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Internal layer intersecting the boundary of a domain in a singular
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Abstract

We perform an asymptotic analysis with respect to the parameter ε > 0 of the solution of the scalar

advection-diffusion equation yε
t +M(x, t)yε

x−εyε
xx = 0, (x, t) ∈ (0, 1)×(0, T ), supplemented with Dirichlet

boundary conditions. For small values of ε, the solution yε exhibits a boundary layer of size O(ε) in

the neighborhood of x = 1 (assuming M > 0) and an internal layer of size O(ε1/2) in the neighborhood

of the characteristic starting from the point (0, 0). Assuming that these layers interact each other after

a finite time T > 0 and using the method of matched asymptotic expansions, we construct an explicit

approximation P ε satisfying ‖yε−P ε‖L∞(0,T ;L2(0,1)) = O(ε1/2). We emphasize the additional difficulties

with respect to the case M constant considered recently by the authors.

Key words: Asymptotic analysis, Singular perturbation, Internal and boundary layers, Sobolev estimates.
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1 Introduction. Problem statement

Let T > 0 and QT := (0, 1)× (0, T ). This work is concerned with the scalar advection-diffusion equation
yεt (x, t) +M(x, t) yεx(x, t)− εyεxx(x, t) = 0, (x, t) ∈ QT ,
yε(0, t) = v(t), yε(1, t) = 0, t ∈ (0, T ),

yε(x, 0) = y0(x), x ∈ (0, 1),

(1)

where ε ∈ (0, 1) is the diffusion coefficient and M(x, t) > 0 is the transport velocity. For any initial

data y0 ∈ H−1(0, 1) and Dirichlet condition v ∈ L2(0, T ), there exists a unique solution yε ∈ L2(QT ) ∩
C([0, T ];H−1(0, 1)).

This apparently simple partial differential equation appears in many situation as it is a prototype of

models where the diffusion coefficient is small compared to the others. As explained in [8], this model

can notably be seen as an embedded system of the Navier-Stokes system with non-characteristic boundary

condition and viscosity coefficient equals to ε. It also can be seen as a regularization of a transport equation

and for this reasons well employed in numerical analysis (see notably [10, 25] and the references therein) when

one wants to obtain robust numerical approximation uniformly with respect to ε small. Equation (1) appears

in models of miscible displacement of compressible fluids in porous media, with small molecular diffusion

and dispersion coefficients, see [6]. Last, it also appears in the context of exact boundary controllability

when one wants to steer to zero the solution yε with a uniform control v: we mention the seminal works

[9, 14] and the recent paper [18].

We are interested in this work with a precise asymptotic description of the solution yε when ε is small.

This problem has been the subject of several studies in the last decades in the case for which the transport
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velocity is constant and the equation is defined over R+×(0, T ). We refer to [23, 22]. The case of a transport

velocity depending only on the time variable has been formally discussed in [19] and deeper analyzed in [24].

For bounded domains with respect to the space variable, the asymptotic analysis is quite involved as

several singular layers may appear in QT and interact each other. The constant transport velocity case has

been analyzed in [3]. More precisely, if we denote the characteristic t 7→ X(t;x, s) through (x, s) ∈ QT as

the solution in QT of
dX

dt
= M(X, t), X(s;x, s) = x, (2)

then the violation of the compatibility conditions between y0 and v at the point (0, 0) for which y0(0) 6=
v(0) induces a thin inner region (called internal layer) of size O(ε1/2) in the vicinity of the characteristic

{(x, t) ∈ QT , x−X(t; 0, 0) = 0} where the solution yε exhibits rapid variations. Thus, if this characteristic

gets arbitrarily close to the line x = 1 in a finite time T1 > 0 unique solution of the equation

X(T1; 0, 0) = 1, (3)

then the internal layer interacts with the usual boundary layer of size O(ε) living along x = 1 and induced by

the Dirichlet condition. Figure 1 provides a geometric description of this phenomenon in two cases: the case

in Figure 1-Left for which the function M is constant, i.e. M(x, t) = M > 0 leading to a linear characteristic

of equation x−Mt = 0. The internal layer lives in the red zone {(x, t) ∈ QT ; |x−Mt| ≤ ε1/2} and intersects

the boundary layer occupying the blue zone {(x, t) ∈ QT , |x− 1| ≤ ε} in a small neighborhood of the point

(1, 1/M) such that T1 = 1/M . This case has been extensively studied in [3] (see also [1, 2]). Figure 1-Right

corresponds to more general situation for which the function M is not constant. The characteristic starting

from the point (0, 0) has the equation x−X(t, 0, 0) = 0.
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Figure 1: Internal (red) and boundary (blue) layer zones for yε for a constant velocity M(x, t) = M > 0

(left) and non constant velocity M(x, t) > 0 (right).

In this paper, we extend the analysis given in [3] devoted to a constant velocity M(x, t) = M > 0 and

perform an asymptotic analysis of the solution yε of (1). Precisely, our main result reads as follows.
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Theorem 1.1. Assume y0 ∈ C2([0, 1]), v ∈ C2([0, T ]) and M ∈ C2(QT ,R?+). For ε > 0 small enough, let yε

be the solution of (1). Then, one may construct a function P ε satisfying

‖yε(·, t)− P ε(·, t)‖L2(0,1) ≤ c ε1/2, ∀t ∈ [0, T ],

for some positive constant c > independent of ε.

Compared to [3] where a rate of order O(ε3/2) is obtained for the constant case, we thus get a rate of

order O(ε1/2). As we shall see, this is due to the fact that the non constant case under consideration here

involves less explicit computations and developments leading to a more tedious analysis. The outline is as

follows. In Section 2, we set up the matched asymptotic method by considering two terms in the expansion.

In particular, we employ fundamental solutions for a parabolic equation with unbounded coefficients to

construct an approximation of the solution in the internal layers of size ε1/2 (we refer to Lemma 2.2). The

method leads to a so-called composite approximations P ε given by (32). Then, in section 3 by considering

the system satisfied by yε−P ε and using a Gronwall-Bellman type inequality (see Lemma 3.4), we prove an

a priori estimate for yε−P ε leading to Theorem 1.1. Some computations are collected in the appendice. In

Section 4, we consider some explicit simple examples of transport velocity M and evaluate numerically the

norm ‖yε − P ε‖L∞(0,T ;L2(0,1)) with respect to ε in agreement with our theoretical estimate. We conclude

with some remarks in Section 5.

2 Matched asymptotic expansions and approximate solutions

In order to construct an asymptotic approximation of the solution yε of (1), we use the method of matched

asymptotic expansions ([17, 20, 26, 11, 15]). We also refer to [13] for a recent exposition. The solution yε

exhibits two inner regions: an internal layer located along the characteristic {(x, t) ∈ QT , x−X(t; 0, 0) = 0}
and a boundary layer living along x = 1. The internal layer is of size O(ε1/2) while the boundary layer is of

size O(ε). The outer region is the subset of (0, 1) consisting of the points far from the internal and boundary

layers, it is of O(1) size. The occurrence of these three distinct regions require to introduce three distinct

asymptotic expansions. The first one, the so-called outer expansion, lives far away from the inner regions

and is given by
m∑
k=0

εkyk(x, t), (x, t) ∈ QT , x−X(t; 0, 0) 6= 0, x < 1,

for some m ∈ N?. A second one, the so-called first inner expansion, living in the neighborhood of {(x, t) ∈
QT , x−X(t; 0, 0) = 0} is given by

m∑
k=0

εk/2W k/2(w, t), w :=
x−X(t; 0, 0)

ε1/2
∈
(
−X(t; 0, 0)

ε1/2
,

1−X(t; 0, 0)

ε1/2

)
, t ∈ (0, T ).

Last, a third one, the so-called second inner expansion, living along x = 1, is given by

m∑
k=0

εk/2Y k/2(z, τ, t), z :=
1− x
ε
∈ (0, ε−1), τ :=

T1 − t
ε1/2

,

where T1 is the unique solution of (3). In particular, these expansions make appear several variables, at

different scales, namely, x, t, z = ε−1(1− x), w = ε−1/2(x−X(t; 0, 0)) and τ = ε−1/2(T1 − t).
We will construct outer and inner expansions which will be valid in the so-called outer and inner regions,

respectively. There are intermediate regions between the outer region and the inner regions, with size O(εγ),

γ ∈ (0, 1). To construct an approximate solution we require that inner and outer expansions coincide in each

intermediate region, then some conditions must be satisfied in that region by the corresponding inner and

outer expansions. These conditions are the so-called matching asymptotic conditions.
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The strategy is as follows. We first identify the functions yk, k = 0, . . . ,m, in the outer region. Then,

we identify the functions W k/2, k = 0, . . . ,m, of the first inner expansion satisfying the matching conditions

(with the yk). This allows to define an expansion in the form pε =
∑m
k=0 ε

k/2pk/2, valid far away from x = 1,

as a linear combination of the functions yk and W k/2. Then, we identify the functions Y k, k = 0, . . . ,m,

of the second inner expansion satisfying the matching conditions (with the pk/2). Eventually, we define an

expansion P ε, valid in the whole domain QT , as a linear combination of the functions pk/2 and Y k/2, and

supposed to be an approximation of yε. In this work, for simplicity we restrict ourselves to the case m = 1

as it will allow to get an approximation with rate ε1/2.

