina Infinium® methylation arrays. $M =$ methylated intensity, $U =$ unmethylated intensity, $\alpha =$ arbitrary offset to handle signals with low readings (usually 100).

$$\beta = \frac{M}{M + U + \alpha}$$

These raw intensities are then stored in binary IDAT files (one for each of the red and green channels). The bulk of each file consists of four fields: the ID of each bead-type on the array, the mean and standard deviation of their intensities, and the number of beads of each type, generated per sample. This raw data format allows for flexible use, including differing pre-processing strategies (129). However, these files are usually not readily available in public repositories (e.g., Gene Expression Omnibus (130) or GEO), due to their large size. For example, a compressed .tar file of IDATs for a sample size of around 700 individuals, measured with EPIC arrays, is about 10Gb. Instead, researchers usually upload the processed β DNAm values analysed (following normalisation) – as compressed .txt or .csv files with columns representing samples and rows the measured loci. This can be a problem for reproducibility, as different research groups tend to prefer their own pre-processing or normalisation methods – and there are many (131)! On this note, there has been a recent push in the field, for standardisation of DNAm array preprocessing pipelines, including the user-friendly Meffil pipeline (132).
Reproducibility and interpretation of DNA methylation (DNAm) studies is subject to additional factors outside of data processing methods. For comparison, genetic data is (mostly) germline determined and can be assumed to be randomly assigned with respect to characteristics of individuals. Thus, a case-control (or cross-sectional) design has an inference of association through causality and can convey information of liability to disease. This contrasts with DNAm data which is a reversible process influenced by a large range of biological, technical, and environmental factors (e.g., medication and complications of the disease itself) and is thus more susceptible to spurious cryptic association or reverse causation (133, 134). DNAm studies will therefore benefit from longitudinal designs, both for biomarker discovery and mechanistic insights (133, 135).

Reed et al., (136) provides one good example of this. Briefly, the authors generated a DNAm score for Body Mass Index (BMI) within the ARIES subsample of the Avon Longitudinal Study of Parents and Children birth cohort (ALSPAC), using effect sizes of 135 CpG sites from a published meta-analysis of DNAm and BMI (137). Using multiple time points for matched mothers and children using linear and cross-lagged models to explore the causal relationship between phenotypic BMI and the DNAm scores, they found a strong linear association within time points (136). However, when testing for temporal associations, DNAm scores at earlier time points showed no association with future BMI, indicating that a DNAm score generated from a reference cross-sectional study performs better as a biomarker of extant BMI, but poorly as a predictor for future BMI.

In Table 2 below, we have compiled a list of the largest and/or most used DNAm array datasets – including the Genetics of DNA Methylation Consortium (goDMC), an international collaboration of human epidemiological studies that comprises >30,000 study participants with genetic and DNAm array data (138). These samples are usually integrated in larger genetic/epidemiological studies, except for perhaps the NIH Roadmap Epigenomics...
Mapping Consortium (139), which was launched with the goal of producing a public resource of human epigenomic data to catalyse basic biology and disease-oriented research, and the BLUEPRINT project (140, 141), which aims to generate at least 100 reference epigenomes of distinct types of haematopoietic cells from healthy individuals and of their malignant leukaemic counterparts. Lastly, in contrast to genetic data, the de-identified DNAm data – either raw or pre-processed – is typically open access in public repositories such as GEO (130), or dbGAP (142), or the web portals provided by the respective projects. However, access to accompanying phenotypic data may require additional approval by the managing committees of each individual project.

5.2. Gene expression data - GTEx

Launched in 2010, the Genotype-Tissue Expression (GTEx) project is an ongoing effort that aims to characterise the genetic determinants of tissue-specific gene expression (143). It is a resource database available to the scientific community, which is comprised of multi-tissue RNA sequencing (RNA-seq: gene expression) and whole genome sequence (WGS) data collected in 17,382 samples across 54 tissue-types from 948 post-mortem donors (version 8 release). Sample size per tissue ranges from n=4 in kidney (medulla) to n=803 in skeletal muscle. The majority of donors are of European ancestry (84.6%), male (67.1%) with ages ranging from 20-70 years old. The primary cause death for donors 20-39 years old was traumatic injury (46.4%), and heart disease for donors 60-70 years (40.9%).

Data is constantly being added to the database using sample data from the GTEx Biobank. For example, recent efforts have focussed on gene expression profiling at the single-cell level to achieve a higher resolution understanding of tissue-specific gene expression and within tissue heterogeneity. As a result, single-cell RNA-seq (scRNA-seq) data was generated in eight tissues from 25 archived, frozen tissue samples collected on 16
Further, the Developmental Genotype-Tissue Expression (dGTEx) project (https://dgtex.org/) is a relatively new extension of GTEx that was launched in 2021 that aims to understand the role of gene expression at four developmental timepoints: postnatal (0-2 years of age), early childhood (2-8 years of age), pre-pubertal (8-12.5 years of age) and post-pubertal (12.5-18 years of age). It is expected that molecular profiling (including WGS, bulk RNA-seq and, for a subset of samples, scRNA-seq) will be performed on 120 relatively healthy donors (approximately 30 donors per age group) in 30 tissues. Data from this study would provide, for example, a baseline for gene expression patterns in normal development for comparison against individuals with disease.

GTEx provides extensive documentation on sample collection, laboratory protocols, quality control and standardisation and analytical methods on their website (https://gtexportal.org/home/). This allows for replication of their protocols and procedures in other cohorts to aid in study design, and for researchers to further interrogate the GTEx data to answer more specific scientific questions. Processed individual-level gene expression data is made freely available on the GTEx website for download, while controlled access to individual-level raw genotype and RNA sequencing data are available on the AnVIL repository following approval via the National Center for Biotechnology Information's database of Genotypes and Phenotypes (dbGAP; dbGaP accession phs000424), a data archive website that stores and distributes data and results investigating the relationship between genotype and phenotype (https://www.ncbi.nlm.nih.gov/gap/). Clinical data collected for each donor is categorised into donor-level (demographics, medication use, medical history, laboratory test results, death circumstances, etc.) and sample level (tissue-type, ischemic time, batch ID, etc.) data and is also available through dbGAP.

