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UNIVERSALITY OF GENERAL DIRICHLET SERIES WITH

RESPECT TO TRANSLATIONS AND REARRANGEMENTS

FRÉDÉRIC BAYART

Abstract. We give sufficient conditions for a general Dirichlet series to be uni-
versal with respect to translations or rearrangements.

1. Introduction

1.1. Universality with respect to translations. A general Dirichlet series is a
series

∑+∞
n=1 ane

−λns where (an) ⊂ CN, s ∈ C and λ = (λn) is an increasing sequence
of nonnegative real numbers tending to +∞, called a frequency. The two most
natural examples are (λn) = (n) which gives rise to power series and (λn) = (logn),
the case of ordinary Dirichlet series. To a Dirichlet series D =

∑+∞
n=1 ane

−λns we will
associate three abscissas, its abscissa of convergence,

σc(D) := inf

{

ℜe(s) :
∑

n

ane
−λns converges

}

,

its abscissa of absolute convergence

σa(D) := inf

{

σ ∈ R :
∑

n

|an|e
−λnσ converges

}

,

and also

σ2(D) := inf

{

σ ∈ R :
∑

n

|an|
2e−2λnσ converges

}

.

It is well-known that
∑

n ane
−λns converges in the half-plane Cσc(f), where Cσ = {s :

ℜe(s) > σ} and that it defines a holomorphic function there.
In this paper, we are interested in universal properties of Dirichlet series with re-

spect to vertical translations. The first result in that direction comes from the semi-
nal work of Voronin [16] and says that the Riemann-Zeta function ζ(s) =

∑

n≥1 n
−s

is universal in the critical strip. Voronin’s theorem may be stated as follows:

Let K be a compact subset of {1/2 < ℜe(s) < 1} with connected
complement, let f be a non-vanishing function continuous on K and
holomorphic in the interior of K. Then

dens

{

τ ≥ 0 : sup
s∈K

|ζ(s+ iτ)− f(s)| < ε

}

> 0

where dens(A) denotes the lower density of A ⊂ R+.
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2 F. BAYART

Since then, many works have been done on this subject proving universality (and
more) in various classes of Dirichlet series, see the survey paper [13]. Most of these
examples are ordinary Dirichlet series. Regarding general Dirichlet series, it is worth
mentioning the universality of Lerch Zeta functions defined by

ζ(s;α, λ) =
+∞
∑

n=0

e2πiλn(n + α)−s

where 0 < α ≤ 1 and λ ∈ R. The universality of ζ(·;α, λ) can be expressed in the
following form:

Let 0 < α ≤ 1 be transcendental and let λ /∈ Z. Let K be a compact
subset of {1/2 < ℜe(s) < 1} with connected complement, let f be
a function continuous on K and holomorphic in the interior of K.
Then

dens

{

τ ≥ 0 : sup
s∈K

|ζ(s+ iτ ;α, λ)− f(s)| < ε

}

> 0.

Observe now that we do not assume that f does not vanish and we will say that
ζ(·;α, λ) is strongly universal in {1/2 < ℜe(s) < 1}. In fact, one can also prove
universal properties of ζ(·;α, λ) when α is rational (but the method is rather different
and reduces to Voronin’s type results), see [12] for details.

The first attempt to get a general result of (strong) universality for general Dirich-
let series was done in [11]. Assume that (λn) is linearly independent over Q. Let
σ0 < σa(D), put r(x) =

∑

λn≤x 1 and cn = an exp(−λnσa(D)). We assume that

(i) D cannot be represented as an Euler product;
(ii) D can be continued meromorphically to {ℜe(s) > σ0}, and holomorphically in

{σ0 < ℜe(s) < σa(D)};
(iii) For σ > σ0, D(s) = O(|t|α) with some α > 0 (here and elsewhere, we write

s = σ + it);
(iv) For σ > σ0,

∫ T

−T

|D(σ + it)|2dt = O(T );

(v) r(x) = Cxκ +O(1) with κ > 1;
(vi) |cn| is bounded and

∑

λn≤x |cn|
2 = θr(x)(1 + o(1)) for some θ > 0.

Then D is strongly universal in {σ0 < ℜe(s) < σa(D)}.
This result gives sense to the conjecture of Linnik and Ibragimov that all “rea-

sonable” Dirichlet series meromorphically continuable to the left of the half-plane of
absolute convergence are universal in some suitable region. However, the conditions
(v) and (vi) are rather rigid (and they are not satisfied by the Lerch Zeta functions)
whereas, given a Dirichlet series, it is not so easy to testify whether (iv) holds true.

Let us compare the Riemann Zeta function and Lerch Zeta functions, λ /∈ Z. In
the former case σc(ζ) = σa(ζ) = 1 and ζ is universal in a strip where it is defined by
analytic continuation. In the latter case, σc(ζ(·;α, λ) = 0 < σa(ζ(·;α, λ)) = 1 and
ξ(·;α, λ) is universal in a strip where the Dirichlet series converges. In this paper,
we will mainly consider Dirichlet series D for which σc(D) < σa(D) and we will
investigate universal properties of D in the strip {σc(D) < ℜe(s) < σa(D)}, or in a
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smaller one. In particular, the condition σc(D) < σa(D) implies that the sequence
(λn) satisfies lim supn→+∞

logn
λn

> 0, which means that (λn) cannot grow too fast to
+∞.

A consequence of our results is the following theorem showing strong universality
by only looking at the frequency and the coefficients of a Dirichlet series.

