\

On the dimension of the Fock type spaces

Alexander Borichev, Van an Le, Hassan Youssfi

» To cite this version:

Alexander Borichev, Van an Le, Hassan Youssfi. On the dimension of the Fock type spaces. 2022.
hal-03661957

HAL Id: hal-03661957
https://hal.science/hal-03661957

Preprint submitted on 8 May 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-03661957
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

arXiv:2102.13063v1 [math.CV] 25 Feb 2021

ON THE DIMENSION OF THE FOCK TYPE SPACES
ALEXANDER BORICHEV, VAN AN LE, AND EL HASSAN YOUSSFI

ABSTRACT. We study the weighted Fock spaces in one and sev-
eral complex variables. We evaluate the dimension of these spaces
in terms of the weight function extending and completing earlier
results by Rozenblum—Shirokov and Shigekawa.

1. INTRODUCTION

Let ¥ be a plurisubharmonic function on C", n > 1. The weighted
Fock space ]-"5) is the space of entire functions f such that

11 = [ 17GIPe ™ dote) < ,

where dv is the volume measure on C". Note that .7-"5 is a closed
subspace of L2(C", e~% dv) and hence is a Hilbert space endowed with
the inner product

(figho= | 9RO doe),  fige T

In this paper we study when the space ]-"5) is of finite dimension
depending on the weight . This problem (at least for the case n = 1)
is motivated by some quantum mechanics questions, especially by the
study of zero modes, eigenfunctions with zero eigenvalues.

In [8, Theorem 3.2], Rozenblum and Shirokov proposed a sufficient
condition for the space ]-"j to be of infinite dimension, when ¢ is a
subharmonic function.

More precisely, they claimed that if 1 is a finite subharmonic function
on the complex plane such that the measure ; = At is of infinite mass:

(11) MQILW@Zw

Key words and phrases. Fock space, subharmonic function, plurisubharmonic
function.
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then the space F; has infinite dimension.

(For the fact that if p = At a non-trivial doubling measure, then
F7 has infinite dimension see [4, Theorem 11.45]).

We improve and extend somewhat the statement of Rozenblum-—
Shirokov in our paper, give a necessary and sufficient condition on
for the space .7-"5 to be of finite dimension, and calculate this dimension.

The situation is much more complicated in C",n > 2. Shigekawa
established in [10] (see also [4, Theorem 11.20] in a book by Haslinger),
the following interesting result.

Theorem A. Let 1) : C* — R be a C* smooth function and let A\o(2)
be the smallest eigenvalue of the Levi matriz

Ly(z) = i09y(z) = (‘;Zba(j_z );:1 .

Suppose that
(1.2) lim |z]*Ao(2) = oo.

|z]—o00
Then dim F? = 0.

Note that the condition (I2]) is not necessary. A corresponding ex-
ample is given in [4, Section 11.5] (¢(z,w) = |z|?|w|* + |w|*). In this
paper, we improve Theorem A by presenting a weaker condition for
the dimension of the Fock space ]-"3, to be infinite. Furthermore, we
give several examples that show how far is our condition from being
necessary. Finally, we consider several examples (classes of examples)
of weight functions ¢ of special form and evaluate the dimension of ]-"j.

The rest of the paper is organised as follows. The case of dimension
one is considered in Section 2, and the case of higher dimension is
considered in Section 3.

Acknowledgments. We thank Friedrich Haslinger and Grigori Rozen-
blum for helpful remarks.

2. THE CASE OF C

Given a subharmonic function ¢ : C — [—00, 00) denote by iy, the
corresponding Riesz measure, j, = At. Next, consider the class M
of the positive o-finite atomic measures with masses which are integer
multiples of 47. Given a o-finite measure p, consider the corresponding
atomic measure <,

pd = max{,ul e My < ,u}.
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In fact, for every atom ad, of x1, u¢ has at the point x an atom of size 47

times the integer part of a/(4m). Denote p® = p—p?, u* = 3", 4ndy, .
Denote by M€ the class of the positive o-finite measures p such

that u¢ = 0. Note that if ¢ is finite on the complex plane, then p,

has no point masses and p, € M° Furthermore, if p, € M¢, then

e Vel (v).