Over the many years, data from the GTEx project has provided unprecedented insight into the role genetic variation plays in regulating gene expression and its contribution to
complex trait and disease variation in the population. The latest version 8 release from GTEx comes with a comprehensive catalogue of variants associated with gene expression, or eQTLs (expression Quantitative Trait Loci), across 49 tissues or cell lines (derived from 15,201 samples and 838 donors) (GTEx Consortium, 2020). This analysis has demonstrated that gene expression is a highly heritable trait, with millions of genetic variants affecting the expression of thousands of genes across the genome. These pairwise gene-variant associations can be classified as either cis- or trans-eQTLs, which describes proximal (i.e. within a predefined window of the target gene) or distal (i.e. beyond the pre-defined window or on a different chromosome from the target gene) genetic control, respectively. Indeed, it has been shown that 94.7% of all protein-coding genes have at least one cis-eQTL. In addition, 43% of genetic variants (minor allele frequency >1%) have been found to affect gene expression in at least one tissue, and the majority of cis-eQTLs appear to be shared across the sexes and ancestries (GTEx Consortium, 2020). Relatively few trans-eQTLs have been identified due to limitations in sample sizes, however, these typically affect gene expression in one or very few tissues, with about a third of trans-eQTLs mediated by cis-eQTLs (143). Importantly, GTEx provides full eQTL summary statistics for download and an interactive portal (https://gtexportal.org/home/) for quick searches. As most trait-associated loci identified in genome-wide association studies (GWAS) are in non-coding regions of the genome, the eQTL data generated by GTEx has been leveraged to provide insight into the genetic and molecular mechanisms that underlie complex traits and diseases. Indeed, GWAS trait-associated variants are enriched for cis-eQTLs, and genetic variants that affect multiple genes in multiple tissues are found to also affect many complex traits (GTEx Consortium, 2020). This indicates that cis-eQTLs have a high degree of pleiotropy and exert their effect on complex traits and diseases by regulating proximal gene expression.
In addition to the comprehensive catalogue of multi-tissue eQTLs to understand gene regulation, additional flagship GTEx studies include understanding sex-biased gene expression across tissues (144), functional rare genetic variation (145), cell-type specific gene regulation (146), and predictors of telomere length across tissues (147).

The extensive publicly available data generated by the GTEx project is a valuable resource to the scientific community and will allow for further data interrogation for many years to come.

6. Electronic Health Records

6.1. Clinical data warehouse – example from the Parisian hospitals (APHP)

Clinical Data Warehouses (CDW) gather electronic health records (EHR), which can gather demographics data, results from biological tests, prescribed medications and images acquired in clinical routine, sometimes for millions of patients from multiple sites. CDW can allow for large-scale epidemiological studies but they may also be used to train and/or validate machine learning (ML) and deep learning (DL) algorithms in a clinical context. For example, several computer-aided diagnosis tools have been developed for the classification of neurodegenerative diseases. One of their main limitation is that they are typically trained and validated using research data or on a limited number of clinical images (148–153). It is still unclear how these algorithms would perform on large clinical dataset, which would include participants with multiple diagnoses and more generally heterogeneous data (e.g. multiple scanners, hospitals, populations).

One of the first CDW in France, was launched in 2017 by the AP-HP (Assistance Publique – Hôpitaux de Paris), which gathers most of the Parisian hospitals (154). They
Couvy-Duchesne et al. Main existing datasets

obtained the authorisation of the CNIL (Commission Nationale de l’informatique et des Libertés, the French regulatory body for data collection and management) to share data for research purposes. The aim is to develop decision support algorithms, support clinical trials and to promote multi-centre studies. The AP-HP CDW keeps patients updated about the different research projects through a portal (as authorised by CNIL) but, according to French regulation, active consent was not required as these data were acquired as part of the routine clinical care of the patients.

Accessing the data is possible with the following procedure. A detailed project must be submitted to the Scientific and Ethics Board of the AP-HP. If the project holders are external to the AP-HP, they have to sign a contract with the Clinical research and innovation Board (Direction de la Recherche Clinique et de l’Innovation). Once the project is approved, data are extracted and pseudo-anonymised by the research team of the AP-HP. Data are then made available in a specific workstation via the Big Data Platform, which is internal to the AP-HP. The Big Data Platform supports several research environments (e.g. JupyterLab Environment, R, matlab) and provides computational power (CPUs and GPUs) to analyse the data.

An example of the research possible using such CDW is the APPRIMAGE project, led by the ARAMIS team at the Paris Brain Institute. The project was approved by the Scientific and Ethics Board of the AP-HP in 2018. It aims to develop or validate algorithms that predict neurodegenerative diseases from structural brain MRI, using a very large scale clinical dataset. The dataset provided by the AP-HP gathers all T1w brain MRI of patients aged more than 18 years old, collected since 1980. It therefore consists of around 130,000 patients and 200,000 MRI which were made available via the Big Data Platform of the AP-HP. Of note, clinical data was available for only 30% of the imaged participants (>30,000 patients) as it relies on the ORBIS Clinical Information System (Agfa Healthcare), installed.
more recently in the hospitals. The sheer size of the data poses obvious computational challenges, but other difficulties include harmonising clinical reports collected in the different hospitals, or handling the general heterogeneity of the data (e.g. hospitals, acquisition software, populations). To tackle this issue, we have developed a pipeline for the quality control of the MRI images (155).

6.2. Swedish National registries

In Sweden, a unique 10-digit personal identification number has been assigned to each individual at birth or migration since 1947, which allows linkages across different Swedish population and health registers with almost 100% coverage (156). The Swedish Total Population Register (TPR) was established in 1968 and is maintained by Statistics Sweden to obtain data on major life events, such as birth, vital status, migration, and civil status (157). TPR is a key source to provide basic information in medical and social research in Sweden. The Swedish Population and Housing Censuses (1960-1990) and the Swedish Longitudinal Integrated Database for Health Insurance and Labour Market Studies (Swedish acronym LISA) (since 1990) provide information on demographic and socioeconomic status for the Swedish population, including the highest attained educational level and household income (158). The Swedish Multi-Generation Register (MGR) provides information on familial links for individuals born since 1932 onward in Sweden (159), which makes it possible to perform family studies to investigate familial risk of different health outcomes and control for familial confounding when needed.