Theorem 1.1. Let σ0 ∈ R and let D(s) =
∑

n≥1 a(n)e
−λ(n)s be a Dirichlet series

satisfying the following assumptions:

(i) σ2(D) ≤ σ0 < σa(D);
(ii) for all n ≥ 1, a(n) = ρ(n)eiωn for some ω /∈ 2πZ and ρ(n) ≥ 0;
(iii) λ, ρ : [1,+∞) → [0,+∞) are C2-functions with λ increasing and tending to

+∞ and λ′ nonincreasing and tending to 0;
(iv) for all σ > σ0, the function x 7→ ρ(x)e−λ(x)σ is nonincreasing;
(v) for all α, β > 0, there exist C > 0 and x0 ≥ 1 such that, for all x ≥ x0,

∑

λ(n)∈[x,x+ α
x2
]

|a(n)| ≥ Ce(σa(D)−β)x;

(vi) the sequence (λ(n)) is Q-linearly independent.

Let K be a compact subset of {σ0 < ℜe(s) < σa(D)} with connected complement,
let f be a function continuous on K and holomorphic in the interior of K. Then

dens

{

τ > 0 : sup
s∈K

|D(s+ iτ)− f(s)| < ε

}

> 0.

This theorem leads to several very simple examples: the first one generalizes Lerch
Zeta functions.

Example 1.2. Let P ∈ Rd[X ] with d ≥ 1 and lim+∞ P = +∞, let Q ∈ Rd−1[X ],
let ω ∈ R\2πZ and let γ ∈ R. Assume moreover that (log(P (n))n≥1 is Q-linearly
independent. Then the Dirichlet series D(s) =

∑

n≥1Q(n)(log n)γeiωn(P (n))−s is
strongly universal in {(2d− 1)/2d < ℜe(s) < 1}.

One can also find examples where the frequency grows very slowly with a half-
plane of universality.

Example 1.3. Let γ ≥ e−1 be such that (log log(n+ γ))n≥1 is Q-linearly indepen-
dent and let ω /∈ 2πZ. Let

D(s) =
∑

n≥1

eiωn

n
e−(log log(n+γ))s.

Then D is strongly universal in {ℜe(s) < 1}.

Let us comment the assumptions of Theorem 1.1. (iii) is a way to quantify that
λ does not go to quickly to +∞. (ii) and (iv) are the natural conditions to ensure
that σc(D) ≤ σ0 whereas (vi) is mandatory to apply Kronecker’s theorem. Only (v)
could be surprizing. The Bohr-Cahen formula for σa(D) ensures that, for all β > 0,
for all N ≥ 1, there exists x ≥ N such that

∑

λ(n)≤x |a(n)| ≥ Ce(σa(D)−β)x. Condi-

tion (v) means that the sequence (λ(n)) grows and the sequence (a(n)) decreases
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sufficiently slowly so that this inequality remains true if we restrict the sum to a
small neighbourhood of x.

Among the classical Dirichlet series, it seems that the prime number series D(s) =
∑

n≥1 p
−s
n , where (pn) is the increasing sequence of prime numbers, has not been

investigated from the point of view of universality. Observe that it more difficult
to extend meromorphically D to C1/2 and that, if we do not assume the Riemann
hypothesis, we just know that it extends meromorphically to C1/2 by removing
some horizontal line segments (see Section 6.2). Nevertheless, from the universality
of log ζ , we will be able to deduce that of D.

Theorem 1.4. Let D(s) =
∑

n≥1 p
−s
n . Let K be a compact subset of {1/2 < ℜe(s) <

1} with connected complement, let f be a function continuous on K and holomorphic
in the interior of K. Then the set of posive real numbers τ such that D(· + iτ) is
well-defined on K and satisfies

sup
s∈K

|D(s+ iτ)− f(s)| < ε

has positive lower density.

1.2. Rearrangement universality. The second problem we face in this paper is
that of rearrangement universality of general Dirichlet series. Let X be a topological
vector space and let (xn) be a sequence of vectors in X . Assume that the series
∑

n xn is conditionally convergent, namely that
∑

n xn converges but that there
exists a permutation σ of N such that

∑

n xσ(n) diverges. A natural question is to
study the sum range of

∑

xn, namely the set of elements x ∈ X such that
∑

n xσ(n)

converges to x for some permutation σ. The extremal behaviour is attained when
the sum range is the whole space X . This is always the case when X is the real
line by a famous theorem of Riemann; when X is a finite-dimensional vector space,
Steinitz theorem asserts that the sum range of

∑

xn is always an affine subset of X
and it also gives a description of this sum range.

A natural example of conditionally convergent series is given by general Dirich-
let series for which σc(D) < σa(D). In that case, the Dirichlet series

∑

n ane
−λns

converges conditionally in the strip {s : σc(D) < ℜe(s) < σa(D)}. Is this series
universal with respect to rearrangements in this strip?

Definition 1.5. Let D(s) =
∑

n ane
−λns be a Dirichlet series with σc(D) < σa(D).

We say that D is rearrangement universal if, for all f ∈ H(Ω), where Ω is the
strip {s : σc(D) < ℜe(s) < σa(D)}, there exists a permutation σ of N such that
∑

n aσ(n)e
−λσ(n)s converges to f in H(Ω).

This question seems to have been considered for the first time in [6], where the
authors show that for almost all choices of signs (θn),

∑

n θnn
−s and

∑

n θnp
−s
n are

(locally) rearrangement universal in the smaller strip {s ∈ C : 1/2 < ℜe(s) < 1}.
Our aim, in this paper, is to prove the following sufficient condition for rearrange-

ment universality of Dirichlet series.
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Theorem 1.6. Let D(s) =
∑

n ane
−λns be a Dirichlet series with σc(D) < σa(D).

Assume that for all α, β > 0, there exist C > 0 and x0 ≥ 1 such that, for all x ≥ x0,
∑

λ(n)∈[x,x+ α
x2
]

|a(n)| ≥ Ce(σa(D)−β)x.