2.1 A property of the characteristics

We assume that M is a positive and smooth function in QT . Let t 7→ X(t;x, s) be the characteristic through

(x, s) ∈ QT defined as the solution in QT of equation (2). Using a classical result of differentiation with

respect to a parameter of solutions of a differential equation we get that X is a smooth function of the

variables t, x, and s. In particular,

∂tXx = Mx(X, t)Xx, Xx(s;x, s) = 1,

i.e. Xx satisfies the integral equation

Xx(t;x, s) = 1 +

∫ t

s

Mx(X(σ;x, s), σ)Xx(σ;x, s) dσ.

We set

a(t) := X(t; 0, 0), t ≥ 0.

Let γ0(x, t) denote the unique solution of the equation

X(γ0(x, t);x, t) = 0, for x < a(t). (4)

Differentiating equality (4) with respect to x gives

Xt(γ0(x, t);x, t)γ0x(x, t) +Xx(γ0(x, t);x, t) = 0 for all (x, t) with x < a(t),

hence

γ0x(x, t) = −Xx(γ0(x, t);x, t)

M(0, γ0(x, t))
, for x < a(t), (5)

since Xt(γ0(x, t);x, t) = M(X(γ0(x, t);x, t), γ0(x, t)) = M(0, γ0(x, t)).

2.2 Outer expansion

Putting y0(x, t) + εy1(x, t) into equation (1)1, the identification of the powers of ε yields

ε0 : y0
t +My0

x = 0,

ε : y1
t +My1

x = y0
xx.

(6)

Taking the initial and boundary conditions into account we define y0 and y1 as functions satisfying the

transport equations, respectively,
y0
t (x, t) +M(x, t)y0

x(x, t) = 0, (x, t) ∈ QT ,
y0(0, t) = v(t), t ∈ (0, T ),

y0(x, 0) = y0(x), x ∈ (0, 1),


y1
t (x, t) +M(x, t)y1

x(x, t) = y0
xx(x, t), (x, t) ∈ QT ,

y1(0, t) = 0, t ∈ (0, T ),

y1(x, 0) = 0, x ∈ (0, 1).
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We find explicit representations of solutions of these equations by using the method of characteristics. We

get

y0(x, t) =

{
y0(X(0;x, t), x > a(t),

v (γ0(x, t)) , x < a(t),
(7)

and

y1(x, t) =


∫ t

0

y0
xx(X(s;x, t), s)ds, x > a(t),∫ t

γ0(x,t)

y0
xx(X(s;x, t), s)ds, x < a(t).

2.3 Inner expansion along the characteristic x− a(t) = 0

We consider the change of variable w = x−a(t)
ε1/2

and function W ε(w, t) = yε(x, t). W ε satisfies the equation

W ε
t (w, t) +

M(ε1/2w + a(t), t)−M(a(t), t)

ε1/2
W ε
w(w, t)−W ε

ww(w, t) = 0. (8)

Using the Taylor expansion

M
(
ε1/2w + a(t), t

)
−M(a(t), t) = ε1/2wMx(a(t), t) +

εw2

2
Mxx(a(t), t) +O(ε3/2),

then, putting W 0(w, t) + εW 1/2(w, t) into equation (8), the identification of the powers of ε yields

ε0 : W 0
t (w, t) +Mx(a(t), t)wW 0

w(w, t)−W 0
ww(w, t) = 0,

ε1/2 : W
1/2
t (w, t) +Mx(a(t), t)wW 1/2

w (w, t)−W 1/2
ww (w, t) = −w

2

2
Mxx(a(t), t)W 0

w(w, t).

Obviously, the main difference with respect to the case M constant considered in [3] is the occurence of some

aditionnal unbounded terms with respect to the variable w.

To get the asymptotic matching conditions we write that, for any fixed t and large w,

W 0(w, t) + ε1/2W 1/2(w, t) = y0(x, t) + εy1(x, t) +O(ε2).

Rewriting the right-hand side of the above equality in terms of w, t, and using Taylor expansions we have

W 0(w, t) + ε1/2W 1/2(w, t) + εW 1(w, t) = y0
(
ε1/2w + a(t), t

)
+ εy1(ε1/2w + a(t), t) +O(ε2)

= y0(a(t), t) + ε1/2wy0
x(a(t), t) +

εw2

2
y0
xx(a(t), t) +O(ε3/2).

Therefore, the matching conditions read

W 0(w, t) ∼ y0((a(t))±, t), W 1/2(w, t) ∼ y0
x((a(t))±, t)w, as w → ±∞. (9)

Consequently, we obtain that the function W 0 must satisfyW
0
t (w, t) +Mx(a(t), t)wW 0

w(w, t)−W 0
ww(w, t) = 0, (w, t) ∈ R× (0, T ),

lim
w→±∞

W 0(w, t) = lim
x→(a(t))±

y0(x, t), t ∈ (0, T ).
(10)

In view of (7), we have limx→(a(t))+ y
0(x, t) = y0(0) and limx→(a(t))− y

0(x, t) = v(0). Remark that these

limits do not depend on t. Similarly, the function W 1/2 must satisfy
W

1/2
t (w, t) +Mx(a(t), t)wW 1/2

w (w, t)−W 1/2
ww (w, t) = −w

2

2
Mxx(a(t), t)W 0

w(w, t), (w, t) ∈ R× (0, T ),

lim
w→±∞

(
W 1/2(w, t)− y0

x(a(t)±, t)w

)
= 0, t ∈ (0, T ).

(11)

In view of (7), y0
x(a(t)+, t) = (y0)(1)(0)Xx(0; a(t), t) and y0

x(a(t)−, t) = v(1)(0) γ0x(a(t)−, t) where γ0x is

given by (5). Remark that these limits do depend on the variable t.
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2.4 Representation of the functions W 0 and W 1/2

We express the functions W 0 and W 1/2 in term of the fundamental solution of the heat equation.

2.4.1 Fundamental solutions

Let us consider the differential operator

LU(w, t) := Ut(w, t) +Mx(a(t), t)wUw(w, t)− Uww(w, t) in R× (0, T ). (12)

Equation LU = 0 is a parabolic equation with an unbounded coefficient. Linear second order parabolic

equations with smooth but unbounded coefficients are studied in [5] (see also [16, 12, 7]). In [5], the authors

consider a second order linear differential operator in the form

L̃u(w, t) = ut(w, t)− cij(w, t)uwiwj (w, t)− ci(w, t)uwi(w, t)− c(w, t)u(w, t), (w, t) ∈ Rn × (0, T ),

and prove the existence of a so-called fundamental solution for L̃u = 0. Our operator L is obviously of the

form of the operator L̃ with n = 1, c ≡ 0, c11 ≡ 0 and c1(w, t) = Mx(a(t), t)w.

Definition 2.1. A function K̃(w, t; ξ, s) defined for w, ξ ∈ Rn and 0 ≤ s < t ≤ T is said to be a fundamental

solution of L̃u = 0 if it has the following properties:

• considered as a function of (w, t) for each fixed (ξ, s) ∈ Rn × [0, T ], the derivatives of K̃ which appear

in L̃ exist and are continuous;

• L̃K̃ = 0 in Rn × (s, T ];

• If g = g(w) is a continuous function with compact support in Rn then

lim
(w,t)→(w0,s+)

∫
Rn
K̃(w, t; ξ, s)g(ξ) dξ = g(w0).

We shall employ the following lemma.

Lemma 2.1. Let f = f(w, t) be a given function in Rn × (0, T ). Assume that f is Hölder continuous on

every compact subset of Rn × (0, T ). Then

u(w, t) =

∫
Rn
K̃(w, t; ξ, 0)g(ξ) dξ +

∫ t

0

∫
Rn
K̃(w, t; ξ, τ)f(ξ, τ) dξ dτ

is a solution of the Cauchy problem

L̃u(w, t) = f(w, t) in Rn × (0, T ), u(w, 0) = g(w) in Rn.