The Swedish National Patient Register (NPR) is a valuable source for medical research, which has since 1964 collected data on inpatient care (nationwide coverage since 1987) and outpatient care (more than 85% of the entire country since 2001) (160). Diagnoses are according to the Swedish revisions of the International Classification of Disease codes.
(ICD codes). The positive predictive value of the diagnoses is high, ranging from 85% to 95%, in NPR (160). NPR has been used in studies of different diseases including many neurological disorders such as Alzheimer’s disease (161), Parkinson's disease (162) and amyotrophic lateral sclerosis (163). The Swedish Cancer Register (SCR) has been used extensively in Swedish cancer research, especially cancer epidemiology. SCR was established in 1958 and includes data on all newly diagnosed malignant and benign tumours, including different kinds of brain tumours (164, 165). The Swedish Medical Birth Register (MBR) was established in 1973 and contains information on almost all deliveries (from prenatal to postnatal) in Sweden (166). MBR has contributed mainly to the reproductive epidemiologic research in Sweden and has also been used in epidemiological studies of diseases later in life including different neurological disorders (167, 168). The Swedish Causes of Death Register (CDR) includes information on virtually all deaths in Sweden since 1952 (169) and has been used to identify various causes of death in medical research, including deaths due to neurological disorders (170). The Swedish Prescribed Drug Register (PDR) was founded in July 2005 and provides information on all prescription drugs dispensed from pharmacies in Sweden (171, 172). PDR has been used to study patterns of use as well as consequences of medication use, including memantine (173) and dopaminergic anti-Parkinson drug (174).

In addition to these general health registers, there are also hundreds of disease quality registers that are used for patient care and research in Sweden. For instance, the Swedish Dementia Registry (SDR) was established in 2007 to achieve high quality of diagnostics and care for patients with dementia (175). The Swedish Neuro-Register (SNR) was founded in 2001 (web-based since 2004, originally named as the Swedish Multiple Sclerosis Quality Registry) with the primary aim to improve care of patients with different neurological disorders including multiple sclerosis, Parkinson's disease, severe neurovascular headache,
myasthenia gravis, narcolepsy, epilepsy, inflammatory polyneuropathy as well as amyotrophic lateral sclerosis in Sweden (176, 177). The Swedish Stroke Register is one of the world’s largest stroke registers, which was established in 1994 and has included data from almost all hospitals that admit acute stroke patients in Sweden (178).

In Sweden, individual-level data in public registers are strictly protected by several laws, including the Ethics Review Act, General Data Protection Regulation (GDPR), and the Public Access to Information and Secrecy Act (OSL). The Swedish Ethical Review Authority (Etikprövningsmyndigheten in Swedish) assesses projects according to the Ethics Review Act, and requires a Swedish responsible person (Forskningshuvudman in Swedish) for the research. In addition to ethical approval, the Statistics Sweden (SCB) and the National Board of Health and Welfare (Socialstyrelsen in Swedish) also need to make an assessment according to GDPR and OSL, to determine whether individual-level data can be made available for potential research purposes. It generally takes around 1-6 months from contact person assignment to delivery of microdata in the SCB (www.scb.se/en/services/ordering-data-and-statistics/ordering-microdata/) and around 3–6 months to process applications for individual-level data in the Socialstyrelsen (www.socialstyrelsen.se/en/statistics-and-data/statistics/). According to standard legal provisions and procedures, the SCB and Socialstyrelsen only provide data to researchers working in Sweden, and researchers in other countries need to cooperate with Swedish colleagues to apply for the data.

According to the General Data Protection Regulation (GDPR), online access (e.g., through virtual machines) or transfer of individual-level data is allowed in countries of the European Union (EU) or European Economic Area (EEA), after proper legal agreements. Online access or transfer of individual-level data to an external partner in a third country outside EU/EEA is also permitted, if the third country has been approved by the European Commission and the external partner sign and comply with legal agreements that include
requirements for how data must be protected, including Data Transfer Agreement (DTA), Data Processing Agreement (DPA), Material Transfer Agreement (MTA), as well as Research Collaboration Agreements.

7. Smartphone and sensors

Smartphones and sensors allow for the unobtrusive collection of behavioural and physiological data. For instance, smartphones are commonly used in ecological momentary assessment (EMA) studies (179), resulting in continuous, real-time assessment of participant behaviour, symptoms and experiences. In addition, the built-in microphone and touchscreen of smartphones/tablets can record speech and motor movement. Recent advances in smartwatch technology has enabled many commercial devices (e.g., Fitbit, Garmin, Apple) to track physiological metrics (e.g., heart rate variability, pulse oximetry, temperature) in addition to traditional physical activity data (e.g., step count, Global Positioning System, exercise tracking). Sensors are also commonly used to collect data without requiring participant interaction. Wearable sensor devices (e.g., wrist-worn accelerometers) can collect data on sleep, activity, and physiology without burdening participants or influencing their behaviour. Datasets derived from smartphone and sensor studies are typically text-based, though raw data may be proprietary. The analysis of smartphone and sensor data typically requires complex algorithms/machine learning approaches due to the complexity of data collected (in the frequency of hundreds of observations per second, from many different sensors collecting data simultaneously). Raw data is typically stored locally by the data owner, with de-identified data available upon request. In more extensive studies, data is stored and distributed through online repositories.

Several studies have collected real-world behavioural and physiological data using smartphone and sensor devices (Table 2), including community twin studies (BATS, QTAB),
large-scale biomedical databases (UK Biobank), and studies focusing on specific disorders (mPower).

The Brisbane Adolescent Twin Study (BATS) and the Queensland Twin Adolescent Brain (QTAB) projects are twin studies sourced from the Queensland Twin Registry (QTwin). The BATS project, enabled through funding from the NHMRC, was a longitudinal study of adolescent twins, which collected accelerometry data over three waves between 2014 and 2018 (ages 12, 14, and 16 years). The Queensland Twin Adolescent Brain study (QTAB; 2015-present), previously discussed in section 4.1, collected accelerometry data over two waves age (9-14 years at baseline). In both studies, participants wore a wrist-mounted accelerometry recording device for two weeks (day and night, removed only for bathing) and completed a daily sleep diary. Raw accelerometry data were processed and consolidated with sleep diary data to produce sleep onset, wake, and sleep duration estimates. The BATS and QTAB datasets include behavioural and psychological measures (e.g. assessments of cognition and behaviour, self-reported mental health and well-being) for further investigation of accelerometry measures. BATS and QTAB data is available from the project owners upon request.

The UK Biobank, previously discussed in section 4.2, collected accelerometry data in 100,000 participants between 2013-2016. Participants wore a wrist-mounted activity monitor to capture physical activity and sleep patterns for seven days. Since 2018, repeat measures have been collected for a subset of participants every quarter to examine seasonal influences on measurements. Data is available in raw (measured every five seconds) and average (by day and hour) acceleration formats. The deep phenotyping of the UK Biobank has allowed for accelerometry based measures to be examined alongside several other measures, including brain structure (180), mood disorders (181), and Alzheimer’s disease (182). UK Biobank data is available online following registration (https://bbams.ndph.ox.ac.uk/ams/).
The mPower study (2015-present), sponsored by Sage Bionetworks with funding from the Robert Wood Johnson Foundation, aims to establish the baseline variability of real-world activity measurements of individuals with Parkinson’s disease. Data is collected through an iPhone application, with minimal interruption to the daily life of participants. The initial data release (collected over six months) included health survey and sensor-based activity (e.g. gait and balance) data for ~8000 participants (with ~1000 self-identified as having a professional diagnosis of Parkinson’s disease). In addition, approximately 900 participants contributed at least five separate days’ worth of data. mPower data is accessible through the data sharing service Synapse (https://www.synapse.org/mpower).

