
QUASI-EXPLICIT, UNCONDITIONALLY STABLE, DISCONTINUOUS
GALERKIN SOLVERS FOR CONSERVATION LAWS

PHILIPPE HELLUY1,2,3, PIERRE GERHARD1,2,3, VICTOR MICHEL-DANSAC3, BRUNO WEBER4

Abstract. We have developed in a previous work [4] a parallel and quasi-explicit Discontinuous
Galerkin (DG) kinetic scheme for solving hyperbolic systems of conservation laws. The solver is
unconditionally stable (i.e., the CFL number can be arbitrary), has the complexity of an explicit
scheme. It can be applied to any hyperbolic system of balance laws. In this work, we improve the
parallel scaling of the method thanks to an implicit-explicit subdomain decomposition strategy.

1. Kinetic approximation of first order conservations laws

In this work, we are interested in the numerical approximation of a hyperbolic system of m
conservation laws in dimension d

(1) ∂tW +

d∑
i=1

∂iQ
i(W) = 0,

where the unknown is a vector W (X, t) ∈ Rm depending on the space variable: X = (x1 . . . xd)
and the time variable: t. For the partial derivatives, we use the notation ∂i = ∂

∂xi
, ∂t =

∂
∂t .

This kind of system is generally difficult to approximate numerically. One of the difficulties is
that explicit schemes are subject to restrictive time steps conditions. Implicit schemes do not suffer
from time step conditions but require solving large sets of linear equations. In previous works (see
[4] and included references), we have proposed a method, based on a kinetic approach, for avoiding
this constraint. We first recall the principles of the kinetic representation.

We consider a set of d + 1 (or more) kinetic velocities Vk, k = 0 . . . d, associated to vectorial
kinetic functions Fk(W) ∈ Rm. We also define “Maxwellian” equilibrium functions Mk(W) ∈ Rm.
The kinetic BGK representation is given by transport equations with relaxation source terms [2, 1]

(2) ∂tFk + Vk · ∇XFk =
1

τ
(Mk(W)− Fk) .

When the relaxation time τ → 0+, the kinetic model (2) is formally equivalent to the initial system
of conservation laws (1) provided that

(3) W =
∑
k

Mk(W),
∑
k

V i
kMk(W) = Qi(W), i = 1, . . . , d.

Conditions (3) constitute a set of m(d + 1) equations with m(d + 1) unknowns for finding the
Maxwellian. It possesses a unique solution. Theoretical arguments show that the formal limit is
a true limit, under a so-called sub-characteristic condition [2, 1]. This condition states that the
kinetic velocities have to be greater than the wave speeds λr of the underlying hyperbolic system:
∀k, |Vk| > maxr |λr| .

In practice it is difficult to solve directly the BGK system (2). It is better to split the equations
into transport and a collision steps. This leads to the following kinetic algorithm for advancing
one time step:

(1) Solve, for a duration ∆t , the free transport equation

∂tFk + Vk · ∇XFk = 0.

(2) Solve, for the same duration, the relaxation (or collision) step

∂tFk =
1

τ
(Mk(W)− Fk) .

This algorithm is iterated in order to compute an approximation of W =
∑

k Fk. The presented
splitting algorithm is only first order accurate in time. But it is possible to improve its order,
for instance by using an over-relaxation algorithm [4]. It has been observed, since a long time
that these kinds of kinetic schemes are free of CFL conditions. See for instance [3]. However, this
interesting property is rarely exploited in practical applications.

This work was supported by: IRMIA++ https://irmiapp.unistra.fr/ and France Relance. We also thank the
Mathematisches Forschungsinstitut of Oberwolfach where it was first presented.

1

https://irmiapp.unistra.fr/

2 PHILIPPE HELLUY1,2,3, PIERRE GERHARD1,2,3, VICTOR MICHEL-DANSAC3, BRUNO WEBER4

2. Unconditionally stable DG approximations

The kinetic algorithm presented in Section 1 relies on transport steps and relaxation steps. The
relaxation step is generally easy to implement at each interpolation point of the approximation. In
addition, it is embarrassingly parallel. The most complicated part of the kinetic algorithm requires
solving transport equations of the form

(4) ∂tf + V · ∇f = 0.

If the computational domain has a simple shape and if the solution is computed on a structured
Cartesian grid, it is natural to solve this transport equation by the characteristic method. With
well-chosen time step ∆t and kinetic velocities Vk, this approach leads to the so-called Lattice
Boltzmann method.