Then D is rearrangement universal.

Of course since the condition appearing in Theorem 1.6 also appears in Theorem
1.1, Examples 1.2 and 1.3 yield rearrangement universal Dirichlet series. There are
also some other examples, like D(s) =

∑

n(−1)nn−s and D(s) =
∑

n(−1)np−s
n , or

more generally D(s) =
∑

n znn
−s and D(s) =

∑

n znp
−s
n for all (zn) ∈ T∞ such that

σc(D) < σa(D), where T∞ = {(zn) : |zn| = 1 for all n ≥ 1}.
It does not come as a surprise that universality with respect to translations and

rearrangement universality are linked. For instance, Voronin’s original proof was
based on Pecherskǐi’s rearrangement theorem in Hilbert spaces.

1.3. Organisation of the paper. The paper is organized as follows: Section 2
contains some preliminary lemmas whereas Section 3 is devoted to the proof of
Theorem 1.6. The proof of Theorem 1.1 is divided into Sections 4 and 5. Examples
are detailed in Section 6.

2. Useful results

We shall use the following lemma on functions with exponential growth. Several
variants of it have already appeared in the literature.

Lemma 2.1. Let f be an entire function of exponential type. Assume that there
exists d > 0 and a sequence (xj) of real numbers tending to +∞ such that, for all
j ≥ 1, |f(xj)| ≥ e−dxj. Then there exist α > 0 and a sequence of real numbers (yj)

tending to +∞ such that, for all j ≥ 1, for all x ∈
[

yj, yj +
δ
y2j

]

, |f(x)| ≥ e−dyj/2.

Proof. Extracting if necessary, we may and shall assume that xj ≥ j for all j ≥ 1.
Since f is an entire function of exponential type, we may write it

f(z) =
∑

n≥0

anz
n

where the coefficients an satisfy |an| ≤ CRn/n! for all n ≥ 0, where C and R

depend only on f ,. For N ≥ 1, we set PN(z) =
∑N

n=0 anz
n. Let now j ≥ 2 and

x ∈ [xj − 1, xj + 1]. Then

|f(x)− PN (x)| ≤ C

+∞
∑

n=N+1

|an| · |x
n|

≤ C
RN+1(xj + 1)N+1

(N + 1)!

+∞
∑

n=0

Rn(xj + 1)n

n!

≤ C

(

eR(xj + 1)

N + 1

)N+1

exp
(

R(xj + 1)
)
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by Stirling formula. Let M ≥ 1 be sufficiently large so that

−M log(M) +M log(eR) +R < −d

and set Nj = ⌊Mxj⌋. Then

|f(x)− PNj
(x)| ≤ C ′ exp

(

Mx log(eR) +Rx−Mx log(M)
)

= o(e−dx).

Now, |f | attains its maximal value on [xj − 1/j, xj + 1/j] at some yj. Let Ij =
[yj, yj+α/y2j ] where α = 1/8M2. Then, assuming that x ∈ Ij, by Markov’s inequality
for real polynomials,

|f(x)| ≥ |f(yj)| − |f(x)− PNj
(x)| − |PNj

(x)− PNj
(yj)| − |PNj

(yj)− f(yj)|

≥ |f(yj)| −N2
j |x− yj| sup

[xj−1/j,xj+1/j]

|PNj
|+ o(e−dyj )

≥ |f(yj)| −
1

4

(

|f(yj)|+ o(e−dyj )
)

+ o(e−dyj)

≥
3

4
|f(yj)|+ o(e−dyj)

≥
3

4
e−dxj + o(e−dyj )

≥
1

2
e−dyj

provided j is large enough. �

Our next lemma is a fundamental result giving a sufficient condition for a series
in a nuclear Fréchet space to be rearrangement universal. It is due to Banaszczyk
[1].

Lemma 2.2. Let X be a nuclear Fréchet space and let (xn) be a sequence of ele-
ments of X such that

∑

n xn is convergent. Assume moreover that for all φ ∈ X∗,
∑

n |φ(xn)| = +∞. Then for all x ∈ X, there exists a permutation σ of N such that
x =

∑

n xσ(n).

We will be able to apply this lemma because for any strip Ω ⊂ C, H(Ω) is nuclear
as the following lemma indicates (see [9, p. 499] for a proof).

Lemma 2.3. For every nonempty open set Ω ⊂ C, the Fréchet space H(Ω) of all
holomorphic functions on Ω is nuclear.

To prove the density of vertical translates of Dirichlet series, we will use the
following lemma showing the density of some sums of Dirichlet series. It can be
found in [10, Theorem 6.3.10].

Lemma 2.4. Let U be a simply connected domain of C and let (fn) be a sequence
in H(U) satisfying:

a) if µ is a complex Borel measure on (C,B(C)) with compact support contained in
U such that there exists r ≥ 0 with

∫

U
srdµ 6= 0, then

∑

n

∣

∣

∣

∣

∫

U

fndµ

∣

∣

∣

∣

= +∞;
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b) the series
∑

n≥1 fn converges in H(U);

c) for any compact set K ⊂ U , the series
∑

n≥1 sups∈K |fn(s)|2 converges.

Then the set of all convergent series
∑

n≥1 znfn with z ∈ T∞ is dense in H(U).

We shall use the following lemma on exponential sums (see [8, p. 206]).

Lemma 2.5. Let a < b, let f, g be two C2-functions and let α, β ∈ R, ε ∈ (0, 1).
We assume that f ′ is monotonic with α ≤ f ′ ≤ β. Then

b
∑

n=a

g(n)e2πif(n) =
∑

α−ε<m<β+ε

∫ b

a

g(x)e2πi(f(x)−mx)dx+O
(

G
(

ε−1 + log(β − α + 2)
))

where the implied constant is absolute and G = |g(b)|+
∫ b

a
|g′(y)|dy.