A recent review (183) provides an overview of studies using smartphones to monitor symptoms of Parkinson’s Disease and in-depth descriptions of the methodology involved in these types of studies. Additionally, studies have used smartphone-based EMA to detect or treat mood disorders (see (184) for a review). Further, the Mobile Motor Activity Consortium for Health (MMARCH; http://mmarch.org/) is a collaborative international network working to standardise the analysis of actigraphy data in studies investigating motor activity, mood, and related disorders.

Machine learning approaches have been widely applied to data collected from smartphone and sensor devices, most notably in studies of Parkinson’s disease. For example, (185) used machine learning classifiers applied to accelerometry data from the UK Biobank to classify individuals with Parkinson’s disease with an area under the curve of 0.85 (based on gait and low-movement data). Another study (186) used data from the mPower study to detect dopaminergic medication response by applying machine learning techniques to the tapping task performance (measured via the mPower smartphone application) of Parkinson’s disease patients before and after medication. Further, classifiers have been used to detect states of deep brain stimulation (i.e. distinguishing between “On” and “Off” settings) in
Parkison’s disease patients using accelerometer and gyroscope signals from smartphones (187). Machine learning approaches have also shown promise for other disorders. For instance, machine learning algorithms within a smartphone application have helped identify individuals with obstructive sleep apnoea, using actigraphy, body position assessment, and audio recordings (188). Lastly, some developed a pipeline for personalised modelling of depressed mood (based on EMA) and smartwatch derived sleep and physical activity measures (189).
<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country/Region</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET, MEG)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer's disease Neuroimaging Initiative (ADNI)</td>
<td>2,215</td>
<td>55-90</td>
<td>USA & Canada</td>
<td>Longitudinal (up to 9 years of follow-up, ongoing)</td>
<td>Neurological (Alzheimer's), cognition, lumbar puncture</td>
<td>MRI (T1w, T2, DWI, rsfMRI), PET (18F-FDG, FBB, AV45, PiB)</td>
<td>NA</td>
<td>Genotyping, WGS</td>
<td>Methylating (subset of 653 individuals – 3 time points)</td>
<td>NA</td>
<td>Transcription, CSF proteomics, metabolomics, lipidomics</td>
<td>http://adni.loni.usc.edu/data-samples/access-data/</td>
<td>Four waves (ADNI1, 2, Go, 3) with different inclusion and protocols.</td>
<td></td>
</tr>
<tr>
<td>Australian Imaging Biomarkers and Lifestyle Study of Aging (AIBL)</td>
<td>726</td>
<td>60+</td>
<td>Australia</td>
<td>Longitudinal (up to 6 years of follow-up)</td>
<td>Neurological (Alzheimer's), cognition, lumbar puncture</td>
<td>MRI (T1w, T2, DWI, rsfMRI), PET (PiB, AV45, Flute)</td>
<td>NA</td>
<td>Genotyping</td>
<td>Methylating (10% of sample)</td>
<td>NA</td>
<td>ActiGraph activity</td>
<td>NA</td>
<td>https://ida.loni.usc.edu/collaboration/access/appLicense.jsp</td>
<td>https://aibl.csiro.au/</td>
</tr>
<tr>
<td>Open Access Series of Imaging Studies v3 (OASIS3)</td>
<td>1,096</td>
<td>42-95</td>
<td>USA</td>
<td>Longitudinal (up to 12 years of follow-up)</td>
<td>Neurological (Alzheimer's), cognition</td>
<td>MRI (T1w, T2w, FLAIR, ASL, SWI, time of flight, rsfMRI, and DWI), PET (PiB, AV45, FDG)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>http://www.oasis-brains.org</td>
<td>https://www.oasis-brains.org/#access</td>
<td>Retrospective dataset from imaging projects collected by WUSTL Knight ADRC over 30 years. Two other (non-independent) datasets available: OASIS1 and OASIS2.</td>
</tr>
<tr>
<td>Adolescent Brain Cognitive Development (ABCD)</td>
<td>~11,878</td>
<td>9-12</td>
<td>USA</td>
<td>Longitudinal (up to 2 years follow-up, ongoing)</td>
<td>Self and parental rating, Substance use, mental health (psychiatry), cognition, physical health.</td>
<td>MRI (T1w, T2, rsfMRI, tfMRI).</td>
<td>NA</td>
<td>Genotyping, pedigree (twinning)</td>
<td>iPAD tasks and testing</td>
<td>NA</td>
<td>NA</td>
<td>https://abcdstudy.org</td>
<td>https://nda.nih.gov/abcd/request-access</td>
<td>Objective of 10 years follow-up.</td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhancing Neuroimaging Genetics using Meta-analyses (ENIGMA)</td>
<td>>50,000 indiv. incl. 9,572 (SCZ), 6,503 (BD), 10,105 (MDD), 1,868 (PTSD), 3,240 (SUD), 3,665 (OCD), 4,180 (ADHD), 18,605 (lifespan)</td>
<td>3-90 (No restriction)</td>
<td>World-wide (43+ countries)</td>
<td>Cross-sectional and longitudinal</td>
<td>Psychiatry, Neurology, Addiction, Suicidality, Brain injury, HIV, Antisocial behaviour.</td>
<td>T1w, DWI, rsfMRI, tfMRI</td>
<td>Resting state EEG</td>
<td>Genotyping, CNVs, pedigree (twinning)</td>
<td>Methylation</td>
<td>NA</td>
<td>NA</td>
<td>https://enigma.ini.usc.edu/join/</td>
<td>[27]</td>
<td>Consortium organized around genetics and/or disease/trait working groups as well as Non-clinical working groups with focus on sex, healthy ageing, plasticity... Imaging and genetic protocols and genome-wide association statistics are available for download on the ENIGMA web site</td>
</tr>
<tr>
<td>Center for Integrated Molecular Brain Imaging (CIMBI)</td>
<td>~2000</td>
<td>17-93</td>
<td>Denmark</td>
<td>Cross-sectional</td>
<td>Mental and physical state, personality and background. Neuropsychological measures (memory, language...)</td>
<td>MRI (T1w, T2w, DWI, fMRI), PET (¹¹C-5-HT)</td>
<td>NA</td>
<td>Genetic polymorphisms relevant for the 5-HT system</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://www.cimbi.dk/index.php</td>
<td>[37]</td>
<td>Data sharing only within the European Union (EU). Visiting access for non-EU researchers.</td>
</tr>
<tr>
<td>Sample</td>
<td>N</td>
<td>Age range</td>
<td>Country</td>
<td>Cross-sectional / longitudinal</td>
<td>Clinical</td>
<td>Neuroimaging (MRI, PET MRI)</td>
<td>EEG MEG</td>
<td>Genetics (genotyping, exome, WGS, twins)</td>
<td>Genomics</td>
<td>Smartphones & sensors</td>
<td>Other Omics</td>
<td>Website / Data Transfer Agreement</td>
<td>Reference article(s)</td>
<td>Specificities</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>---</td>
<td>----------</td>
<td>----------------------</td>
<td>------------</td>
<td>--------------------------</td>
<td>--</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>EEG Alpha Waves dataset</td>
<td>20</td>
<td>19 - 44 year old</td>
<td>France</td>
<td>Cross-sectional</td>
<td>Healthy subjects</td>
<td>NA</td>
<td>EEG (16 channels); Resting state, eyes open/closed</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://zenodo.org/record/2605110#.YTeT5Z4zZhE</td>
<td>(192)</td>
<td>Alpha waves dataset. BCI experiments.</td>
</tr>
<tr>
<td>Multitape spectra recorded during GABAergic anesthetic unconsciousness</td>
<td>55</td>
<td></td>
<td>USA</td>
<td>Cross-sectional</td>
<td>Healthy participants and patients receiving an anesthesia care in an operating room context</td>
<td>NA</td>
<td>EEG (64 for healthy volunteers, 6 for patients under anesthesia)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://physionet.org/content/eeg-power-anesthesia/1.0.0/</td>
<td>(193)</td>
<td>Patients under anesthesia during surgery.</td>
</tr>
<tr>
<td>A multi-subject, multi-modal human neuroimaging dataset</td>
<td>19</td>
<td>(16 for MEG and EEG, 3 for fMRI)</td>
<td>23-37 years old</td>
<td>Longitudinal (2 visits over 3 months)</td>
<td>Healthy subjects</td>
<td>fMRI</td>
<td>MEG, EEG (70 channels); resting, sensory-motor tasks</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://legacy opennessfmr.org/dataset/ds000117/</td>
<td>(194)</td>
<td>OpenfMRI database, accession number ds000117</td>
</tr>
<tr>
<td>Motor imagery, uncued classifier application</td>
<td>10</td>
<td>26 - 46 year old</td>
<td>Germany</td>
<td>Cross-sectional</td>
<td>Healthy subjects</td>
<td>NA</td>
<td>EEG (59 channels); Hands, feet and tongue motor imagination tasks</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>http://www.bbci.de/competition/v1/desc_1.html</td>
<td>(195)</td>
<td>Data used for a BCI competition. Also include simulated/synthetic data.</td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCI Competition 2008 – Graz dataset A</td>