In the particular case of the operator L, the solution of the corresponding Cauchy problem has an explicit

representation in term of the fundamental solution of the heat equation Hs−Hvv = 0 in R× (0, T ) defined

as follows

H(v, s; ξ, τ) = H0(v − ξ; s− τ), v, ξ ∈ R, 0 ≤ τ < s ≤ T, (13)

with

H0(v, s) :=
1√
4πs

e−
v2

4s , v ∈ R, s ∈ (0, T ). (14)

Precisely, we have the following result.
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Lemma 2.2. Let L be the parabolic operator defined by (12) and H be the fundamental solution of the heat

equation defined by (13). Then:

i) Equation LU = 0 has a fundamental solution given by

K(w, t; ξ, τ) =
1

β(τ)
H

(
w

β(t)
, B(t);

ξ

β(τ)
, B(τ)

)
, w, ξ ∈ R, 0 ≤ τ < t ≤ T, (15)

with

α(t) := Mx(a(t), t), β(t) := e
∫ t
0
α(s) ds, B(t) :=

∫ t

0

1

β(s)2
ds.

ii) Let f = f(w, t) be a continuous function in R×[0, T ] and Hölder continuous with respect to w uniformly

for t ∈ [0, T ]. Let g = g(w) be a continuous function with compact support in R. Then,

U(w, t) =

∫
R
K(w, t; ξ, 0)g(ξ) dξ +

∫ t

0

∫
R
K(w, t; ξ, τ)f(ξ, τ) dξdτ (16)

is a solution of the Cauchy problem

LU(w, t) = f(w, t) in R× (0, T ), U(w, 0) = g(w) in R. (17)

Proof. We have

β′(t) = α(t)β(t), B′(t) =
1

β(t)2
, β(0) = 1, B(0) = 0.

Note also that B is a stricty increasing function so that 0 ≤ τ < t ≤ T is equivalent to 0 ≤ B(τ) < B(t) ≤
B(T ). Consider the function K defined by (15). We have

K(w, t; ξ, τ) =
1

β(τ)
√

4π(B(t)−B(τ))
e−

( w
β(t)

− ξ
β(τ) )

2

4(B(t)−B(τ)) , 0 ≤ τ < t ≤ T.

For ξ, τ fixed, ξ ∈ R, 0 ≤ τ < t ≤ T , we have by a direct calculation

LK(w, t; ξ, τ) =
1

β(τ)β2(t)

[
H0s

(
w

β(t)
− ξ

β(τ)
, B(t)−B(τ)

)
−H0vv

(
w

β(t)
− ξ

β(τ)
, B(t)−B(τ)

)]
.

Then, LK(w, t; ξ, τ) = 0 for any w ∈ R and t ∈ (0, T ). If g = g(w) is a continuous function with compact

support in R we have∫
R
K(w, t; ξ, τ)g(ξ) dξ =

1

β(τ)
√

4π(B(t)−B(τ))

∫
R
e−

( w
β(t)

− ξ
β(τ) )

2

4(B(t)−B(τ)) g(ξ) dξ.

Using the change of variable
ξ

β(τ)
− w
β(t)

2
√

(B(t)−B(τ))
= v, it holds that

∫
R
K(w, t; ξ, τ)g(ξ) dξ =

1√
π

∫
R
e−v

2

g

(
β(τ)

β(t)
w + 2β(τ)

√
B(t)−B(τ) v

)
dv,

and deduce that

lim
t→τ+

∫
R
K(w, t; ξ, τ)g(ξ) dξ = g(w) for any w ∈ R.

According to Definition 2.1, it follows that the function K given by (15) is a fundamental solution of the

equation LU = 0. Moreover, using that β(0) = 1 and B(0) = 0, we have∫
R
K(w, t; ξ, 0)g(ξ) dξ =

1√
π

∫
R
e−v

2

g

(
w

β(t)
+ 2
√
B(t) v

)
dv,
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implying that

lim
t→0+

∫
R
K(w, t; ξ, 0)g(ξ) dξ = g(w).

We also have, for any ξ fixed, LK(w, t; ξ, 0) = 0 from which we check that L
(∫

RK(w, t; ξ, 0)g(ξ) dξ
)

= 0.

Consider now the second term in the right-hand side of (16) which we denote Ũ(w, t). We have

L(Ũ)(w, t) = lim
τ→t−

∫
R
K(w, t; ξ, τ)f(ξ, τ) dξ +

∫ t

0

∫
R
L(K)(w, t; ξ, τ)f(ξ, τ) dξdτ

= lim
τ→t−

∫
R
K(w, t; ξ, τ)f(ξ, τ) dξ.

Using again the change of variable
ξ

β(τ)
− w
β(t)

2
√

(B(t)−B(τ))
= v, it holds that

lim
τ→t−

∫
R
K(w, t; ξ, τ)f(ξ, τ) dξ =

1√
π

lim
τ→t−

∫
R
e−v

2

f

(
β(τ)

β(t)
w + 2β(τ)

√
(B(t)−B(τ)) v, τ

)
dv = f(w, t).

We conclude that U is a solution of the Cauchy problem (17).

We now introduce the functions gk/2 = gk/2(w, t), k = 0, 1, defined as functions on R × (0, T ) and

satisfying

lim
w→±∞

(
g0(w, t)− y0(a(t)±, t)

)
= 0, lim

w→±∞

(
g1/2(w, t)− y0

x(a(t)±, t)w

)
= 0, t ∈ (0, T ).

We also introduce the functions fk/2 = fk/2(w, t), k = 0, 1, defined on R× (0, T ) by

f0(w, t) := 0, f1/2(w, t) := −w
2

2
Mxx(a(t), t)W 0

w(w, t). (18)

2.4.2 Explicit expression of W 0

In order to apply the second part of Lemma 2.2, it remains to choose an initial condition g (for the boundary

value problem satisfied by W 0) so that the corresponding solution W 0 given generically by (16) satisfies the

asymptotic conditions as w → ±∞ (see (10)), i.e. limw→∞W 0(w, t) = y0(0) and limw→−∞W 0(w, t) = v(0).

The simplest choice, discussed in [3], is given by g = g0 with

g0(w) :=

{
y0(0), w ≥ 0,

v(0), w < 0,
(19)

leading to the explicit expression:

W 0(w, t) =
y0(0)− v(0)

2
erf

(
w

2β(t)
√
B(t)

)
+
y0(0) + v(0)

2
. (20)

Recall that erf is the error function defined by erf(s) = 2√
π

∫ s
0
e−v

2

dv for all s ∈ R, and that the

complementary error function is defined by erfc(s) = 1 − erf(s) = 2√
π

∫ +∞
s

e−v
2

dv. Using the asymptotic

behavior of the error function, we check that W 0 satisfies the prescribed asymptotic behavior in (10). Remark

also that limt→0+W 0(w, t) equals y0(0) if w ≥ 0 and v0(0) if w < 0.
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2.4.3 Integral representation of W 1/2

The computation of W 1/2 solution of the boundary value problem (11) posed over R× (0, T ) is more delicate

since, first there is a right side, and second, because the asymptotic limits as w → ∞ depend on the time

variable, while the function g in (17) not. This fact requires a special treatment.

Let us consider the function g1/2(w, t) = y0
x(a(t)±, t)w. We have, for (w, t) ∈ (]−∞, 0[∪]0,+∞[)×(0, T ),

L(g1/2)(w, t) = w
(
y0
xt(a(t)±, t) + a′(t)y0

xx(a(t)±, t)
)

+Mx(a(t), t)wy0
x(a(t)±, t)

= w
(
y0
xt(a(t)±, t) +M(a(t), t)y0

xx(a(t)±, t)
)

+Mx(a(t), t)wy0
x(a(t)±, t).

Differentiating equation (6)1 with respect to x yields

y0
xt(x, t) +Mx(x, t)y0

x(x, t) +M(x, t)y0
xx(x, t) = 0, (x, t) ∈ Ω+ ∪ Ω−,

with Ω+ := {(x, t) ∈ QT , x > a(t)} and Ω− := {(x, t) ∈ QT , x < a(t)}. Letting x→ a(t)±, we get

y0
xt(a(t)±, t) +Mx(a(t), t)y0

x(a(t)±, t) +M(a(t), t)y0
xx(a(t)±, t) = 0.

Therefore, for (w, t) ∈ (]−∞, 0[∪]0,+∞[)× (0, T ), we have

L(g1/2)(w, t) = −wMx(a(t), t)y0
x(a(t)±, t) + wMx(a(t), t)y0

x(a(t)±, t) = 0.

When y0
x(a(t)±, t) has a jump on w = 0, the function (g1/2)ww becomes singular on w = 0. This leads to

regularize the function g1/2 as follows. Let ρ ∈ C∞(R) such that

ρ(w) =

{
1 for |w| ≥ 2,

0 for |w| ≤ 1.

We define

g̃1/2(w, t) := ρ(w) g1/2(w, t), w ∈ R, t ∈ (0, T ). (21)

Clearly, g̃1/2 ∈ C∞(R), g̃1/2(w, t) = g1/2(w, t) for |w| ≥ 2 and g̃1/2(w, t) = 0 for |w| ≤ 1. Define

g?1/2(w, t) = L(g̃1/2)(w, t), w ∈ R, t ∈ (0, T ), (22)

and then W 1/2 as follows

W 1/2(w, t) = g̃1/2(w, t) +

∫ t

0

∫
R
K(w, t; ξ, τ)

(
f1/2(ξ, τ)− g?1/2(ξ, τ)

)
dξdτ, w ∈ R, t ∈ (0, T ). (23)

Lemma 2.3. The function W 1/2 defined by (23) satisfies (11), namely L(W 1/2)(w, t) = f1/2(w, t) in R×(0, T )

and limw→±∞
(
W 1/2(w, t)− g1/2(w, t)

)
= 0 for all t in (0, T ).