To evaluate some mean squares of Dirichlet polynomials, we will use the classical
Montgomery-Vaughan inequality ([14]):

Lemma 2.6. Let n ≥ 1, let λ1, · · · , λn be distinct real numbers and let u1, . . . , un

be complex numbers. Then
∣

∣

∣

∣

∣

∑

r 6=s

urus

λr − λs

∣

∣

∣

∣

∣

≤
3π

2

n
∑

r=1

|ur|
2δ−1

r

where δr = mins 6=r |λr − λs|.

3. Proof of Theorem 1.6

By Lemma 2.2, we just need to prove that for all φ ∈ H(Ω)∗,
∑

n |φ(ane
−λns)| =

+∞. By Hahn-Banach and Riesz theorems, there exist a compact set K ⊂ Ω and
µ ∈ M(Ω) such that, for all f ∈ H(U), φ(f) =

∫

K
fdµ. Let us set b = max(ℜe(s) :

z ∈ K) < σa(D) and let us denote

Lµ(z) =

∫

K

e−zsdµ(s).

One has to prove
∑

n |an|·|Lµ(λn)| = +∞. We first observe that Lµ is not identically

zero. Indeed, L(n)
µ (0) = (−1)nφ(sn) and the polynomials are dense in H(Ω). It is

easy to check that Lµ is an entire function of exponential type. Moreover, Lemma
11.15 of [2] says that

lim sup
x→+∞

log |Lµ(x)|

x
≥ −b.

Let β ∈ (0, (σa(D)− b)/2). There exists a sequence of real numbers (xj), tending to
+∞, such that, for all j ≥ 1,

|Lµ(xj)| ≥ e−(b+β)xj .

Let α and (yj) be defined by Lemma 2.1. Then, for all j ≥ 1 sufficiently large
∑

n

|an| · |Lµ(λn)| ≥
1

2
e−(b+β)yj

∑

λn∈[yj ,yj+α/y2j ]

|an|

≥ Cα,βe
−(b+β)yje(σa(D)−β)yj
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≥ Cα,βe
(σa(D)−b−2β)yj .

The right handside of this inequality may be choosen as large as we want, which
ends up the proof.

Example 3.1. Let D(s) =
∑

n(−1)nn−s. Then D is rearrangement universal.

Proof. We just write, for any α, β, x > 0,
∑

n: log(n)∈[x,x+ α
x2
]

1 ≥ C
(

ex+
α
x2 − ex

)

≥ C ′ e
x

x2

≥ C ′′e(1−β)x.

�

Example 3.2. Let D(s) =
∑

n(−1)np−s
n . Then D is rearrangement universal.

Proof. Using Hadamard - De la Vallée Poussin estimate,

Π(x) =

∫ x

2

du

log u
+O(xe−c

√
log x),

we write, for any α, β, x > 0,

∑

n: log(pn)∈[x,x+ α
x2
]

1 =

∫ e
x+ α

x2

ex

dx

log x
+O

(

ex+
α
x2 e

−c
√

log(x+ α
x2
)
)

≥
ex

(

e
α
x2 − 1

)

x+ α
x2

+O

(

ex+
α
x2 e

−c
√

log(x+ α
x2
)
)

≥ C
ex

x2

≥ C ′e(1−β)x.

�

4. Convergence of a family of measures

Let D =
∑

n a(n)e
−λ(n)s be a Dirichlet series with σ2(D) < +∞ and let Ω be the

half-plane Ω = {ℜe(s) > σ2(D)}. Define for z belonging to the infinite polycircle
T∞, s ∈ Ω and N ≥ 1,

D(s, z) =
+∞
∑

n=1

a(n)zne
−λ(n)s, DN(s, z) =

N
∑

n=1

a(n)zne
−λ(n)s.

Then for any s ∈ Ω, (DN(s, ·)) is a martingale in (T∞,B(T∞), m∞) where m∞ is the
Haar measure on T∞, since (zn) is a sequence of independent variables with mean
0. Moreover, for s = σ + it ∈ Ω,

E(|DN(s, ·)|
2) ≤

+∞
∑

n=1

|a(n)|2e−2λ(n)σ < +∞
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since σ > σ2(D). By Doob’s theorem, (DN(s, z))N converges for almost all z ∈ T∞.
This implies that, for all σ1 > σ2(D), the Dirichlet series D(·, z) converges uniformly
on all compact subsets of {ℜe(s) > σ1} for almost all z ∈ T∞. Taking a countable
intersection, this implies that for almost all z ∈ T∞, D(·, z) converges uniformly on
all compact subsets of Ω. Therefore, D(·, z) defines an H(Ω)-valued random element
on (T∞,B(T∞), m∞). We will denote by PD be the distribution of D(·, z), namely

PD(A) = m∞ ({z ∈ T∞ : D(s, z) ∈ A}) , A ∈ B(H(Ω)).

We intend on the one hand to study the support of PD and on the other hand
to link it with some probability measure associated to translates of D. We need to
introduce a definition:

Definition 4.1. Let σ0 ∈ R. We say that a Dirichlet series D(s) =
∑

n a(n)e
−λ(n)s

with finite abscissa of convergence belongs to Dw.a.(σ0) provided

(1) it extends holomorphically to Ω = {ℜe(s) > σ0};
(2) σ2(D) ≤ σ0;
(3) for all σ1 > σ0, there exists A,B > 0 such that, for all s = σ+it with σ ≥ σ1,

|D(σ + it)| ≤ A+ |t|B;
(4) for all σ2 > σ1 > σ0,

sup
σ∈[σ1,σ2]

sup
T>0

1

T

∫ T

0

|D(σ + it)|2dt < +∞;

(5) the sequence (λ(n)) is Q-linearly independent.