<td>9</td>
<td>NA</td>
<td>Austria</td>
<td>Cross-sectional</td>
<td>Healthy subjects</td>
<td>EEG (22 channels); Hands, feet and tongue motor imagination tasks.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>http://www.bbci.de/competition/iv/desc_2a.pdf</td>
<td>(196)</td>
<td>Data used for a BCI competition.</td>
</tr>
<tr>
<td>EEG dataset from Mumtaz et al., 2017</td>
<td>64 (34 MDD, 30 healthy)</td>
<td>40.3 ±12.9 year old</td>
<td>Malaysia</td>
<td>Longitudinal (multiple visits to the clinic)</td>
<td>Case control for Major Depressive Disorder</td>
<td>EEG (19 channels)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171409</td>
<td>(197)</td>
<td>EEG (resting task), MDD based on medical history of patients</td>
</tr>
<tr>
<td>EEG data for ADHD / Control children</td>
<td>121</td>
<td>7 - 12 year old</td>
<td>South Korea</td>
<td>Cross-sectional</td>
<td>ADHD (61 children) and healthy controls (60)</td>
<td>EEG (19 channels); visual attention tasks</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://ieeexplore.ieee.org/open-access/egd-data-adhd-control-children</td>
<td>(198)</td>
<td>Visual cognitive tests on children with ADHD, using videos</td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bern Barcelona EEG database</td>
<td>5</td>
<td>NA</td>
<td>Spain</td>
<td>Longitudinal</td>
<td>Epilepsy</td>
<td>EEG (64 channels); rest</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://repositori.upf.edu/handle/10230/43829</td>
<td>(201)</td>
<td>Intracranial EEG samples before and after surgery</td>
</tr>
<tr>
<td>CHB-MIT Scalp EEG Database</td>
<td>22</td>
<td>1.5-22</td>
<td>USA</td>
<td>Longitudinal</td>
<td>Seizures and intractable seizures</td>
<td>EEG (21 channels); Resting state</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://www.physionet.org/content/chbmit/1.0.0/</td>
<td>(202)</td>
<td>Paediatric subjects with intractable seizures</td>
</tr>
<tr>
<td>Brain/Neural Computer Interaction (BNCI) Horizon</td>
<td>2</td>
<td>NA</td>
<td>Austria</td>
<td>Longitudinal</td>
<td>Chronic stroke</td>
<td>EEG (2 channels); Eye staring task</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>http://bnci-horizon-2020.eu/database/data-sets</td>
<td>(203)</td>
<td>The BNCI is an open-source project with several datasets. Stroke is “6. SCP training in stroke (006-2014)”</td>
</tr>
<tr>
<td>Queensland Twin Adolescent Brain (QTAB)</td>
<td>422 (baseline)</td>
<td>9-14 (baseline)</td>
<td>Australia</td>
<td>Longitudinal</td>
<td>Population sample. Parental and/or self-report mental health, cognition, social behaviour measures</td>
<td>MRI (T1w, T2w, FLAIR, DWI, rsfMRI, tfMRI, ASL)</td>
<td>NA</td>
<td>Pedigree (twin/sibling), genotyping</td>
<td>Pedigree (twin/sibling), genotyping</td>
<td>NA</td>
<td>Wrist-worn accelerometer, Gut microbiome</td>
<td>https://imaginggenomics.net.au/</td>
<td>(204)</td>
<td>Includes participants from Queensland Twin Registry and Twins Research Australia</td>
</tr>
<tr>
<td>Queensland Twin Imaging Study (QTIM)</td>
<td>1,200+</td>
<td>12-30</td>
<td>Australia</td>
<td>Cross-sectional</td>
<td>Population sample (as part of BATS). Self-report mental health, cognition, substance use, personality measures</td>
<td>MRI (T1w, DWI, rsfMRI, tfMRI)</td>
<td>NA</td>
<td>Pedigree (twin/sibling), genotyping</td>
<td>Pedigree (twin/sibling), genotyping</td>
<td>NA</td>
<td>NA</td>
<td>https://imaginggenomics.net.au/</td>
<td>(205)</td>
<td>Include participants from Brisbane Adolescent Twin Study (BATS)</td>
</tr>
<tr>
<td>Sample</td>
<td>N</td>
<td>Age range</td>
<td>Country</td>
<td>Cross-sectional / longitudinal</td>
<td>Clinical Studies</td>
<td>Neuroimaging (MRI, PET MRI)</td>
<td>EEG MEG</td>
<td>Genetics (genotyping, exome, WGS, twins)</td>
<td>Genomics</td>
<td>Smartphones & sensors</td>
<td>Other Omics</td>
<td>Website / Data Transfer Agreement</td>
<td>Reference article(s)</td>
<td>Specificities</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----------</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>---------</td>
<td>--------------------------------------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Human Connectome Project, young adults (HCP-YA)</td>
<td>~1,200</td>
<td>22-35</td>
<td>United States</td>
<td>Cross-sectional</td>
<td>Population sample. Self-report mental health, cognition, personality, substance use measures</td>
<td>MRI (T1w, T2w, DWI, rsfMRI, tfMRI)</td>
<td>MEG (n = 95)</td>
<td>Pedigree (twin/sibling). Genotyping</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://db.humanconnectome.org</td>
<td>(29)</td>
<td>Expanded to development and aging projects (similar imaging protocols, but extensions do not include twins).</td>
</tr>
<tr>
<td>Vietnam Era Twin Study of Aging (VETSA)</td>
<td>1,237</td>
<td>51-60</td>
<td>United States of America</td>
<td>Longitudinal</td>
<td>US veterans, males only. MRI (T1w, DWI, ASL (subset of sample))</td>
<td>NA</td>
<td>Pedigree (twin). Genotyping</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://medschool.ucsd.edu/som/psychiatry/research/VE/SET/Researchers/Pages/default.aspx</td>
<td>(82)</td>
<td>Subset of the Vietnam Era Twin Registry, males only.</td>
<td></td>
</tr>
<tr>
<td>Older Adults Twin Study (OATS)</td>
<td>623</td>
<td>>65</td>
<td>Australia</td>
<td>Longitudinal</td>
<td>Population sample. Self-report medical and mental health, neuropsychological measures</td>
<td>MRI (T1w, DWI, tfMRI); PET</td>
<td>NA</td>
<td>Pedigree (twin/sibling). Genotyping</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://cheba.unsw.edu.au/restaurant/Projects/Older-australian-twins-study</td>
<td>(83)</td>
<td>Recruited through the Australian Twin Registry.</td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Countr y</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimag ing (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphon es & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish Twin Registry (STR)</td>
<td>87,000 twin pairs</td>
<td>All ages</td>
<td>Sweden</td>
<td>Longitudinal (Since the late 1950s)</td>
<td>NA</td>
<td>NA</td>
<td>Genome wide single nucleotide polymorphisms array genotyping</td>
<td>Methylation is not available in the STR yet, but is available in the Swedish Adoption/Twin Study of Aging (SATSA), a sub-study of the STR.</td>
<td>NA</td>
<td>NA</td>
<td>https://ki.se/en/research/the-swedish-twin-registry</td>
<td>(73)</td>
<td>Twin Registry.</td>
<td></td>
</tr>
<tr>
<td>UK Biobank (UKB)</td>
<td>~502,000</td>
<td>37-73</td>
<td>UK</td>
<td>Longitudinal</td>
<td>Self-reported and EHR medical history (incl. cancer, neurology, COVID-19)</td>
<td>MRI (T1w, T2w, FLAIR, DWI, SWI, rsfMRI, tfMRI).</td>
<td>NA</td>
<td>Genotyping, Exome, WGS, pedigree</td>
<td>Actigraphy</td>
<td>Metabolomics (future release)</td>
<td>https://bbams.ndph.ox.ac.uk/amss/ Applications</td>
<td>(14, 100, 185)</td>
<td>Population based sample (volunteers), healthy bias, ongoing resource and data collection. Target MRI sample 100K, retest 10K. Also available: whole body MRI, Haematological assays, serological antibody responses assay, telomere length</td>
<td></td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avon Longitudinal Study of Parents and Children (ALSPAC): Accessible Resource for Integrated Epigenomic Studies (ARIES)</td>
<td>2,044</td>
<td>Average age: Mothers (antenatal = 28.7, follow-up = 47.5), Offspring (Birth = 40 weeks, Childhood = 7.5, Adolescence = 17.1)</td>
<td>UK</td>
<td>Longitudinal (2 timepoints for mother, 3 for offspring)</td>
<td>Clinical evaluations, Obstetric data, Cognition, questionnaires</td>
<td>MRI (T1w, DWI, mcDESPOT (subset of offspring cohort))</td>
<td>NA</td>
<td>Genotyping</td>
<td>Methylations</td>
<td>Transcriptomics</td>
<td>http://www.ariesepigenomics.org.uk/</td>
<td>(206)</td>
<td>General population study (health and development) following 1,022 mother-offspring pairs; 2 timepoints for mother, 3 for offspring.</td>
<td></td>
</tr>
<tr>
<td>Biobank-based Integrative Omics Studies (The BIOS Consortium)</td>
<td>~4,000</td>
<td>18-87</td>
<td>Netherlands</td>
<td>Longitudinal</td>
<td>Clinical information and bioassays (depending on the sub-cohort)</td>
<td>NA</td>
<td>NA</td>
<td>Genotyping, pedigree</td>
<td>Methylations</td>
<td>Transcriptomics, Metabolomics</td>
<td>NA</td>
<td>https://www.bbmri.nl/node/24</td>
<td>(207)</td>