Lemma 2.1. Let ), ¢ be two subharmonic functions such that ()¢ =

(tg,)¢. Then dim F, = dim F;, .

Proof. Let F,F; be two entire functions with the zero sets, corre-

spondingly, {zy,,} and {zy,, } (taking into account the multiplici-

ties). Then Alog|F|? = (uy)?, Alog|Fi|? = (11y,)% and the functions
h = ¢ — log |F?| — ¢¢, hy = ¢ — log |F?| — 9§ are harmonic. Let
h =RH, hy = RH; for some entire functions H, H;.

Given an entire function f we have

fe]-"j — /C|f(z)|26_w(z) dv(z) < 00 <=
/c|f(2)|26_¢C(z)‘h(z)‘1°g'F(")2 dv(z) < 00 <=
/(C|f(Z)€_H(Z)/2/F(Z)|26_’”c(z) dv(z) < 0o <=
[ 1@ @R () < o0 =
/|f(z)6—H(2)/2/F(Z)|2e—¢1(z)+h1(z)+1ogFl(z)2 dv(z) < 0o <=
C

/ \f(z)e_H(z)/2+Hl(z)/2|F1(z)/F(z)|2e_w1(z) dv(z) < 00 <—
C

ko
f . Fe H/2+H; /2 e ]_—3)1.

Thus, dim ]-"j = dim ]-"3}1. O

Lemma 2.2. Let ¢ be a subharmonic function such that j, € M°. If
dim F, < oo, then p1,(C) < oo.

See the proof of [8, Theorem 3.2].
Lemma 2.3. Let ¢ be a subharmonic function. Then

dim F2 < [“Z(f)]

Here and later on, given a real number z, [x] is the maximal integer
smaller than .
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Proof. Set = py and consider a modified logarithmic potential G of
the measure p:

1 1 Z—w
G(2) = o [ ogls—wldu(w) + - [ og = duu)
T JD(0,2) T JC\D(0,2) w
= Gl(Z) + GQ(Z).

Here and later on, D(z,7) = {w € C: |w — z| < r}. Since AG = p =
A, by Lemma 2T we have dim F; = dim Fg.

Next,
u(D(0,2) 1 / w
2.1 - 7] < — log|l — —
N O e LE L= og|L = =] diu(w)
<S s
||
and
D(0,2
GQ(Z) M(C\27T(O> )) lOg‘Z|
1 1
- log———’d,u(w)<0, 12| > 4.
27 C\D(0,2) <
Thus,
G(2) < MY 1og(1 4 2] + cC.
- 27 1+ |z

Now, given an entire function f, we have
fe ]:i — / If(2))P(1 + |z|)_”(c)/(2”) dv(z) < oo.
C
By a Liouville type theorem, f is a polynomial of degree N such that

/ p2Np=O/Cm) oy < oo,
1

4T

Therefore, N < =1+ u(C)/(4). Thus, dim F2 < [#2)]. 0

Lemma 2.4. Let ¢ be a subharmonic function and suppose that ju, €
Me<. Then

C)

: 2 S o ( .
dlm}—d’ - [ 47 -‘

Proof. Set u = py and choose € > 0, R > 1 such that

(DO, R) _1@C)7 , €

T e R
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Next, increasing R, we can guarantee that

u(D(O, B) > u(€) ~ 7.