Let D =
∑

n a(n)e
−λ(n)s ∈ Dw.a.(σ0) and let Ω = {ℜe(s) > σ0}. Then for all

τ ∈ R, D(· + iτ) ∈ H(Ω) the space of holomorphic functions on Ω. For T > 0, we
define a probability measure νT,D on (H(Ω),B(H(Ω))) by

νT,D(A) =
1

T
meas ({τ ∈ [0, T ] : D(·+ iτ) ∈ A}) , A ∈ B(H(Ω)).

The following result was proved in [4] (see also [5]).

Theorem 4.2. Let σ0 ∈ R and let D ∈ Dw.a.(σ0). Then the probability measure
νT,D converges weakly to PD as T → +∞.

Our first task is to exhibit Dirichlet series belonging to Dw.a.(σ0) by only looking
at the behaviour of the sequences of its coefficients and frequencies.

Theorem 4.3. Let σ0 ∈ R, let D(s) =
∑+∞

n=1 a(n)e
−λ(n)s satisfying the following

assumptions:

⋄ σ2(D) ≤ σ0;
⋄ for all n ≥ 1, a(n) = ρ(n)eiωn for some ω /∈ 2πZ and ρ(n) ≥ 0;
⋄ λ, ρ : [1,+∞) → [0,+∞) are C2-functions with λ increasing and tending to
+∞ and λ′ nonincreasing and tending to 0;

⋄ for all σ > σ0, the function x 7→ ρ(x)e−λ(x)σ is nonincreasing;
⋄ the sequence (λ(n)) is Q-linearly independent.

Then D belongs to Dw.a.(σ0).
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Proof. Assumptions (1), (2) and (5) of the definition of Dw.a.(σ0) are immediately
satisfied. (3) follows from the fact that a Dirichlet series has finite order in its half-
plane of convergence (see [7, Therem 12] for instance). Let us prove the delicate
part, namely (4). Let σ2 > σ1 > σ0, let σ ∈ [σ1, σ2] and let t ≥ 0. For 1 ≤ x ≤ N
and s = σ + it, we write

D(s) = Dx−1(s) +
N
∑

n=x

a(n)e−λ(n)s +
+∞
∑

n=N+1

a(n)e−λ(n)s (4.1)

where Dy(s) =
∑

n≤y a(n)e
−λ(n)s denotes the partial sum of D. We shall first esti-

mate
N
∑

n=x

a(n)e−λ(n)s =
N
∑

n=x

ρ(n)e−λ(n)σei(ωn−tλ(n)).

One intends to apply Lemma 2.5 to

g(u) = ρ(u)e−λ(u)σ

f(u) =
1

2π

(

ωu− tλ(u)
)

.

To do this, we choose x ≥ 1 so that

tλ′(x) ≤
1

2
dist

( ω

2π
,Z

)

. (4.2)

Then for all u ∈ [x,N ], we get

ω

2π
≥ f ′(u) =

ω

2π
− tλ′(u) ≥

ω

2π
−

1

2
dist

( ω

2π
,Z

)

.

This leads us to set α = ω
2π

− 1
2
dist

(

ω
2π
,Z

)

, β = ω
2π

and ε = 1
4
dist

(

ω
2π
,Z

)

, so that
the sum appearing in Lemma 2.5 is empty. Moreover, since g is assumed to be
nonincreasing and positive,

|g(N)|+

∫ N

x

|g′(y)|dy ≤ g(x).

Thus, letting N to +∞ in (4.1), we find that

D(s) = Dx−1(s) +R(x, s)

with
|R(x, s)| ≤ C(ω)ρ(x)e−λ(x)σ

for those t and x satisfying (4.2) (in this proof, the notation C(x1, . . . , xp) will denote
a positive function depending only on the parameters x1, . . . , xp, whose value may
change from line to line).

Let now T > 0 be large and let x ≥ 1 be such that Tλ′(x) = 1
2
dist

(

ω
2π
,Z

)

so that
(4.2) is satisfied for all t ∈ [0, T ]. In particular,

1

T

∫ T

0

|R(x, σ + it)|2dt ≤ C(ω)ρ2(x)e−2λ(x)σ

≤ C(ω)ρ2(1)e−2λ(1)σ

≤ C(D, σ1).
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Let us turn to
∫ T

0
|Dx−1(σ + it)|2dt. For technical reasons, we write

Dx−1(s) = a(1)e−λ(1)s +

x−1
∑

n=2

a(n)e−λ(n)s.

We use the Montgomery-Vaughan theorem to get

∫ T

0

∣

∣

∣

∣

∣

x−1
∑

n=2

a(n)e−λ(n)s

∣

∣

∣

∣

∣

2

dt

≤ T

x−1
∑

n=2

ρ2(n)e−2λ(n)σ +

∣

∣

∣

∣

∣

∑

2≤n 6=m≤x−1

a(n)e−λ(n)σa(m)e−λ(m)σ

λn − λm

(

e(λ(n)−λ(m))iT − 1
)

∣

∣

∣

∣

∣

≤ T

+∞
∑

n=1

ρ2(n)e−2λ(n)σ + 3π

x−1
∑

n=2

ρ2(n)e−2λ(n)σ

|λ(n)− λ(n− 1)|

≤ T

+∞
∑

n=1

ρ2(n)e−2λ(n)σ + 3π

x−1
∑

n=2

ρ2(n)e−2λ(n)σ

λ′(n)

so that we finally obtain

∫ T

0

|Dx−1(σ + it)|2dt ≤ 4T
+∞
∑

n=1

ρ2(n)e−2λ(n)σ + 6π
x−1
∑

n=1

ρ2(n)e−2λ(n)σ

λ′(n)
.