Proof. According to Lemma 2.2 we have L(W 1/2)(w, t) = f1/2(w, t) in R× (0, T ).

It remains to check the asymptotic condition as w → ±∞. For any (w, t) ∈ R × (0, T ), let us consider

the integral

I1(w, t) :=

∫ t

0

∫
R
K(w, t; ξ, τ)f1/2(ξ, τ) dξdτ.

In view of (18) and (20), we obtain explicitly

f1/2(w, t) = −w
2

2
Mxx(a(t), t)

(
y0(0)− v(0)

2

)
2√
π
e
− w2

4β(t)2 B(t)

(
1

2β(t)
√
B(t)

)
,

9



then

I1(w, t) =
y0(0)− v(0)

2

∫ t

0

∫
R

1

β(τ)
√

4π(B(t)−B(τ))
e−

( w
β(t)

− ξ
β(τ) )

2

4(B(t)−B(τ)) ×

×
(
−ξ

2

2

)
Mxx(a(τ), τ)

(
2√
π

)
e
− ξ2

4β(τ)2 B(τ)

(
1

2β(τ)
√
B(τ)

)
dξdτ.

For the convergence of the integral I1(ω, t) in the neighborhood of τ = 0, we consider the integral I1(ω, t′),

with 0 < t′ < t fixed, and use the change of variable ξ

2β(τ)
√
B(τ)

= v. This gives

I1(w, t′) :=
y0(0)− v(0)

2

∫ t′

0

∫
R

1

β(τ)
√

4π(B(t)−B(τ))
e−

( w
β(t)

−2
√
B(τ)v)

2

4(B(t)−B(τ)) ×

×
(
−2β(τ)2B(τ)v2

)
Mxx(a(τ), τ)

(
2√
π

)
e−v

2

dvdτ.

The integrand is clearly uniformly bounded in w by c(t′, t)e−v
2

with a constant c(t′, t) depending only on

t′ and t. Moreover, for any fixed v and τ , the integrand tends to 0 as |w| → +∞. Using a result of limit

passage on integrals depending on a parameter we get lim|w|→+∞ I1(w, t′) = 0.

For the convergence of the integral I1(w, t) in the neighborhood of τ = t, we consider the integral

I2(w, t) :=
y0(0)− v(0)

2

∫ t

t′

∫
R

1

β(τ)
√

4π(B(t)−B(τ))
e−

( w
β(t)

− ξ
β(τ) )

2

4(B(t)−B(τ)) ×

×
(
−ξ

2

2

)
Mxx(a(τ), τ)

(
2√
π

)
e
− ξ2

4β(τ)2 B(τ)

(
1

2β(τ)
√
B(τ)

)
dξdτ.

Using the change of variable
ξ

β(τ)
− w
β(t)

2
√
B(t)−B(τ)

= v, we get

I2(w, t) =
y0(0)− v(0)

2

1√
π

∫ t

t′

∫
R
e−v

2

−
(
β(τ)
β(t)w + 2β(τ)

√
B(t)−B(τ) v

)2

2

Mxx(a(τ), τ)×

×
(

2√
π

)
e
−

( β(τ)β(t)
w+2β(τ)

√
B(t)−B(τ) v)

2

4β(τ)2 B(τ)

(
1

2β(τ)
√
B(τ)

)
dvdτ

and conclude as before that lim|w|→+∞ I2(w, t) = 0 and then that lim|w|→+∞ I1(w, t) = 0.

Consider now the integral

I3(w, t) : =

∫ t

0

∫
R
K(w, t; ξ, τ)g?1/2(ξ, τ) dξdτ

=

∫ t

0

∫
R

1

β(τ)
√

4π(B(t)−B(τ))
e−

( w
β(t)

− ξ
β(τ) )

2

4(B(t)−B(τ)) g?1/2(ξ, τ) dξdτ.

Clearly, g?1/2 is a smooth function on R × (0, T ) and satisfies g?1/2(w, t) = 0 for |w| ≥ 2. The change of

variable
ξ

β(τ)
− w
β(t)

2
√

(B(t)−B(τ))
= v gives

I3(w, t) =
1√
π

∫ t

0

∫
R
e−v

2

g?1/2

(
β(τ)

β(t)
w + 2β(τ)

√
B(t)−B(τ) v, τ

)
dvdτ.

The integrand is uniformly bounded in w by c(t)e−v
2

, where c(t) depends only on t. Moreover, the integrand

tends to 0 as |w| → +∞. Then lim|w|→+∞ I3(w, t) = 0.
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We then have

lim
|w|→+∞

∫ t

0

∫
R
K(w, t; ξ, τ)

(
f1/2(ξ, τ)− g?1/2(ξ, τ)

)
dξdτ = 0.

It results from (23) that, for each fixed t, limw→±∞
(
W 1/2(w, t)−g̃1/2(w, t)

)
= 0. Since limw→±∞

(
g̃1/2(w, t)−

g1/2(w, t)
)

= 0, we conclude that limw→±∞
(
W 1/2(w, t)− g1/2(w, t)

)
= 0.

2.5 Composite asymptotic approximation outside the boundary layer

We now define a composite approximation of the solution far from the x = 1 obtained by adding, at each

order, the inner and outer expansions and then by subtracting their common part.

At the first order, the common part of y0(x, t) and W 0(w, t) (defined by (7) and (20) respectively) is

equal to y0(0) for x > a(t) and to v(0) for x < a(t). Thus, the first term of the composite approximation

outside the boundary layer along x = 1 is given by

p0(x, t) = y0(x, t) +W 0(w, t)− y0(a(t)±, t). (24)

We check that the function p0 is continuous along the characteristic as it satisfies limx−a(t)→0± p
0(x, t) =

W 0(0, t). The second term of the composite approximation is given by

p1/2(x, t) = W 1/2(w, t)− y0
x(a(t)±, t), (25)

where W 1/2 is defined by (23). Clearly, p1/2 is also continuous along the characteristic. Then the following

quantity is defined to be an asymptotic approximation of yε, outside the boundary layer along x = 1,

pε(x, t) := p0(x, t) + ε1/2p1/2(x, t), (x, t) ∈ QT .

We easily verify the following property.

Proposition 2.1. Assume that v ∈ C1([0, T ]) and y0 ∈ C1([0, 1]). Then pε belongs to C1([0, 1]× (0, T ]).

2.6 Inner expansion along x = 1

We consider the change of variables z = 1−x
ε , τ = T1−t

ε1/2
, and function Y ε(z, τ, t) = yε(x, t). Recall that

T1 defined by a(T1) = 1 is the time at which the characteristic x − a(t) = 0 starting from the point (0, 0)

intersects the right extremity of the domain. We assume that T1 exists. Moreover, since M > 0, T1 is unique.

The function Y ε satisfies the equation

Y εt (z, τ, t)− 1

ε1/2
Y ετ (z, τ, t)− M(1− εz, t)

ε
Y εz (z, τ, t)− 1

ε
Y εzz(z, τ, t) = 0. (26)

Using the Taylor expansion

M(1− εz, t) = M(1, t)− εzMx(1, t) +
ε2z2

2
Mxx(1, t)− ε3z3

3!
Mxxx(1, t) + · · · ,

and putting Y 0(z, τ, t) + ε1/2Y 1/2(z, τ, t) into equation (26), the identification of the powers of ε yields

ε−1 : Y 0
zz(z, τ, t) +M(1, t)Y 0

z (z, τ, t) = 0,

ε−1/2 : Y 1/2
zz (z, τ, t) +M(1, t)Y 1/2

z (z, τ, t) = −Y 0
τ (z, τ, t).

It is important to note that the functions Y k depend on three variables, namely z, t but also τ . As it is

standard, the variable z = (1 − x)/ε is introduced to describe the boundary layer at x = 1−. Here, the

variable τ = T1−t
ε1/2

allows to take into account the interaction of the internal and boundary layers by making

a zoom around the point (1, T1). If we do not introduce this variable τ , we see notably that Y 1/2 solves the
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same ordinary differential equation than Y 0, and the analysis leads to an error estimate (for the L∞(L2)

norm) of order ε1/4 only. Remark that the variable T1, as a solution of a(T1) = 1 is not explicit. Therefore,

instead of τ = T1−t
ε1/2

, we could have introduce τ = 1−a(t)
ε1/2

; however, we have observed that this leads to some

incompatibilities with the matching condition.

We impose Y k/2(0, τ, t) = 0 for k = 0, 1. To get the asymptotic matching conditions we write that, for

any fixed τ, t and large z,

Y 0(z, τ, t) + ε1/2Y 1/2(z, τ, t) = p0(x, t) + ε1/2p1/2(x, t) +O(ε2).