Consider a modified logarithmic potential U of measure pu:

1 / 1 Z—w
o [ togl—wldutw)+ 5= [ g Pt dutw)
27 Jp(o,R) 27 Je\p(o,R) w

Since AU = pu = At, by Lemma 211 we have dim F; = dim F3.
Arguing as in (2.1]), we get

U(z) =

D
o) > PO B - C 0 s er
21 H
Next, let |z| > 2R. Then
1 —w
Uy(z) = o ‘ dp(w
T JC\(D(0,R)UD(z,|2|/2))
1
log‘ }du

27 D(z,]2(/2)
=C - U3(Z).

1
>(C — —/ log
210 Jp(ajelj) 12—

Now, we apply a result by Hayman [5, Lemma 4]. The following
notation is used there. Let v be a finite positive measure. Given z € C,

h> 0, set n(z,h) = v(D(z,h)), N(z,h) = [o ) log‘ ‘du

Lemma 2.5. Let zp € C, 0 < d < h/2. There exists a set S of area at
most wd* such that

N(z,h/2) < n(z, h) log %, > D(z0,h/2)\ S

Given m > 1, denote A,, = {z € C : 2"R < |z| < 2" R}. Fix
m > 1 and k£ > 1 and apply Lemma with v = 1c\p,p) i, 2" R <
|z0] < 2™HIR, h=2""1R, n(z2,h) < 1/2, and d = 2™ *71R to get for
some C,C; >0, € (0,1):

ma{z € Ay 1 Us(2) > Cy 4+ 0k} < C-2°"R?27%F k> 1.
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Hence,

/(1 + |Z|)—2—66U3(z) dv(z) < C+C Z Z 9—(2+e)m 5k
C

m>1 k>1
X me{z € A : Cy + 0k < Us(2) < Cy +6(k+1)}
S C + C Z Z 2—(2+E)m66k22mR22—2k < 0.

m>1 k>1

Next, for every 0 < N < [%-‘ — 1 we have

/ \z|2Ne_U(Z) dv(z) < C’/ |22V (1 + \z|)_“(D(O’R))/(%)eUS(Z) dv(z)
C C
< C/(l + 12))72%e% @) du(2) < o0
C

Here we use that p, € M and, hence, e~V is locally integrable.
Finally, we have
: 2 #(C)
dim Fy 2 {—-‘

47

O

Summing up Lemmata 2.1], 2.2] 2.3] and 2.4] we obtain the following
result, extending and slightly correcting [8, Theorem 3.2].

Theorem 2.6. Let i) be a subharmonic function on the complex plane.
Then the Fock space .7-"5 s finite-dimensional if and only if

(2.2) (11)°(C) < oo.

If ¢ is finite on C, then we can write condition [22) as p4(C) < 0.
Finally, if (14)°(C) < 00, then

dim F2 = [%]

Remark 2.7. It is an interesting open question to characterize non
subharmonic functions v such that the space .7-"5 is of finite dimension.
For some results in this direction and some physical interpretations see

[9].
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3. THE CASE OF C", n > 1

Let C™ denote the n-dimensional complex Euclidean space. Given
z2=(z1,22,...,2,) € C", we set

|2l = VIal + -+ [zl

Denote B, (z,7) = {w € C" : |w — z| < r}. Then B, = B,(0,1) is
the unit ball and S,, = JB,, is the unit sphere in C". Let do be the
normalized surface measure on S,,.

Theorem 3.1. Let ¢ : C* — R be a C* smooth function. Given
M >0, consider Vy(z) = Mlog(|z|?). Suppose that for every M > 0,
the function v — ¥ is plurisubharmonic outside a compact subset of
C". Then dim F}} = oco.

Proof. We use the fundamental result of Bedford-Taylor [1] on the so-
lutions of the Dirichlet problem for the complex Monge-Ampeére equa-
tion. Given M > 0, choose rp; > 1 such that ¢ — ¢, is plurisubhar-
monic on C"\B,,(0, 7). Solving the Dirichlet problem for the complex
Monge-Ampere equation on B, (0,r,,) with the boundary conditions
(¥ — ¥ar)|oB,(0,rar), We obtain a function u. Set

> ooy @ =ta)(z), 2 e CPA\BL(0,ru),
VY (2) {u(z), 2z € B,(0,7).