We handle the last sum by summing by parts, setting S(n) =
∑n

k=1 ρ
2(k)e−2λ(k)σ so

that
x−1
∑

n=1

ρ2(n)e−2λ(n)σ

λ′(n)
≤

x−1
∑

n=1

S(n)

(

1

λ′(n)
−

1

λ′(n+ 1)

)

+ S(x− 1)
1

λ′(x)
.

Now, since λ′ is nonincreasing and since (S(n)) is bounded by some constant C(D, σ1),
we find

x−1
∑

n=1

ρ2(n)e−2λ(n)σ

λ′(n)
≤ C(D, σ1)

x−1
∑

n=1

(

1

λ′(n+ 1)
−

1

λ′(n)

)

+
C(D, σ1)

λ′(x)

≤
C(D, σ1)

λ′(x)

≤ C(D, σ1)T.

Finally we have shown as needed that, for all σ ∈ [σ1, σ2],

1

T

∫ T

0

|D(σ + it)|2dt ≤ C(D, σ1).

�

5. Support of a measure and density of translations

The next step in our work is to identify the support of the measure PD introduced
in the previous section. We recall that if S is a separable topological space and P
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is a probability measure on (S,B(S)), the support of P is defined by

SP =
⋂

Cclosed
P (C)=1

C.

The support SP consists of all x ∈ S such that, for every open neighbourhood V
of x, P (V ) > 0. Now, let X be an S-valued random element defined on a certain
probability space. Then the support of the distribution P (X ∈ A), A ∈ B(S), is
called the support of the random variable X and is denoted by SX .

The following lemma (see [10, Thm 1.7.10]) will provide us with the support of
PD:

Lemma 5.1. Let U be a simply connected domain of C and let (Xn) be a sequence
of independent H(U)-valued random variable defined on the same probability space.
Assume that the series

∑

nXn converges almost surely. Then the support of the sum
of this series is the closure of the set of all f ∈ H(U) which may be written as a
convergent series

f =

+∞
∑

n=1

fn, fn ∈ SXn .

We next introduce a class of Dirichlet series for which the support of PD will be
the whole space H(U).

Definition 5.2. Let σ0 ∈ R. We say that a Dirichlet series D =
∑

n a(n)e
−λ(n)s

belongs to Ddens(σ0) provided

(1) σ2(D) ≤ σ0 < σa(D);
(2) for all α, β > 0, there exist C > 0 and x0 ≥ 1 such that, for all x ≥ x0,

∑

λ(n)∈[x,x+ α
x2
]

|a(n)| ≥ Ce(σa(D)−β)x.

LetD =
∑

n a(n)e
−λ(n)s ∈ Ddens(σ0) and let U be the strip {σ0 < ℜe(s) < σa(D)}.

As mentioned above, D(s, z) =
∑

n≥1 a(n)zne
−λ(n)s defines an H(U)-valued random

element on (T∞,B(T∞), m∞). We denote by PD,U its distribution which is the
restriction of PD to H(U).

Theorem 5.3. Let σ0 ∈ R, let D ∈ Ddens(σ0) and let U be the strip {σ0 < ℜe(s) <
σa(D)}. Then the support of PD,U is H(U).

Proof. Let w ∈ T∞ be such that the series D(·, w) converges in {ℜe(s) > σ0). We
apply Lemma 5.1 with Xn(z) = a(n)znwne

−λ(n)s, z ∈ T∞. The sequence (Xn) is
a sequence of independent random variables on (T∞,B(T∞), m∞). The support of
each Xn is the set

{

a(n)ξe−λ(n)s : ξ ∈ T
}

. Therefore, the support of PD,U is the

closure of all convergent series
∑+∞

n=1 a(n)zne
−λ(n)s, with z ∈ T∞. One has to show

that this latter set is the whole space H(U). This is done by applying Lemma
2.4 with fn = a(n)wne

−λ(n)s. Indeed, conditions b) and c) are satisfied because
σ0 ≥ σ2(D) and because of the choice of w. Regarding a), we consider µ a complex
measure with compact support K contained in U and such that there exists r ≥ 0
with

∫

U
srdµ 6= 0. Let Lµ be its Laplace transform, Lµ(z) =

∫

U
e−szdµ. Lµ is
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nonzero since L(r)
µ (0) = (−1)r

∫

U
srdµ. Then, arguing as in the proof of Theorem

1.6,
+∞
∑

n=1

∣

∣

∣

∣

∫

U

fndµ

∣

∣

∣

∣

=
∑

n

|a(n)| · |Lµ(λ(n))| = +∞

so that a) is satisfied. �

Finally, if we combine Theorems 4.2 and 5.3, we find a sufficient condition for a
general Dirichlet series to be strongly universal in some strip.

Corollary 5.4. Let σ0 ∈ R and let D ∈ Dw.a.(σ0) ∩ Ddens(σ0). Let K be a compact
subset of the strip Ω = {σ0 < ℜe(s) < σa(D)} with connected complement. Let f be
a continuous function on K which is holomorphic inside K. Then for all ε > 0,

dens

{

τ ∈ R+ : sup
s∈K

|D(s+ iτ)− f(s)| < ε

}

> 0.

In particular, in view of Theorem 4.3, this yields Theorem 1.1.