In order to identify at each order the appropriate matching conditions, we need to rewrite the right-hand

side of the above equality in terms of z and τ , t being fixed. We have the following equalities x = 1 − εz,
w = x−a(t)

ε1/2
= −ε1/2z + 1−a(t)

ε1/2
, a(T1) = 1, a′(t) = Xt(t; 0, 0) = M(a(t), t), a′(T1) = M(1, T1). Writing

a(t) = a
(
T1 − ε1/2τ

)
, M(1, T1) = M

(
1, t+ ε1/2τ

)
, and using Taylor expansions we have

a(t) = a(T1)− ε1/2τa′(T1) +O(ε) = 1− ε1/2τM(1, T1) +O(ε), M(1, T1) = M(1, t) +O(ε1/2),

then
1− a(t)

ε1/2
= τM(1, t) +O(ε1/2).

It results that

w = −ε1/2z + τM(1, t) +O(ε1/2).

Writing y0(x, t) = y0(1− εz, t), W 0(w, t) = W 0
(
−ε1/2z + τM(1, t) +O(ε1/2), t

)
, and

W 1/2(w, t) = W 1/2
(
−ε1/2z + τM(1, t) +O(ε1/2), t

)
, and using again Taylor expansions we have

p0(x, t) = y0(x, t) +W 0(w, t)− y0(a(t)±, t)

= y0(1, t) +W 0 (τM(1, t), t)− y0(a(t)±, t)− ε1/2zW 0
w (τM(1, t), t) +O(ε1/2),

and

ε1/2p1/2(x, t) =ε1/2

(
W 1/2(w, t)− y0

x(a(t)±, t)w

)
=ε1/2

(
W 1/2(τM(1, t), t)− τM(1, t) y0

x(a(t)±, t)

)
+O(ε).

We deduce that

p0(x, t) + ε1/2p1/2(x, t) = C0(τ, t) + ε1/2C1/2(z, τ, t) +O(ε),

with
C0(τ, t) =y0(1, t) +W 0(τM(1, t), t)− y0(a(t)±, t),

C1/2(z, τ, t) =W 1/2(τM(1, t), t)− τM(1, t)y0
x(a(t)±, t)− zW 0

w (τM(1, t), t) .
(27)

Therefore, the matching conditions read

Y 0(z, τ, t) ∼ C0(τ, t), Y 1/2(z, τ, t) ∼ C1/2(z, τ, t), as z →∞. (28)

• We define Y 0 as a solution ofY
0
zz(z, τ, t) +M(1, t)Y 0

z (z, τ, t) = 0, (z, τ, t) ∈ R?+ × R× (0, T ),

Y 0(0, τ, t) = 0, lim
z→+∞

Y 0(z, τ, t) = C0(τ, t), t ∈ (0, T ).

The solution is

Y 0(z, τ, t) = C0(τ, t)
(

1− e−M(1,t)z
)
, (z, τ, t) ∈ R+ × R× [0, T ].
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• We define Y 1/2 as a solution ofY
1/2
zz (z, τ, t) +M(1, t)Y 1/2

z (z, τ, t) = −Y 0
τ (z, τ, t), (z, τ, t) ∈ R?+ × R× (0, T ),

Y 1/2(0, τ, t) = 0, lim
z→+∞

(
Y 1/2(z, τ, t)− C1/2(z, τ, t)

)
= 0, t ∈ (0, T ).

Writing that Y 0
τ (z, τ, t) = C0,τ (τ, t)

(
1− e−M(1,t)z

)
, we obtain, for (z, τ, t) ∈ R? × R× (0, T ),

Y 1/2(z, τ, t) = C1/2(z, τ, t) + e−M(1,t)z

(
−C1/2(0, τ, t)−W 0

w(τM(1, t), t)z

)
, (z, τ, t) ∈ R+ × R× [0, T ].

(29)

2.7 Asymptotic composite approximation in QT

We are now in position to define what is supposed to be an asymptotic approximation of the solution yε.

We proceed as before by adding at each order the function pk/2, approximation outside the boundary layer

along x = 1, and the function Y k/2, approximation in the boundary layer along x = 1, then subtracting

their common part. At the first order, the composite approximation is given by

P 0(x, t) = p0(x, t) + Y 0(z, τ, t)− C0(τ, t) = p0(x, t)− C0(τ, t)e−M(1,t)z, (30)

i.e. explicitly

P 0(x, t) = y0(x, t) +W 0(w, t)− y0(a(t)±, t)−
(
y0(1, t) +W 0(τM(1, t), t)− y0(a(t)±, t)

)
e−M(1,t)z.

Repeating the arguments at the next order, we define

P 1/2(x, t) = p1/2(x, t) + Y 1/2(z, τ, t)− C1/2(z, τ, t), (31)

then we define an asymptotic composite approximation of yε in QT by

P ε(x, t) := P 0(x, t) + ε1/2P 1/2(x, t), (x, t) ∈ QT . (32)

3 Convergence of the sequence (P ε)(ε>0) - Proof of Theorem 1.1

This section is devoted to the study of the convergence of the sequence (P ε)ε>0 stated in Theorem (1.1).

In order to prove this theorem we need to establish a number of preliminary results. We define the error as

follows:

zε(x, t) := P ε(x, t)− yε(x, t)− θε(x, t), (x, t) ∈ QT , (33)

where θε is the initial layer corrector defined as a solution of the equation
θεt (x, t) +M(x, t)θεx − εθεxx(x, t) = 0, (x, t) ∈ QT ,
θε(0, t) = θε(1, t) = 0, t ∈ (0, T ),

θε(x, 0) = P ε(x, 0)− yε(x, 0), x ∈ (0, 1).

(34)

3.1 Preliminary results

From now on, in order to shorten some equations, we shall use the following notation:

Lεy := yt +M(x, t)yx − εyxx. (35)
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3.1.1 Estimate of the initial layer corrector θε

The following lemma gives an exponential decay property of the initial layer corrector.

Lemma 3.1. Let θε be the solution of problem (34) and γ ∈ (0, 1/2]. There exists a constant c independent

of ε such that

‖θε(·, t)‖L2(0,1) ≤ c e−
M(1,0)εγ

ε + c ε1/2e−
M2

0
2εγ t, ∀t ∈ [0, T ]. (36)

Proof. i) We first check that the initial data θε(·, 0) is given by

θε(x, 0) = −y0(1)e−M(1,0)z, ∀x ∈ (0, 1], (37)

showing that the initial condition gets concentrated in the neighborhood of x = 1. Indeed, from (30)–(32)

we have

θε(x, 0) =

1∑
k=0

εk/2 lim
t→0

P k/2(x, t)− y0(x)

= lim
t→0

(
p0(x, t)− C0(τ, t)e−Mz

)
− y0(x)

+ lim
t→0

ε1/2
(
p1/2(x, t) + Y 1/2 (z, τ, t)− C1/2 (z, τ, t)

)
, x ∈ (0, 1).

We have from (30)

lim
t→0

(
p0(x, t)− C0(τ, t)e−M(1,t)z

)
− y0(x)

= lim
t→0

(
W 0(w, t)− y0(0)− C0(τ, t)e−M(1,t)z

)
= − lim

t→0
C0(τ, t)e−M(1,t)z

= − lim
t→0

(
y0(1, t) +W 0(τM(1, t), t)− y0(a(t))±, t)

)
e−M(1,t)z = −y0(1)e−M(1,0)z.

Using the matching conditions of W 1/2 with y0, we check that limt→0 p
1/2(x, t) = 0, for x ∈ (0, 1] and that

lim
t→0

(
Y 1/2 (z, τ, t)− C1/2 (z, τ, t)

)
= lim
t→0

(
−W 1/2 (τM(1, t), t) + τy0

x(a(t)±, t)− zW 0
w(τM(1, t), t)

)
e−M(1,t)z = 0, for x > 0.

It results that P 1/2(x, 0) = 0 for all x ∈ (0, 1]. These computations lead to (37).

ii-a) We now introduce a C∞ cut-off function X : R → [0, 1] such that X (s) = 0 if s ≤ 1 and X (s) = 1

if s ≥ 2 and define, for γ ∈ (0, 1/2], the function Xε : [0, 1]→ [0, 1] by Xε(x) = X
(

1−x
εγ

)
. The solution θε of

the linear system (34) can be decomposed as θε = θε,1 + θε,2 with
Lεθ

ε,1 = 0, (x, t) ∈ QT ,
θε,1(0, t) = θε,1(1, t) = 0, t ∈ (0, T ),

θε,1(x, 0) = Xε(x)θε(x, 0), x ∈ (0, 1),

(38)


Lεθ

ε,2 = 0, (x, t) ∈ QT ,
θε,2(0, t) = θε,2(1, t) = 0, t ∈ (0, T ),

θε,2(x, 0) = (1−Xε(x))θε(x, 0), x ∈ (0, 1).

(39)

In view of the definition of Xε, we see that θε,1(x, 0) = 0 for all x ≥ 1− εγ . Then, in view of (37), we check

that there exists a constant c1 > 0 independent of ε such that |θε,1(x, 0)| ≤ c1e
−M(1,0)εγ

ε for all x ∈ (0, 1).