Then 1), is a continuous plurisubharmonic function on C" (see also [3,
Section 7]).

Now, by the Hérmander theorem (6, Theorem 4.4.4], see also [2]
Section 1V]), there exists an entire function f # 0 such that

£ (2)2(1 + |2]2) e 4@ du(2) < oo

(Cn

Hence, for every 0 < k < M — %n, we have
1f(2) P12 e @ do(z) < C +/ £ (2) P2 e ) do(z)
Cn C”\B7L(O,T]\/[)
= C+ / | (2)]?] 2|k ¥M @ e=WE=v¥a) gy ()

(C"\Bn(O,TM)

<C +/ 1£(2)]2]2]3me ") do(z) < oo.
C"\By (0,rr)

Since M is arbitrary, we have dim F2 = oo. O
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Remark 3.2. Theorem A is an immediate corollary of Theorem [3.1]
Indeed, an easy computation shows that if ¥(z) = ¢(|z]?), ¢ €
C?*((0,400)), then

T4 ()=
8Zj 8Zk
where 0, is the Kronecker delta symbol. This implies that

100U (2) = ¢'(|z1)1 + ¢"(|2]")2",

0" (21" z2n + &' (121*) 3,

<1

where 2* = | ... |, 2"z = [Ejzk};k:r Note also that the spectrum of
Zn ’

the matrix i00(2) is

(3.1) o(i00y(2)) = {¢'(121*), ¢'(I2*) + |2I*¢"(12*) }

The first eigenvalue has multiplicity n — 1 and the second one has
multiplicity 1.

Furthermore,
_ _ M M
Ly(z) = 100¢(z) = 100(¢ — ) (2) + W[ — WZ*Z
M M
= L¢-¢M (Z) + W[ - WZ zZ.
Vi
Let z € C"andlet V = | ... | be anormalized eigenvector correspond-

Va

ing to an eigenvalue v of Ly_y,,(2). By the hypothesis of Theorem A,
for |z| > 7y we have \g(2)|z|*> > M, where \(2) is the smallest eigen-
value of Ly (z). Thus,

M M
V= <L¢—¢M(2)Vv V) = <L¢( )V V) ‘z|2 + | ‘4 <z ZV, V>
M M
> )\0(2) |Z‘2 ‘ |4|ZV|2 > 0.

Therefore, 1) — 1y is plurisubharmonic on C™ \ B,,(0,r,/), and we are
in the conditions of Theorem [B.1] U

Now we give an easy example when Theorem [3.1] applies while The-
orem A does not work.

Example 3.3. Set
W(z) = o(|2?) = (log(1 + |21)**,  zecC
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3/2
Then ¢(t) = (log(1+1¢))™", t > 0.
Evidently, dim F, = oo. We will show that condition (L.2) fails for
1 while the conditions of Theorem B.1] are satisfied.
We have

, 3 1/2
S log(1
¢'(t) 21H(og( +1)77,
and o
3 (log(1 +1)) " 3

2
(t)=—= + .
2 (1+1) (1 + )2 (log(1+ 1))/
By (B1]), the eigenvalues of the matrix L, (z) are

~ 3(log(1+ |22) "
MO =T
and
ao(z) = 3osL+ ) 32
2(1 + |2]?)? 4(1+ |2]2)2 (log(1 + |2[2)) 2

3 2log(lt o)+ P
1+ 2022 (log(1 +[2[2))
For |z| > 2, the smallest eigenvalue of the matrix Ly(z) is A2(2) and

lim |2]*A\y(z) = 0.
|z| =00

/2"

Thus, condition (.2]) does not hold.

On the other hand, for M > 0, the eigenvalues of matrix Ly_,, (2)
are u

a1(z) = Mi(2) — e
and
as(z) = Ao(2).
Since ‘l‘im |2]*A1(2) = oo and ay(z) > 0, z # 0, the conditions of
Z|—00

Theorem B.1] are satisfied. O

In the rest of the paper we show that in different situations the
sufficient condition of Theorem [B.1] is not necessary for dim F2 = co.