6. Examples

6.1. Applications. One has now to exhibit concrete examples of Dirichlet series in
Dw.a.(σ0) ∩ Ddens(σ0). The following very easy lemma will be helpful:

Lemma 6.1. Let P (X) =
∑d

k=0 bkX
k be a polynomial of degree d, with bd > 0. Then

there exist x0, y0 > 0 such that P induces a bijection from [x0,+∞) to [y0,+∞),
and

P−1(x) =+∞
1

b
1/d
d

x1/d −
bd−1

b
(d−1)/d
d

+ o(1).

Proof. Firstly it is easy to show that P−1(x) ∼+∞
1

b
1/d
d

x1/d. Then, write P−1(x) =

1

b
1/d
d

x1/d(1 + ε(x)) with ε(x) =+∞ o(1). From P (P−1(x)) = x we obtain

x+ dxε(x) + o(xε(x)) +
bd−1

b
(d−1)/d
d

x(d−1)/d + o(x(d−1)/d) = x

which in turn yields

ε(x) =
−bd−1

b
(d−1)/d
d

x−1/d + o(x−1/d).

�

We then obtain a large class of Dirichlet series belonging to Dw.a. ∩ Ddens.

Proposition 6.2. Let P ∈ Rd[X ] with d ≥ 1 and lim+∞ P = +∞, let Q ∈ Rd−1[X ],
let ω ∈ R\2πZ and let γ ∈ R. Assume moreover that (log(P (n))n≥1 is Q-linearly
independent. Then the Dirichlet series D(s) =

∑

n≥1Q(n)(log n)γeiωn(P (n))−s be-
longs to Dw.a.((2d− 1)/2d) ∩ Ddens((2d− 1)/2d).

For instance, we may choose P (n) = (n+ β)d for some transcendental number β.
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Proof. Without loss of generality, we may assume that the sequence (P (n))n≥1 is
positive and increasing and that the sequence (Q(n))n≥1 is positive. We first observe
that σa(D) = 1, σc(D) = 0 and σ2(D) = (2d− 1)/2d. We set λ(x) = log(P (x)) and
ρ(x) = Q(x)(log x)γ. We first verify that D belongs to Ddens. Let α, β > 0. We
observe that for x large enough

λ(n) ∈
[

x, x+
α

x2

]

⇐⇒ n ∈
[

P−1(ex), P−1
(

ex+
α
x2

)]

.

Using Lemma 6.1, we find that

card
{

n : λ(n) ∈
[

x, x+
α

x2

]}

≥ C
ex/d

x2

(in this proof, the letter C means some constant depending on P , Q, α, β and γ
but not on x, and the value of C may change from line to line). Therefore

∑

λ(n)∈[x,x+ α
x2
]

|a(n)| ≥ C
ex/d

x2
ex

d−1
d (1−β

2 )

≥ Ce(1−β)x.

That D belongs to Dw.a.((2d−1)/2d) is easy. Indeed, if σ > σ2(D), then dσ > d−1
and

ρ(x)e−λ(x)σ =
Q(x)(log x)γ

[P (x)]σ

is eventually decreasing and convex. The remaining assumptions come from λ′(x) ∼+∞
d/x, the definitions of λ and ρ, and standard calculus. �

We provide a second example with a half-plane of universality. This is done via a
frequency which grows very slowly.

Proposition 6.3. Let γ ≥ e − 1 be such that (log log(n + γ))n≥1 is Q-linearly
independent and let ω /∈ 2πZ. Let

D(s) =
∑

n≥1

eiωn

n
e−(log log(n+γ))s.

Then for all σ0 < 1, D belongs to Dw.a.(σ0) ∩ Ddens(σ0).

Proof. It is clear that σc(D) = σ2(D) = −∞ whereas σa(D) = 1. Let σ0 < 1. That
D belongs to Dw.a.(σ0) is obvious. Let now α, β > 0 and observe that, for all x ≥ 1,

∑

log log(n+γ)∈[x;x+ α
x2
]

1

n
≥ C(γ)

(

exp
(

x+
α

x2

)

− exp(x)
)

≥ C(γ, α)
exp(x)

x2

≥ C(γ, α, β) exp
(

(1− β)x
)

so that D ∈ Ddens(σ0). �
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6.2. The prime number series. We start with some general considerations. Let
λ be a frequency, let D(s) =

∑

n a(n)e
−λ(n)s be a Dirichlet series, let σ0 ∈ R and let

Ω be the half-plane Ω = {ℜe(s) > σ0}. If we assume that
∑

n |a(n)|
2e−2λ(n)σ0 < +∞

for all σ > σ0, then as detailed in Section 4, D(s, z) =
∑

n a(n)zne
−λ(n)s defines an

H(Ω)-valued random element to which we can associate its distribution PD. If we
assume that σa(D) ≤ σ0, then clearly D ∈ Dw.a.(σ0) and the measure νT,D defined
by (4) converges weakly to PD (see also [4, Theorem 5.1]). Suppose now that we
have a Dirichlet series D(s) =

∑

n a(n)e
−λ(n)s and a sequence of Dirichlet series

DN(s) =
∑

n aN(n)e
−λ(n)s with σ2(D), σ2(DN) ≤ σ0 for all N . If (DN) converges

to D in the sense that, for all σ > σ0,
∑

n |a(n) − aN(n)|2e−2λ(n)σ tends to 0 as N
tends to +∞, then a careful look at the proof of [4, Theorem 5.4] shows that (PDN

)
converges weakly to PD. For instance this holds true provided aN(n) tends to a(n)
with |aN(n)| ≤ |a(n)| for all n,N .

We now restrict our discussion to the prime number series D(s) =
∑

k≥1 p
−s
k and

let (DN) be its sequence of partial sums, DN(s) =
∑N

k=1 p
−s
k . The Zeta-function and

D are related by the formula

log ζ(s) =
+∞
∑

j=1

D(js)

j
, ℜe(s) > 1.