<td>Population study including various subcohorts, covering differing research designs (Life Lines, Leiden Longevity Study, Netherlands Twin Registry, Rotterdam Study, CODAM, and the Prospective ALS Study Netherlands); access via European Genome-phenome Archive (EGA) and SURFsara High Performance Computing cloud.</td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics of DNA Methylation Consortium (goDMC)</td>
<td>32,851</td>
<td>0-91</td>
<td>Worldwide</td>
<td>Cross-sectional</td>
<td>Multiple diseases, but also healthy-ageing cohorts</td>
<td>NA</td>
<td>NA</td>
<td>Genotyping</td>
<td>Methylation</td>
<td>NA</td>
<td>NA</td>
<td>http://www.godmc.org.uk/cohorts.html</td>
<td>(78)</td>
<td>Consortium gathering 38 independent studies; data access to be obtained from each sub-sample.</td>
</tr>
<tr>
<td>Psychiatric Genomics Consortium (PGC)</td>
<td>By 2025, ~2.5 million cases of psychiatric disorders</td>
<td>All ages</td>
<td>Worldwide</td>
<td>Cross-sectional</td>
<td>Psychiatric disorders, substance use disorders and neurology: Major Depressive Disorder, Cannabis Use Disorder, Alcohol Use Disorder, Schizophrenia, Anorexia, Bipolar, ADHD, Alzheimer’s</td>
<td>NA</td>
<td>NA</td>
<td>Genotyping and sequencing</td>
<td>Expression and methylation data available in some working groups</td>
<td>NA</td>
<td>NA</td>
<td>https://www.med.unc.edu/pgc/shared-methods/open-source-philosophy/</td>
<td>(213, 214)</td>
<td>Consortium organized around disease/trait working groups</td>
</tr>
</tbody>
</table>
Couvy-Duchesne et al. Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Coronary Artery Risk Development in Young Adults (CARDIA))</td>
<td>3,425</td>
<td>18-30</td>
<td>USA</td>
<td>Longitudinal</td>
<td>Coronary Artery Risk</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://anvilproject.org/ncpi/data/studies/phs001612</td>
<td>(216)</td>
<td>A subset of longitudinal dataset of 3,087 self-identified Black and White participants from the CARDIA study were used to study multi-ethnic polygenic risk score associated with hypertension prevalence and progression</td>
</tr>
<tr>
<td>Genetic Epidemiology Network of Arteriopathy (GENOA)</td>
<td>1,854</td>
<td>>60</td>
<td>USA</td>
<td>Longitudinal</td>
<td>elucidate the genetics of target organ complications of hypertension</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001345.v3.p1</td>
<td>(216)</td>
<td>Study was used to study multi-ethnic polygenic risk score associated with hypertension prevalence and progression</td>
</tr>
<tr>
<td>Hispanic Community Health Study/Study of Latinos (HCHS/SO)</td>
<td>8093</td>
<td>18-74</td>
<td>USA</td>
<td>Longitudinal</td>
<td>A multicenter prospective cohort study for asthma patients</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001395.v1.p1</td>
<td>(216)</td>
<td>Study was used to study multi-ethnic polygenic risk score associated with hypertension prevalence and progression</td>
</tr>
<tr>
<td>Women's Health Initiative (WHI)</td>
<td>11,357</td>
<td>>65</td>
<td>USA</td>
<td>Longitudinal</td>
<td>Women's Health Initiative cohort involved study on ischemic stroke, 900 cases of hemorrhagic stroke</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000200.v12.p3</td>
<td>(216)</td>
<td>Study was used to study multi-ethnic polygenic risk score associated with hypertension prevalence and progression</td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis Risk in Communities (ARIC)</td>
<td>8,975</td>
<td>45-64</td>
<td>USA</td>
<td>Cross-sectional/ longitudinal</td>
<td>Red blood cell phenotype</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://anvilproject.org/data/studies/phs001211</td>
<td>(217)</td>
<td>WGS association study of red blood cell phenotypes, GWAS statistics available. Data included in NHLBI TOPMed</td>
</tr>
<tr>
<td>Rare Variants for Hypertension in Taiwan Chinese (THRV)</td>
<td>2,159</td>
<td>>35</td>
<td>Taiwan, China, Japan</td>
<td>Longitudinal</td>
<td>Insulin resistant cases and controls</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://anvilproject.org/ncpi/data/studies/phs001387</td>
<td>(218)</td>
<td>Clustering and heritability of insulin resistance in Chinese and Japanese hypertensive families. Data included in NHLBI TOPMed</td>
</tr>
<tr>
<td>My Life, Our Future initiative (MLOF)</td>
<td>7,482</td>
<td>>18</td>
<td>USA</td>
<td>Cross-sectional</td>
<td>Haemophilia cases and controls</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://athn.org/what-we-do/national-projects/mlof-research-repository.html</td>
<td>(219)</td>
<td>Summary statistics, different types of DNA variants detected in haemophilia. Data included in NHLBI TOPMed</td>
</tr>
<tr>
<td>Genetic Epidemiology of COPD (COPDGe ne)</td>
<td>19,996</td>
<td>45-80</td>
<td>USA</td>
<td>Cross-sectional</td>
<td>Pulmonary functions</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NAs</td>
<td>https://anvilproject.org/data/studies/phs001211</td>
<td>(220)</td>
<td>multi-omic data from GTEx and TOPMed identify potential molecular mechanisms underlying four of the 22 novel loci. Data included in NHLBI TOPMed</td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Sample Size</th>
<th>Age Range</th>
<th>Country</th>
<th>Study Design</th>
<th>Clinical Focus</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & Sensors</th>
<th>Other Omics</th>
<th>Website/Data Transfer Agreement</th>
<th>Reference Article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular Health Study (CHS)</td>
<td>4,877</td>
<td>>65</td>
<td>USA</td>
<td>Longitudinal</td>
<td>Cardiovascular health</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://ega-archive.org/studies/phs001368</td>
<td>DOI: 10.1038/s41467-020-18334-7 (220)</td>
<td>potential molecular mechanisms underlying four of the 22 novel loci. Data included in NHLBI TOPMed</td>
<td></td>
</tr>
<tr>
<td>Cleveland Family Study (CFS)</td>
<td>3,576</td>
<td>>65</td>
<td>USA</td>
<td>Longitudinal</td>
<td>Epidemiological data on genetic and non-genetic risk factors for sleep disordered breathing</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://ega-archive.org/studies/phs000954</td>
<td>DOI: 10.1038/s41467-020-18334-7 (220)</td>
<td>potential molecular mechanisms underlying four of the 22 novel loci. Data included in NHLBI TOPMed</td>
<td></td>
</tr>
<tr>
<td>Multi-Ethnic Study of Atherosclerosis (MESA)</td>
<td>6,814</td>
<td>45-84</td>
<td>USA</td>
<td>Longitudinal</td>
<td>Assess cardiovascular disease</td>
<td>NA</td>
<td>WGS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://www.omicsdi.org/dataset/dbgap/phs001416</td>
<td>(220)</td>
<td>potential molecular mechanisms underlying four of the 22 novel loci. Data included in NHLBI TOPMed</td>
<td></td>
</tr>
</tbody>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genomics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
</table>
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Countr y</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental Genotype-Expression (dGTEX)</td>
<td>120 individuals, 3,600 samples (across 30 tissues)</td>
<td>0-18 USA</td>
<td>Cross-sectional</td>
<td>General medical history</td>
<td>NA</td>
<td>NA</td>
<td>WGS</td>
<td>Gene expression (bulk RNA seq)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://dgtex.org/</td>
<td>NA</td>
<td>Expected data release by late 2022</td>
</tr>
<tr>
<td>Greater-Paris Area Hospital (AP-HP)</td>
<td>Several millions. (≈130K patients with brain MRI (~200K images)</td>
<td>All ages France</td>
<td>Longitudinal</td>
<td>ICD10 codes for diagnoses, medical reports, wide range of physiological variables</td>
<td>All medical imaging modalities and all organs: MRI, PET, SPECT, CT, Ultrasound s.</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>https://eds.aphp.fr/</td>
<td>(154)</td>
<td>All patients visiting Greater-Paris Area Hospital (AP-HP). The figures correspond to a specific project approved on the clinical data warehouse (CDW).</td>
</tr>
</tbody>
</table>
Couvy-Duchesne et al. Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish Longitudinal Integrated Database for Health Insurance and Labour Market Studies (LISA)</td>
<td>All individuals ≥16 years (15 since 2010) in Sweden</td>
<td>Longitudinal (Since 1990)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>www.scb.se/lisa</td>
<td>(158)</td>
<td>Demographic and socioeconomic information.</td>
</tr>
</tbody>
</table>
Couvy-Duchesne et al. Main existing datasets