Example 3.4. Set
U(z,w) = [2]* + 2log(1 + [w]?),  w,z€C.

It is clear that dim ]-"i = 00. Let us verify that for M > 2 the function
1 — 1y is not plurisubharmonic at the points (1, w), w € C.
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We start with some easy computations:

oy _ 0% 0%
97 mE Y mow
o 2w Fo P2
ow 1+ w2 owdz ~ owdw (14 |w]?)?

Now, given M > 0, we have

Lilf—wM (Zv w)

(1 0 ) N M <|z\2 Ew) M I
p— 2 _— _ _—
0 mwmz) (2P + w2 \20 [w]?) |22 + |w]?

1— M|w|? MZw
= (|2 +w[?)2 (22 +|w|?)? ) ’

M zw 2 M|z|

(12l +w]?)? (+w?)? (2P +w]?)?

and, hence,

det(Ldf—wM (Zv w))
2 M|z|? 2M|wl|?

(L JwP)? (22 + [w?)? - (4 [wP)2([2] + |w]?)
_ 2(J2 + [wP?)? = M2Jw]* + |2[(1 + [w[*)?)

- <0
(14 [w[?)2(|2]? + [w]?)?

for M > 2, z = 1 and arbitrary w. Therefore, the conditions of Theo-
rem [3.1] do not hold. O

3.1. Weight functions ¢ of special form. In this subsection we
evaluate the dimension of .7:3} and the applicability of our criterion in
Theorem B.1], for some concrete weight functions ¢ and for ¢ in some
special classes.

Example 3.5. Let k > 3. Set 1(2) = |2F + 25|%, 2 = (21, 22) € C2
Given M > 0, we have

||

k‘2|21|2(k_1) - M4|Z’2|2 k*(2125)F 1 + 72
Ly, (2) = M il
M k2(2_122)k_1 4 WZIZ_2 /{22‘Z2‘2(k_1) - Z_‘z1|2 )
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and, hence,

det(Ldf—wM (Z))

_ M _ M
_ (/{?2|21|2(k 1) | |4|Z |2) (k‘2|22|2(k 1) | |4| 1|2)

M M
(k’2(2’122)k_ ‘ |4212’2) (k‘2(2’_12’2)k 1 | ‘42’122)

k2M
=T (|21 + 2| + (z212)" + (7122)")
k2 M
— NED |28+ 2512 <0

when 2f + 25 # 0. Thus, for M > 0, the function ¥ — ¢ is not
plurisubharmonic outside a compact subset of C2.

Next we are going to verify that dim F2 = oo
We have

o0
X o= [ R ) = / / Pe M AR do (¢, ) dr
0 Sao

(CQ

¢+ G do (G, Ga).

Sa
Given ¢ > 0, we consider the set

T.={(¢1, ) €So: [¢F + (5| < e}

Given ((i,(2) € Sy such that |G| > |G, set (1 = \/% +7r - e’ and

(o = 1/%—7" : €i<p7 r>0. If (C17C2> € T, then |C1|2 — ‘§2‘2 < Ce for

some constant C' = C(k) > 0. Hence, r < e. Next, since [} + (5| < ¢,
we obtain that |e?*® — ¢*¢| < . As a result, we obtain that

U(Ta) S 52.
Set
= (GG €8 <1+t <2
Then

X = Z |<1 + C2 Ak do(Ci, C2)

< 22 2324s/k 22 2s(1—(2/k)) 0,

since k > 3. Thus, 1 € ]:i.
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In the same way, for every a > 0 we get
/ el gy(2) < co.
Cc2
Consider the entire functions f(z) = e®*1+%)° 0 < f < 1. Since

‘66(zf+z§)2 ‘26—\2f+z§ 2 dv(z) _ / 028 Re((2F+25)2)— |28 +25|2 dv(z)

Cc2? Cc?