By a maximum principle, it follows that

|θε,1(x, t)| ≤ c1e−
M(1,0)εγ

ε , ∀(x, t) ∈ QT . (40)
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ii-b) Concerning θε,2(·, 0), we check that θε,2(x, 0) = 0 for all x ≤ 1−2εγ and that ‖θε,2(·, 0)‖L2(0,1) ≤ c2ε
1
2

for some constant c2 > 0, independent of ε. We now estimate ‖θε,2(·, t)‖L2(0,1). For that, for any α > 0, we

check that the function ρε(x, t) := e
−M0αx

2ε θε,2(x, t) with M0 := min
(x,t)∈QT

M(x, t) > 0 solves


ρεt − ερεxx + (M − αM0) ρεx −

M0

4ε

(
α2M0 − 2αM

)
ρε = 0, (x, t) ∈ QT ,

ρε(0, t) = ρε(1, t) = 0, t ∈ (0, T ),

ρε(x, 0) = e
−M0αx

2ε θε,20 (x), x ∈ (0, 1),

(41)

and satisfies the estimates

d

dt
‖ρε(·, t)‖2L2(0,1) + 2ε‖ρεx(·, t)‖2L2(0,1) =

∫ 1

0

(
Mx +

M0

2ε
(α2M0 − 2αM

)
(ρε(·, t))2 dx

≤
∫ 1

0

(
C +

M2
0

2ε
(α2 − 2α

)
(ρε(·, t))2 dx

with C = max
(x,t)∈QT

|Mx(x, t)|. Gronwall inequality leads to ‖ρε(·, t)‖L2(0,1) ≤ ‖ρε(·, 0)‖L2(0,1) e
C
2 t e

M2
0

4ε (α2−2α)t,

which is equivalent to

‖e−
M0αx

2ε θε,2(·, t)‖L2(0,1) ≤ ‖e−
M0αx

2ε θε,2(·, 0)‖L2(0,1) e
C
2 t e

M2
0

4ε (α2−2α)t.

Consequently,

‖θε,2(·, t)‖L2(0,1) = ‖e
M0αx

2ε e−
M0αx

2ε θε,2(·, t)‖L2(0,1) ≤ ‖e
M0αx

2ε ‖L∞(0,1)‖e−
M0αx

2ε θε,2(·, t)‖L2(0,1)

≤ ‖e
M0αx

2ε ‖L∞(0,1)‖e−
M0αx

2ε θε,2(·, 0)‖L2(0,1) e
C
2 t e

M2
0

4ε (α2−2α)t

≤ ‖e
M0αx

2ε ‖L∞(0,1)‖e−
M0αx

2ε θε,2(·, 0)‖L2(1−2εγ ,1) e
C
2 t e

M2
0

4ε (α2−2α)t

≤ e
M0α
2ε e

−M0α(1−2εγ )
2ε ‖θε,20 ‖L2(1−2εγ ,1) e

C
2 t e

M2
0

4ε (α2−2α)t

= ‖θε,20 ‖L2(1−2εγ ,1) e
C
2 t e−

M0α
2ε (−2εγ+(1−α2 )M0t),

using that (recall that α > 0) ‖e
M0αx

2ε ‖L∞(0,1) = e
M0α
2ε and ‖e−

M0αx
2ε ‖L∞(1−2εγ ,1) = e

−M0α(1−2εγ )
2ε . The value

α = ε1−γ then leads to

‖θε,2(·, t)‖L2(0,1) ≤ ‖θε,20 ‖L2(1−2εγ ,1) e
C
2 t eM0e

M2
0 ε

1−2γ

4 te−
M2

0
2εγ t ≤ c3ε1/2e−

M2
0

2εγ t (42)

for some constant c3 > 0, using that γ ∈ (0, 1/2]. From inequalities (40) and (42) we deduce (36). The

initial layer concentrated in the neighborhood of x = 1 vanishes exponentially fast with respect to t since

the velocity transport is strictly positive.

3.1.2 Estimate of ‖LεP ε‖L1(0,t;L2(0,1))

Recall that Lε is the differential operator defined by (35). We have the following result proven in Appendice

A.1.
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Lemma 3.2. Assume hypotheses of Theorem 1.1. The function P ε defined by (32) satisfies

Lε(P
ε) =

5∑
i=1

Iεi in (0, 1)× (0, T ),

with

Iε1(x, t) =− εy0
xx(x, t),

Iε2(x, t) =ε1/2

(
Mxx(κ1, t)−Mxx(a(t), t)

)
w2

2
W 0
w(w, t) + εMxx(κ1, t)

w2

2

(
W 1/2
w (w, t)− y0

x(a(t)±, t)
)
,

Iε3(x, t) =− y0
t (1, t)e−M(1,t)z +

(
Mt(1, t) +M(1, t)Mx(κ2, t)

)(
y0(1, t)− y0(a(t)±, t)

)
ze−M(1,t)z

+
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
W 0(τM(1, t), t)ze−M(1,t)z

−
(
W 0
t (τM(1, t), t) +

(
τMt(1, t))−

M(1, t)

ε1/2

)
W 0
w(τM(1, t), t)

)
e−M(1,t)z,

Iε4(x, t) =− ε1/2

(
W 0
wt(τM(1, t), t) +

(
τMt(1, t)−

M(1, t)

ε1/2

)
W 0
ww(τM(1, t), t)

)
ze−M(1,t)z

− ε1/2Mx(κ2, t)W
0
w(τM(1, t), t)ze−M(1,t)z

+ ε1/2
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
W 0
w(τM(1, t), t)z2e−M(1,t)z,

Iε5(x, t) = ε1/2
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
C1/2(0, τ, t)ze−M(1,t)z

− ε1/2

(
C1/2,t(0, τ, t)−

C1/2,τ (0, τ, t)

ε1/2

)
e−M(1,t)z,

with inf{a(t), a(t) + ε1/2w} < κ1 < sup{a(t), a(t) + ε1/2w}, 1− εz < κ2 < 1.

For the previous expansion, we get the following estimate for the L1(0, T ;L2(0, 1)) norm. Details of the

proof are given in Appendix A.3.

Lemma 3.3. Assume hypotheses of Theorem 1.1. Let P ε be the function defined by (32). There exists a

constant c independent of ε such that

‖LεP ε‖L1(0,t;L2(0,1)) ≤ c ε1/2, ∀t ∈ (0, T ]. (43)

3.1.3 Gronwall-Bellman type estimate

We now derive a priori estimates for the function zε. Preliminary, since zε is not vanishing at x = 0 and

x = 1, we define

Zε(x, t) := zε(x, t)− zε(0, t)f0
ε (x)− zε(1, t)f1

ε (x), (x, t) ∈ QT , (44)

where f0
ε ∈ C2([0, 1],R+) and satisfies f0

ε (0) = 1 and f0
ε (1) = 0, and f1

ε (x) = f0
ε (1 − x). The function Zε

solves the equation
LεZ

ε = LεP
ε − Lε(zε(0, t)f0

ε (x))− Lε(zε(1, t)f1
ε (x)), (x, t) ∈ QT ,

Zε(0, t) = Zε(1, t) = 0, t ∈ (0, T ),

Zε(x, 0) = −zε(0, 0)f0
ε (x)− zε(1, 0)f1

ε (x), x ∈ (0, 1),

(45)

where zε(0, 0) := limt→0+ zε(0, t), zε(1, 0) := limt→0+ zε(1, t). Recall that Lε is defined by (35).

In order to derive an estimate for Zε, we shall use the following Gronwall-Bellman type inequality (see

[21]).
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Lemma 3.4. Let I = [t0, T ] ⊂ R, k, b, p ∈ C(I,R+). If ζ ∈ C(I,R+) satisfies

ζ(t) ≤ k(t) +

∫ t

t0

b(s)ζ(s) ds+

∫ t

t0

p(s)ζγ(s) ds, t ∈ I,

with 0 ≤ γ < 1, then for t ∈ I,

ζ(t) ≤
[
A1−γ(t) + (1− γ)

∫ t

t0

e
(γ−1)

∫ t
t0
b(σ) dσ

p(s) ds

] 1
1−γ

e
∫ t
t0
b(s) ds

,

where A(t) = max
t0≤s≤t

k(s).

Lemma 3.5. Let Zε be the function defined by (44) and P ε the function defined by (32). There is a constant

c independent of ε such that, for each t in [0, T ],

‖Zε(·, t)‖2L2(0,1) + 2ε

∫ t

0

‖Zεx(·, s)‖2L2(0,1) ds

≤
[(
|zε(0, 0)|2‖f0

ε ‖2L2(0,1) + |zε(1, 0)|2‖f1
ε ‖2L2(0,1)

)1/2

+e
Ct
2

∫ t

0

(∫ 1

0

(
LεP

ε(x, s)− Lε(f0
ε (x)zε(0, s)− Lε(zε(1, s)f1

ε (x)))
)2
dx

)1/2

ds

]2

eCt,

(46)

with C := max
(x,t)∈QT

|Mx(x, t)|.