By Möbius inversion formula,

D(s) =

+∞
∑

k=1

µ(k)
log ζ(ks)

k
, ℜe(s) > 1. (6.1)

In a similar way, if ζN(s) =
∏N

k=1
1

1−p−s
k

, then

DN(s) =

+∞
∑

k=1

µ(k)
log ζN(ks)

k
, ℜe(s) > 1.

Relation (6.1) is the easiest way to define D on C1/2. Indeed, log ζ can be defined
holomorphically on C1/2 if we remove all horizontal line segments from the lines
ℜ(s) = 1/2 and the poles and zeros of ζ (if any!) in this half-plane. The remaining
part,

∑

k≥2 µ(k)k
−1 log ζ(ks) is an absolutely convergent Dirichlet series in C1/2 (see

below).
One has to be careful if we want to define the measure νT,D as before. Indeed,

even if we fix some open subset U of the strip Ω = {1/2 < ℜe(s) < 1} with U a
compact subset of Ω, then D(·+ iτ) may not belong to H(U) for an infinite number
of values of τ . However, the Bohr-Landau theorem asserts that N(σ, T ) = o(T ) for
all σ > 1/2 where N(σ, T ) denotes the number of zeros of ζ with ℜe(s) > σ and
|ℑm(s)| ≤ T . Therefore, D(·+ iτ) is holomorphic in U for most of the values of τ .

To be more precised, we now fix U , V two open rectangles in Ω with Ū ⊂ V ⊂
V̄ ⊂ Ω. For T > 0, let ND,V = {τ > 0 : D(· + iτ) ∈ H(V )} which has density 1.
We set, for A ∈ B(H(U)),

ν̃T,D,U(A) =
1

meas(ND,V ∩ [0, T ])
meas (τ ∈ [0, T ] ∩ND,V : D(·+ iτ) ∈ A) .
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Taking into account that PD,U has full support in H(U) (this follows from an argu-
ment similar to Example 3.2), Theorem 1.4 will be a consequence of the following
proposition:

Proposition 6.4. The sequence of measures (ν̃T,D,U)T>0 converges weakly to PD,U .

The proof of Proposition 6.4 is based on an integral estimate. For T > 0, we
denote AT = ND,V ∩ [0, T ].

Lemma 6.5.

lim
N→+∞

lim sup
T→+∞

1

meas(AT )

∫

AT

∫

V

|D(s+ iτ)−DN(s+ iτ)|2dsdτ = 0.

Proof. We write

|D(s+ iτ)−DN(s+ iτ)| ≤ | log ζ(s+ iτ)− log ζN(s+ iτ)|+
+∞
∑

k=2

k−1| log ζ(k(s+ iτ))− log ζN(k(s+ iτ))|

which leads to the study of two integrals. That

lim
N→+∞

lim sup
T→+∞

1

meas(AT )

∫

AT

∫

V

| log ζ(s+ iτ)− log ζN(s+ iτ)|2dsdτ = 0

can be found in [15, Theorem 4.1]. Regarding the second integral, we write, setting
σ1 = inf(ℜe(s) : s ∈ V ) > 1/2, for all s ∈ V ,

∑

k≥2

k−1| log ζ(k(s+ iτ))− log ζN(k(s+ iτ))| ≤
∑

l≥N+1

∑

j≥1

∑

k≥2

p−kjσ1

l

kj

≤
∑

l≥N+1

∑

j≥1

∑

k≥2

p−kjσ1

l

≤ C(σ1)
∑

l≥N+1

p−2σ1

l

≤ C(σ1)εN

where (εN) goes to 0. Therefore

lim
N→+∞

lim sup
T→+∞

1

meas(AT )

∫

AT

∫

V

∣

∣

∣

∣

∣

∑

k≥2

log ζ(k(s+ iτ))− log ζN(k(s+ iτ))

k

∣

∣

∣

∣

∣

2

dsdτ = 0.

�

Proof of Proposition 6.4. The deduction of Proposition 6.4 from Lemma 6.5 is now
routine and we shall be brief. Since convergence in Bergman spaces entails uniform
convergence on compact subsets, we know that

lim
N→+∞

lim sup
T→+∞

1

meas(AT )

∫

AT

sup
s∈U

|D(s+ iτ)−DN(s+ iτ)|2dsdτ = 0.

From Chebychev’s inequality, we get that, for all ε > 0,

lim
N→+∞

lim sup
T→+∞

1

meas(AT )
meas

(

τ ∈ AT : sup
s∈U

|D(s+ iτ)−DN(s+ iτ)| > ε

)

= 0.
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Now we have already shown that PDN ,U → PD,U weakly as N → +∞ and that, for
all N ∈ N, νT,DN ,U → PDN ,U weakly as T → +∞. The proposition follows from
standard facts about weak convergence of probability measures (see [3, Theorem
3.2] and [4, Theorem 5.5]) and from the fact that ND,V has density 1. �

Our proof essentially says that a perturbation of log ζ by a Dirichlet series which is
absolutely convergent in C1/2 is still strongly universal in the critical strip. However,
we had to reproduce and modify one proof of strong universality of log ζ . This can
be done for other universal Dirichlet series and this motivates the following question:

Question 6.6. Let D be a Dirichlet series which is (strongly) universal in some
strip and let D0 be a Dirichlet series (with the same frequencies) which is absolutely
convergent in this strip. Is D +D0 still (strongly) universal?

Our method seems to break down for the alternate prime series.

Question 6.7. Let D(s) =
∑

n≥1(−1)np−s
n . Is D strongly universal in {1/2 <

ℜe(s) < 1}?
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mont Auvergne, Campus universitaire des Cézeaux, 3 place Vasarely, 63178 Aubière
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