</ e~ (=200 +55P gy () < oo,
(C2

we conclude that dim F? = co. dJ

Interestingly, 77 = 0 if k = 2. Indeed, let ¢((21,22)) = |27 + 23,
feF,, flz,22) = (27 + 23)°g(21, 22) for some s > 0, where g(21, 22)
is not a multiple of 2z? + 22. By the mean value property, for every
2z € C\ D(0,10) we have

lg(21, Z'Zl)‘2
< (14 |a))? / 19z, 20) Pe 1 du(z,)
D(iz1,2/(1+|z1|)\D(iz1,1/(14|21]))
< (11 |21))? / 1 (21, 20) P R du(z).
D(iz1,2/(14|2z1|)\D(iz1,1/(1+]z1]))
Hence,

/C 90, 2021+ |2 dolz1) S 12,

and by a Liouville type theorem, g(z,iz) = 0. Analogously, g(z, —iz) =
0. Set h(z,w) = g(z —iw, z + iw). Then h is an entire function and
h(0,w) = h(w,0) = 0. Hence, h(z,w) = zwh,(z,w) for another entire
function hy and g(21, 22) = (22 + 22)g1(21, 22) for some entire function
g1- This contradiction shows that ]-"i =0.

Extending the previous example to C" with n > 3 requires a bit
more work.

Example 3.6. Let n > 3, Kk > n+ 1. Set
w(z):|zf+-~-+zﬁ\2, z=(z1,...,2,) € C".

Let us verify that for M > 0, the function ¥ — 1, is not plurisub-
harmonic outside a compact subset of C".
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We have
T
(2{22) - |Zg| - - (Zgzﬁ) -
Lw(Z) = k’z . . .
(Z—lzn)k—l (Z—2Zn)k—1 |Zn|2(k—1)
zf‘l
z§_1
Zk;l
Set
Z1
M | 22
A(z) = T;TZ : (z1 29 ... zn).
Zn
Then

Limin, () = Lu(2) + A(2) — 1.

|22

The spectra of the matrices Ly(z) and A(z) are

Trae = R (1 PE 4+ P60 4 200 0}

M
7A@ = {WO} '

zf‘l Z1
zg_l )
Let V' be the a unit vector in C™ orthogonal to ) and to | .
Zk—l Zn

Then

M M
V,V)=—-— <0.

(Lo GV, V) = (LY + AG)V ~ T E:

Thus, for M > 0, the function ) — ¢, is plurisubharmonic at no points
of C™\ {0}.



14 ALEXANDER BORICHEV, VAN AN LE, AND EL HASSAN YOUSSFI

Finally, let us verify that dim JF; = co. Set
X = el gy (2)

Cn
& 2k |k k|2
x/ / pi e GG Ao (¢, L G dr
0 n

= / I+ TR do (G, G
S’!L

Given ¢ > 0, we consider the set

T.={(C,- -y G) €ESn i [CF+ ...+ < e}
Set

P(z):sz, z=(21,...,2,) € C".
j=1
Then the function f = log|P| is plurisubharmonic. Following [7], we
consider the Lelong number of f at a € C",

1 Sup|z|§r f(CL + Z)
vi(a) = l% log € [0, oo].

If f(a) # 0, then v¢(a) = 0. Otherwise, let a = (ay,...,a,) # 0 and
f(a) = 0. Without loss of generality, we can assume that a; # 0. If

0<7’<%,then

fla+(r,0,...,0)) = log|(a1 +7)" —af| = log|lkay " 'r+O(r?)|, r—0,
and hence, vf(a) = 1. By Theorem 3.1 in [7], applied to Q = 2B,
K=B,\ %Bn, 1 < a < 2, we obtain
v({zeK:|P(z)|<e™})=v({z € K: f(z) < —u})
< Cpe™ ™, u > 0.
By homogeneity of P,
o(T.) < Ce”, e >0,

for some constant C' > 0.
Arguing as in Example 3.5 we obtain first that 1 € ]:3, and then

that dimfizooforkzn—l—l. O

At the end of the paper, we consider two special classes of weight
functions v: radial weight functions and the functions of the form