Proof. Multiplying equation (45) by Zε and integrating over (0, 1)× (0, t) gives

1

2
‖Zε(·, t)‖2L2(0,1) + ε

∫ t

0

‖Zεx(·, s)‖2L2(0,1) ds

=
1

2

∫ t

0

∫ 1

0

Mx(x, s)Zε(x, s)2 dxds+
1

2
|zε(0, 0)|2‖f0

ε ‖2L2(0,1) −
1

2
|zε(1, 0)|2‖f1

ε ‖2L2(0,1)

+

∫ t

0

∫ 1

0

(
LεP

ε(x, s)− Lε(zε(0, s)f0
ε (x))− Lε(zε(1, s)f1

ε (x))
)
Zε(x, s) dxds.

Applying the Cauchy-Schwarz inequality we obtain

‖Zε(·, t)‖2L2(0,1) + 2ε

∫ t

0

‖Zεx(·, s)‖2L2(0,1) ds ≤ C
∫ t

0

∫ 1

0

Zε(x, s)2 dxds

+ |zε(0, 0)|2‖f0
ε ‖2L2(0,1) + |zε(1, 0)|2‖f1

ε ‖2L2(0,1)

+ 2

∫ t

0

(∫ 1

0

(
LεP

ε(x, s)− Lε(zε(0, s)f0
ε (x))− Lε(zε(1, s)f1

ε (x))
)2

dx

)1/2(∫ 1

0

Zε(x, s)2 dx

)1/2

ds,

with C := max
(x,s)∈QT

|Mx(x, s)|. Applying Lemma 3.4 with

t0 = 0, b(s) = C, γ =
1

2
, A = k = |zε(0, 0)|2‖f0

ε ‖2L2(0,1) + |zε(1, 0)|2‖f1
ε ‖2L2(0,1),

ζ(t) = ‖Zε(·, t)‖2L2(0,1) + 2ε

∫ t

0

‖Zεx(·, s)‖2L2(0,1) ds,

p(s) = 2

(∫ 1

0

(
LεP

ε(x, s)− Lε(zε(0, s)f0
ε (x)− Lε(zε(1, s)f1

ε (x))
)2
dx

)1/2

,

we obtain (46).
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3.1.4 Estimate of ‖zε(x0, ·)‖L1(0,s), ‖zεt (x0, ·)‖L1(0,s) and |zε(x0, 0)|, x0 = 0, 1

We now estimate each term of the right-hand side of (46).

Lemma 3.6. There is a constant c independent of ε such that, ∀s ∈ (0, T ],

‖zε(0, ·)‖L1(0,s) + ‖zε(1, ·)‖L1(0,s) ≤ cε, (47)

‖zεt (0, ·)‖L1(0,s) + ‖zεt (1, ·)‖L1(0,s) ≤ c, (48)

|zε(x0, 0)| ≤ c, (49)

with zε(x0, 0) := limt→0 z
ε(x0, t), x0 = 0, 1.

Proof. Let s ∈ (0, T ] be arbitrary, and w0(t) = − a(t)
ε1/2

, w1(t) = 1−a(t)
ε1/2

, t ∈ [0, T ]. We have from (33) that

zε(0, t) = W 0(w0(t), t)− v(0)−
(
y0(X(0; 1, t)) +W 0(τM(1, t), t)− y0(0)

)
e−

M(1,t)
ε

+ ε1/2
(
W 1/2(w0(t), t)− y0

x(a(t)±, t)w0(t)
)
− ε1/2

(
C1/2(0, τ, t) +

1

ε
W 0
w(τM(1, t), t)

)
e−

M(1,t)
ε

= W 0(w0(t), t)− v(0) + ε1/2
(
W 1/2(w0(t), t)− y0

x(a(t)±, t)w0(t)
)

+O(e−
M(1,t)
ε ).

We have

|W 0(w0(t), t)− v(0)| = |y0(0)− v(0)|
2

erfc

(
−w0(t)

2β(t)
√
B(t)

)
≤ |y0(0)− v(0)|e−

a2(t)

4εβ2(t)B(t) ,

then we deduce that ∥∥W 0(w0(t), t)− v(0)
∥∥
L1(0,s)

≤ cε.

By similar arguments to that used in the proof of Lemma 3.3 (point (e.2)), we show that ‖W 1/2(w0(t), t)−
y0
x(a(t)±, t)w0(t)‖L1(0,s) ≤ cε1/2 allowing to conclude that ‖zε(0, ·)‖L1(0,s) ≤ cε.

We also have

zε(1, t) = W 0(w1(t), t)−W 0(τM(1, t), t) + ε1/2
(
W 1/2(w1(t), t)− y0

x(a(t)±, t)w1(t)
)

− ε1/2
(
W 1/2(τM(1, t), t)− τM(1, t)y0

x(a(t)±, t)
)
.

Writing W 0(w1(t), t) −W 0(τM(1, t), t) = (W 0(w1(t), t) − v(0)) − (W 0(τM(1, t), t) − v(0), and arguing as

above we get that ∥∥W 0(w1(t), t)− v(0)
∥∥
L1(0,s)

+
∥∥(W 0(τM(1, t), t)− v(0)

∥∥
L1(0,s)

≤ cε.

Similarly as above we have

‖W 1/2(w1(t), t)− y0
x(a(t)±, t)w1(t)‖L1(0,s) ≤ cε1/2,

‖W 1/2(τM(1, t)), t)− y0
x(a(t)±, t)τM(1, t)‖L1(0,s) ≤ cε1/2,

then conclude that ‖zε(1, ·)‖L1(0,s) ≤ cε. Inequality (47) follows.

Concerning the second inequality, we have

zεt (1, t) = W 0
t (w1(t), t) + w′1(t)W 0

w(w1(t), t)

−
(
W 0
t (τM(1, t), t) +

(
τMt(1, t)−

M(1, t)

ε1/2

)
W 0
w(τM(1, t), t)

)
+ ε1/2W

1/2
t (w1(t), t) + ε1/2w′1(t)

(
W 1/2
w (w1(t), t)− y0

x(a(t)±, t)
)

+ ε1/2Mx(a(t), t)y0
x(a(t)±, t)w1(t)

− ε1/2W
1/2
t (τM(1, t), t)− ε1/2

(
τMt(1, t)−

M(1, t)

ε1/2

)(
W 1/2
w (τM(1, t), t), t)− y0

x(a(t)±, t)
)

− ε1/2Mx(a(t), t) y0
x

(
a(t)±, t

)
τM(1, t), t).
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We have the following estimates, see the proof of Lemma 3.3 (points (c.3), (e.3), and (e.4), respectively),∥∥∥∥(W 0
t (τM(1, t), t) +

(
τMt(1, t)−

M(1, t)

ε1/2

)
W 0
w(τM(1, t), t)

)∥∥∥∥
L1(0,s)

≤ c,

‖W 1/2
t (τM(1, t), t)‖L1(0,s) ≤ cε1/2,∥∥∥W 1/2
w (τM(1, t), t)− y0

x(a(t)±, t)
∥∥∥
L1(0,s)

≤ cε1/2.

Then clearly,∥∥∥∥ε1/2

(
τMt(1, t)−

M(1, t)

ε1/2

)(
W 1/2
w (τM(1, t), t), t)− y0

x(a(t)±, t)
)∥∥∥∥

L1(0,s)

≤ cε1/2,∥∥∥ε1/2Mx(a(t), t)y0
x(a(t)±, t)τM(1, t), t)

∥∥∥
L1(0,s)

+
∥∥∥ε1/2Mx(a(t), t)y0

x(a(t)±, t)w1(t)
∥∥∥
L1(0,s)

≤ c.

We have from (74)

W 0
t (w, t) + CW 0

w(w, t) =
c− − c+

2

1

2
√
π

2wα(t)γ(t) + w − 2Cγ(t)

γ(t)3/2
e−

w2

4γ(t) ,

then taking w = w1(t) = 1−a(t)
ε1/2

and C = w′1(t) = −a
′(t)
ε1/2

there holds that

‖W 0
t (w, t) + CW 0

w(w, t)‖L1(0,t) = CO(ε1/2) +O(ε) = O(1),

then
∥∥W 0

t (w1(t), t) + w′1(t)W 0
w(w1(t), t)

∥∥
L1(0,s)

≤ c. We show, as above, that

‖ε1/2w′1(t)
(
W 1/2
w (w1(t), t)− y0

x(a(t)±, t)
)
‖L1(0,s) ≤ cε1/2.

As in the proof of Lemma 3.3 (point (e.3)), we get
∥∥∥ε1/2W

1/2
t (w1(t), t)

∥∥∥
L1(0,s)

≤ cε. Thus ‖zt(1, ·)‖L1(0,s) ≤ c.