In a domain Ω with a complex geometry and for unstructured grid, the characteristic method
is no more a good choice because it leads to difficulties such as instabilities or loss of conserva-
tion. In addition, the treatment of boundary conditions is not natural in this framework. In the
unstructured case, we prefer to rely on a DG approximation of (4).

We consider an unstructured mesh of the computational domain Ω made of tetrahedral cells.
The transported function f is approximated in cell L by a linear expansion on basis functions
f(x, t) ≃ fL(x, t) =

∑
j fL,j(t)ψ

L
j (x), x ∈ L. The unknowns are the coefficients fL,j(t) of the

linear expansion. After a DG in space approximation of (4), the DG scheme read as follows [4]

(5) KF′(t) = 0,

where F(t) is a large vector containing all the coefficients fL,j(t), and K is the large matrix arising
from the DG approximation of the transport equation. We then have to solve a large set of linear
Ordinary Differential Equations (ODE).

Explicit-in-time approximations of this set of ODEs suffer from constraining stability conditions
on the time step ∆t. In order to suppress the stability condition, we can use an implicit time
scheme for solving (5) for going from time step n − 1 to time step n. For simplicity, we describe
the case of an implicit first order Euler method. The strategy can be extended to other more
accurate schemes, such as the Crank-Nicolson scheme (that we use) or DIRK (Diagonally implicit
Runge--Kutta) approaches. With Fn ≃ F(n∆t), the implicit Euler scheme reads

(6) (I+∆tK)Fn+1 = Fn

It seems that one would need to assembly and solve a large linear system for computing Fn+1

from Fn. But when the numerical flux of the DG solver is the upwind flux, then the matrix K
is block-triangular. In practice there is thus an explicit algorithm, the downwind algorithm, for
solving the system (6) efficiently. See [4].

3. Subdomain parallelism

We have implemented the downwind and the kinetic algorithms in a parallel software based on
a work stealing strategy [4]. We have observed a decreasing efficiency of the method when the
number of threads increases. This is because the parallel scaling of the downwind algorithm is
limited, at a given point, by the dependencies in the computations.

In order to increase the parallel scaling, we now describe a subdomain strategy that relaxes
the computational dependencies. The main idea is to apply the above time-implicit downwind
algorithm in each subdomain, but with a time-explicit coupling between the subdomains, for
suppressing some dependencies. Because of the explicit coupling, it will be necessary to apply an
iterative algorithm for computing the exact solution in a stable way. The algorithm can be proved
to converge in a finite number of iterations. In most configurations three iterations are sufficient.
Let us now describe the principles of this subdomain iterative algorithm. As in Section 2, the main
task is the resolution of the transport equation in Ω× [0,∆t], with initial data:

∂tf + V · ∇f = 0, f(X, 0) = f0(X).

We assume that Ω is decomposed into a finite number of subdomains Ωi, i = 1 . . . nd. For the
simplicity of the presentation, we assume that Ω is a periodic domain or the whole space, in order
to avoid the description of the boundary conditions. However the approach is also valid when
∂Ω ̸= ∅.

We then denote by fi the restriction of f to subdomain Ωi, by Ni(X) the outward normal vector
on ∂Ωi, and by ∂Ω−

i the upwind part of the boundary of Ωi defined by

∂Ω−
i = {X ∈ ∂Ωi, Ni(X) · V < 0} .

UNCONDITIONALLY STABLE DISCONTINUOUS GALERKIN SOLVERS 3

Figure 1. Subdomain algorithm, in a
generic subdomain decomposition, with
corners shared by several subdomains. In
this case, the iterative algorithm reaches
the exact solution in at most three itera-
tions. First iteration: the boundary value
on ∂Ω−

2 is updated. Second iteration: the
boundary value on ∂Ω−

3 is updated. Third
iteration: the correct value is transported.

Figure 2. Stability of the subdomain iterative algorithm. Left: subdomains
structure, Middle: 2 iterations scheme, Right: 3 iterations scheme. We observe
that the iterative algorithm is stable, even with large time step, but that three
iterations seem to be necessary.