Sample	N	Age range	Country	Cross-sectional / longitudinal	Clinical	Neuroimaging (MRI, PET MRI)	EEG MEG	Genetics (genotyping, exome, WGS, twins)	Genomics	Smartphones & sensors	Other Omics	Website / Data Transfer Agreement	Reference article(s)	Specificities	
Swedish Causes of Death Register (CDR)	Nearly 100,000 deaths annually	All ages	Sweden	Longitudinal (Since 1952)	Cause of death	NA	NA	NA	NA	NA	NA	NA	https://www.socialstyrelsen.se/statistik-och-data/register/allaregister/dodsorsakrsregistret/	(169)	Register of cause of death
Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genomics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Swedish Dementia Registry (SDR)</td>
<td>More than 100,000</td>
<td>27-103</td>
<td>Sweden</td>
<td>Longitudinal (Since 2007)</td>
<td>Dementia</td>
<td>MRI, PET, CT</td>
<td>EEG</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>www.svedem.se</td>
<td>(175)</td>
<td>Register of Dementia</td>
</tr>
<tr>
<td>Swedish Neuro-Register (SNR)</td>
<td>Around 16,000 multipl e sclerosi s, over 1,500 Parkinson’s disease and over 600 myasthenia gravis (numbers from 2015)</td>
<td>All age</td>
<td>Sweden</td>
<td>Longitudinal (Since 2004)</td>
<td>Motor neuron disease, MS</td>
<td>MRI, PET and CT</td>
<td>MEG</td>
<td>Genotyping</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>www.neuroreg.se</td>
<td>(176)</td>
<td>Register of MND (especially MS)</td>
</tr>
<tr>
<td>Swedish Stroke Register (Riks-Stroke)</td>
<td>Around 29,000 cases (around 21,000 stroke and 8,000 TIA) annually (statistics in 2020)</td>
<td>Mean age 75 for stroke; mean age 74 for TIA</td>
<td>Sweden</td>
<td>Longitudinal (Since 1994)</td>
<td>Stroke and transient ischaemic attack (TIA)</td>
<td>MRI and CT scan</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>www.riksstroke.org/</td>
<td>(178)</td>
<td>Register of stroke and TIA; includes Electrocardiograms</td>
</tr>
</tbody>
</table>
Couvy-Duchesne et al. Main existing datasets