Uz 2m) = 205 ¥5(2)-
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Suppose that 1(z) = ¢(]z]?) is a radial plurisubharmonic function of
class C?. By the computations in Remark 3.2,

0%
8Zj82k

The action of the Monge-Ampere operator on v is

(3.2) (2) = ¢"(I21*) 52 + &' (121*) s

2
(dd)" = 4n! det< afgzk) dv
J

= 4nl('(|21")" (@ ([21%) + |2 (12])) dv.

Proposition 3.7. Suppose that 1¥(z) = ¢(|z|?) is a radial plurisubhar-
monic function of class C*. Then dim F} = oo if and only if

(3.3) / (dd )" = o

Proof. Since the spectrum of the matrix (3.2)) consists of the eigenvalues
¢'(|2*) and ¢'(|2]?) + |2]?¢"(|2]?), the first eigenvalue has multiplicity
n—1 and the second one has multiplicity 1, we have ¢’ > 0, (r¢/(r)) >
0 on R, . Furthermore, we have

/ (ddy)" C/ ¢ (%) + 12" (%)) dr"
—c [" o))

Thus, (B3] is equivalent to the relation lim, ., r¢/'(r) = oco. Now,
if 7¢'(r) is bounded on R, then ¥(z) = O(log|z|), |2| — oo, and a
version of the Liouville theorem shows that dim ]-"i < 00. On the other
hand, if lim, o, 7¢'(r) = 0o, then log |z| = o(1(2)), |z| — oo, and the
polynomials belong to ;. Hence, dim J; = oo. O

For general C? plurisubharmonic functions, the radial case suggests
the following question. Is it true that dim 7, = oo if and only if (3.3)
holds? Our last example gives a negative answer to this question.

Example 3.8. Given subharmonic functions v; on the complex plane,
1 <75 <n,set

(3.4) W(z1,...,2 Z@DJ 2;).

Claim: dim]-"i < oo if and only if either max; dim]-"ij < 00 or
min; dim 7} = 0.
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In one direction, by the Fubini theorem, if dimF} < oo, then
max; dim 77 < oo or min;dim F} = 0. In the opposite direction,
it is clear that if min; dim .7:3}3_ = 0, then 7 = 0. It remains to verify
that if max; dim 77 < oo, then dim 7 < co.

First, suppose that n = 2, dim 7, < oo, N = dim F;,, < co. Fix a
basis (gx), 1 < k < N, in the space }—52 and choose a family of points
(W), 1 <m < N, such that det Q # 0, where @ = (gk(wm))kNmzl.

Next, choose f € ]—“j. By the mean value property,

|f(z,w)? < l/D( , 1F(Cw)Pdv(C),  zweC.

™

Therefore, for every z € C, the function f(z,-) belongs to F7 , and,

hence, we have
N
) = Z ar () gk
k=1

In the same way, the functions f(-,w;), 1 <j < N, belong to ]-"3)1.
Next,

f(zu U)1> ay (Z)
Q! : = :
f(Zu U)N) aN(Z)
Hence, every a; belongs to Fj . Since dim Fj} < oo, we conclude
that the space .7-"5 has finite dimension. For n > 2 we can just use an

inductive argument. This completes the proof of Claim.
Let us return to general v satisfying (3.4]). We have

/n ddip)" C/ HA% z;) dv(z CH/A% z;) dv(z;).

Now, if n =2, 11(2) = |2]?, Ate(2) = max(1 — |z|,0), then

JRCR

but F7 = 0. Thus, Proposition B.7] does not extend to general C*-
smooth plurisubharmonic functions.
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