We initialize the algorithm by setting f0i (X, t) = f0i (X). Thus, the initial iteration does not
depend on time. We then consider an iterative algorithm for computing successive time-dependent
approximations fpi of fi in subdomain Ωi for p ≥ 1. For computing fpi from fp−1

i we solve the
following time-dependent boundary value problem

∂tf
p
i + V · ∇fpi = 0, in Ωi,(7)

fpi (X, 0) = f0i (X), X ∈ Ωi,(8)

fpi (X, t) = fp−1
j (X, t), X ∈ ∂Ω−

i ∩ ∂Ωj .(9)

In other words, the fpi in subdomain Ωi are computed from the fp−1
j in the neighboring subdomains

Ωj . We can prove the following result.
Proposition let L be the diameter of the smallest subdomain. Under the condition

∆t ≤ L

|V |
,

in the generic case, the above algorithm (7)-(9) converges to the exact solution in at most three
iterations: f3i = fi.

The proof relies on the characteristic method. It is briefly sketched in Figure 1.

3.1. Stability. We have implemented the above iterative algorithm. The parallelism within each
subdomain is managed, as before, through the work stealing strategy. The communications between
the subdomains are managed through calls to the MPI (Message Passing Interface) library. In our
first experiments, we have verified the stability properties of the transport solver. They indicate
that the number of iterations of the iterative algorithm is indeed important for the stability of the
method. For a general domain decomposition obtained with an automatic partitioner, and with
large time steps, the algorithm is stable provided that three iterations are done for advancing one
time step. An illustration is given in Figure 2.

The objective of the subdomain algorithm was to relax the computational dependencies and to
achieve a better parallel (strong) scaling of the method.

We compare the time spent in the iterative algorithm with a varying number of threads and
subdomains. We define the efficiency e of the acceleration as the ratio of the elapsed time of the
algorithm with the time that we would get with an ideal perfect scaling. The efficiency is perfect
if e = 1. We observe, for instance, that with a single subdomain the efficiency with 64 threads

4 PHILIPPE HELLUY1,2,3, PIERRE GERHARD1,2,3, VICTOR MICHEL-DANSAC3, BRUNO WEBER4

MPI nodes Threads #CPU Time (s) Accel. e
1 2 2 1314 1
1 8 8 346 0.95
1 64 64 106 0.39
2 32 64 75 0.55
8 8 64 57 0.72

Table 1. Multithread and MPI scaling. For a computation done with 64 threads,
we observe that it is better to split the domain into 8 subdomains instead of
affecting all the threads to one single subdomain.

drops to e = 0.39, while with 8 subdomains and 8 threads per subdomain the efficiency is better
e = 0.72. We have thus validated the efficiency of this approach. Of course, the whole algorithm
is impacted by a slowdown factor imposed by the additional iterations. However the weak scaling
of the method on a supercomputer for very large computations is now certainly ensured. Indeed,
explicit subdomain decomposition methods are known to be well adapted to the architecture of
supercomputers. More measurements are given in Table 1.

4. Conclusion

We presented an adaptation of the kinetic DG method introduced in [4]. The method can handle
arbitrary conservation laws and complex unstructured meshes. It is explicit in time but CFL-free.
The method has good parallelization features, for both shared memory and distributed memory
computers. For improving the parallel scaling on distributed memory computers, we have proposed
a subdomain decomposition method that relaxes the task dependencies of the kinetic scheme but
keeps the possibility to use large time steps.

References

[1] Denise Aregba-Driollet and Roberto Natalini. Discrete kinetic schemes for multidimensional systems of conser-
vation laws. SIAM Journal on Numerical Analysis, 37(6):1973–2004, 2000.

[2] François Bouchut. Construction of BGK models with a family of kinetic entropies for a given system of conser-
vation laws. Journal of Statistical Physics, 95(1-2):113–170, 1999.

[3] Yann Brenier. Averaged multivalued solutions for scalar conservation laws. SIAM journal on numerical analysis,
21(6):1013–1037, 1984.

[4] Pierre Gerhard, Philippe Helluy, and Victor Michel-Dansac. Unconditionally stable and parallel discontinuous
galerkin solver. Computers & Mathematics with Applications, 112:116–137, 2022.

1Université de Strasbourg, 2IRMA UMR CNRS 7501, 3Inria Tonus, 4AxesSim Illkirch

	1. Kinetic approximation of first order conservations laws
	2. Unconditionally stable DG approximations
	3. Subdomain parallelism
	3.1. Stability

	4. Conclusion
	References