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Age range</th>
<th>Country</th>
<th>Cross-sectional / longitudinal</th>
<th>Clinical</th>
<th>Neuroimaging (MRI, PET MRI)</th>
<th>EEG MEG</th>
<th>Genetics (genotyping, exome, WGS, twins)</th>
<th>Genomics</th>
<th>Smartphones & sensors</th>
<th>Other Omics</th>
<th>Website / Data Transfer Agreement</th>
<th>Reference article(s)</th>
<th>Specificities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brisbane Adolescent Twin Sample (BATS)</td>
<td>Up to 4000</td>
<td>≥12</td>
<td>Australia</td>
<td>Cross-sectional and longitudinal</td>
<td>Population sample. Self-report mental health, cognition, substance use, personality measures</td>
<td>EEG (15 channels, eyes closed resting; N ~1000)</td>
<td>Pedigree (twin/sibling), genotyping</td>
<td>NA</td>
<td>Wrist-worn accelerometer (N ~130)</td>
<td>NA</td>
<td>https://imaginggenomics.net.au/</td>
<td>(78, 222/223, 224)</td>
<td>Also known as the Brisbane Longitudinal Twin Study (BLTS). Includes participants from the Queensland Twin Registry.</td>
<td></td>
</tr>
<tr>
<td>mPower</td>
<td>~8000</td>
<td>>18</td>
<td>United States</td>
<td>Longitudinal</td>
<td>Parkinson’s disease (subsample self-identified professional diagnosis)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>iPhone application</td>
<td>NA</td>
<td>https://parkinsonmpower.org/team https://www.synapse.org/#!Synapse:syn493293/ wiki/247860</td>
<td>225</td>
<td>Sample size varies across surveys and tasks completed</td>
</tr>
</tbody>
</table>
References

26. Dima D, Modabbernia A, Papachristou E, et al (2021) Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years. Hum Brain Mapp n/a
63. Smith SJM (2005) EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry 76:i12–i17
Main existing datasets

Main existing datasets

113. Sønderby IE, Ching CRK, Thomopoulos SI, et al (2021) Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs. Hum Brain Mapp
121. Schubert R, Geoffroy E, Gregga I, et al (2021) Protein prediction for trait mapping in diverse populations,
123. Selvaraj MS, Li X, Li Z, et al (2021) Whole genome sequence analysis of blood lipid levels in >66,000 individuals,
Couvy-Duchesne et al. Main existing datasets

Main existing datasets

Main existing datasets

192. Cattan G, Rodrigues PLC, and Congedo M (2018), EEG Alpha Waves Dataset, https://hal.archives-ouvertes.fr/hal-02086581

Couvy-Duchesne et al. Main existing datasets