Similarly ‖zt(0, ·)‖L1(0,s) ≤ c, so that (48) follows. Eventually, we easily check that (49) holds. This ends

the proof of the lemma.

3.2 End of the proof of Theorem 1.1

We are now in position to finish the proof of Theorem 1.1. It remains to choose the function f0
ε ∈ C2([0, 1]),

satisfying f0
ε (0) = 1 and f0

ε (1) = 0 so as to minimize the terms in the right side of (46), asymptotically with

respect to ε. We consider the functions

f0
ε (x) = (1− x)e−

x
ε , f1

ε (x) = xe−
1−x
ε , x ∈ [0, 1],

so that ‖f iε‖L2(0,1) ≤ c ε1/2 and ‖ − εf iε
′′

+Mf iε
′‖L2(0,1) ≤ c ε−1/2, for i = 0, 1. It follows that, for x0 = 0, 1,

and for each t ∈ (0, T ],

‖fε‖L2(0,1)

(
‖zεt (x0, ·)‖L1(0,t) + |zε(x0, x0)|

)
≤ cε1/2,

‖ − εf iε
′′

+Mf iε
′‖L2(0,1)‖zε(x0, ·)‖L1(0,t) ≤ cε1/2.

Coming back to Lemma 3.5, using the two previous estimates and Lemma 3.3, there holds that

‖Zε(·, t)‖L2(0,1) + ε1/2‖Zεx‖L2((0,1)×(0,t)) ≤ cε1/2, ∀t ∈ [0, T ].

Now, since zε(x, t) = Zε(x, t) + f0
ε (x)zε(0, t) + f1

ε (x)zε(1, t), we deduce that

‖zε(·, t)‖L2(0,1) ≤ ‖Zε(·, t)‖L2(0,1) + |zε(0, t)|‖f0
ε ‖L2(0,1) + |zε(1, t)|‖f1

ε ‖L2(0,1)

≤ cε1/2 + c
(
|zε(0, t)|+ |zε(1, t)|

)
ε1/2, ∀t ∈ [0, T ]. (50)
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Writing zε(x0, t) = zε(x0, 0) +
∫ t

0
zεt (x0, s) ds and using (49), there holds that

|zε(x0, t)| ≤ |zε(x0, 0)|+ ‖zεt (x0, ·)‖L1(0,t) ≤ c, ∀t ∈ [0, T ].

These estimate allow to deduce from (50) that ‖zε(·, t)‖L2(0,1) ≤ cε1/2 for all t ∈ [0, T ]. Finally, since

P ε − yε = zε − θε, using Lemma 3.1, we derive the estimate

‖P ε(·, t)− yε(·, t)‖L2(0,1) ≤ c ε1/2 + c e−
M(1,0)εγ

ε + c ε1/2e−
M2

0
2εγ t ≤ c ε1/2 + c ε1/2e−

M2
0

2εγ t, ∀t ∈ [0, T ].

This ends the proof of Theorem 1.1. 2

4 Some explicit examples

We explicit in this section some expansion of P ε for some particular case of the function M = M(x, t) then

numerically evaluate the L∞(0, T ;L2(0, 1)) norm of the difference yε − P ε.

4.1 The case M(x, t) = 1 + x, y0(x) ≡ y0 in (0, 1) , v(t) ≡ v in (0, T )

The characteristic starting from (0, 0) is given by x− a(t) = 0 where the function a(t) solves{
a′(t) = M(a(t), t), t > 0,

a(0) = 0,

and is given by a(t) = et − 1. T0 such that a(T0) = 1 is then given by T0 = ln 2. Then,

α(t) := Mx(a(t), t) = 1, β(t) := e
∫ t
0
α(s) ds = et, B(t) :=

∫ t

0

1

β(s)2
ds =

1− e−2t

2
,

leading to 2β(t)
√
B(t) =

√
2(e2t − 1). We obtain that y0 defined by (7) is given by

y0(x, t) =

{
y0, x+ 1 > et,

v, x+ 1 < et,

and

W 0(w, t) =
y0 − v

2
erf

(
w√

2(e2t − 1)

)
+
y0 + v

2
, W 1/2(w, t) = 0, w =

x+ 1− et

ε1/2
.

p0 defined by (24) is given by p0(x, t) = W 0(w, t) while simply p1/2(x, t) = 0. Then, we get

C0(τ, t) = W 0(2τ, t), C1/2(z, τ, t) = −zW 0
w (2τ, t) , z =

1− x
ε

, τ =
ln 2− t
ε1/2

,

implying

P 0(x, t) = W 0(w, t)−W 0(2τ, t)e−2z, P 1/2(x, t) = −ze−2zW 0
w(2τ, t).

Consequently, our approximation is given by

P ε(x, t) = W 0(w, t)−W 0(2τ, t)e−2z − ε1/2ze−2zW 0
w(2τ, t), (x, t) ∈ QT ,

w =
x+ 1− et

ε1/2
, z =

1− x
ε

, τ =
ln 2− t
ε1/2

.
(51)

Remark that ∂werf( w
g(t) ) = 2√

π
e
− w2

g(t)

g(t) so that W 0
w(w, t) = y0−v√

π
e
− w2√

2(e2t−1)√
2(e2t−1)

. As an illustration, Figure 2

depicts the function P ε in QT for ε = 10−1, 10−2, 5 × 10−3 with T = 0.8 > T0. In particular, observe that

P ε does not vanish at x = 0 and x = 1 but gets small as ε decreases. Table 1 provides some numerical

values of the norm ‖yε − P ε‖L∞(0,T ;L2(0,1)) for several values of the parameter ε. The unknown solution yε

of (1) is obtained here using a numerical approximation. We obtain ‖yε − P ε‖L∞(0,T ;L2(0,1)) = O(ε0.61) in

full agreement with our estimate in Theorem 1.1.
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Figure 2: Function P ε given by (51) in QT for ε = 10−1, 10−2, 5× 10−3.

ε 10−1 5× 10−2 10−2 5× 10−3 10−3

9.24× 10−2 6.14× 10−2 2.07× 10−2 1.4× 10−2 5.30× 10−3

Table 1: ‖yε − P ε‖L∞(0,T ;L2(0,1)) w.r.t. ε for T = 0.8, y0 = 1 and v = 0.

4.2 The case M(x, t) = 1 + t, y0(x) ≡ y0 in (0, 1) , v(t) ≡ v in (0, T )

In this case, the function a(t) is given by a(t) = t(t+2)
2 . T0 such that a(T0) = 1 is T0 =

√
3− 1. Then,

α(t) := Mx(a(t), t) = 0, β(t) := e
∫ t
0
α(s) ds = 1 B(t) :=

∫ t

0

1

β(s)2
ds = t,

leading to β(t)
√
B(t) =

√
t. We obtain that y0 defined by (7) is given by

y0(x, t) =


y0, x >

t(t+ 2)

2
,

v, x <
t(t+ 2)

2
,

and

W 0(w, t) =
y0 − v

2
erf

(
w

2
√
t

)
+
y0 + v

2
, W 1/2(w, t) = 0, w =

2x− t(t+ 2)

2ε1/2
.

p0 defined by (24) is given by p0(x, t) = W 0(w, t) while simply p1/2(x, t) = 0. Then, we get

C0(τ, t) = W 0(2τ, t), C1/2(z, τ, t) = −zW 0
w (2τ, t) , z =

1− x
ε

, τ =

√
3− 1− t
ε1/2

,

implying

P 0(x, t) = W 0(w, t)−W 0(1 + t)τ, t)e−(1+t)z, P 1/2(x, t) = −ze−(1+t)zW 0
w((1 + t)τ, t).

Consequently, our approximation is given

P ε(x, t) = W 0(w, t)−W 0((1 + t)τ, t)e−(1+t)z − ε1/2ze−(1+t)zW 0
w((1 + t)τ, t),

w =
2x− t(t+ 2)

2ε1/2
, z =

1− x
ε

, τ =

√
3− 1− t
ε1/2

,
(52)

with here W 0
w(w, t) = y0−v√

π
e
− w2

2
√
t

2
√
t

.

21



5 Concluding remarks

We have performed an asymptotic analysis of the solution of an advection-diffusion parametrized by a small

coefficient in front of the diffusion term. The analysis takes into account the intersection of several singular

layers and leads to an approximation in an ε1/2-neighborhood of the solution for the norm L∞(0, T ;L2(0, 1)).

This analysis extends [3] to non constant, strictly positive transport velocity, leading to much technical

arguments. In particular, the solution in the internal layer (following the characteristic starting form (0, 0))

solves a parabolic equation with non constant and unbounded coefficients related to the first derivatives of

the velocity. The resulting solution is expressed in term of the heat kernel of the heat equation.

The ε1/2 rate obtained for the final estimate is driven by our approximation W 0 in the internal layer,

which depends on the choice non unique of the function g0. The choice (19) we made here is simple but

notably involves the properties limt→0W
0(−a(t)

ε1/2
, t) = (y0(0)+v(0))/2 and limx→0W

0( x
ε1/2

, 0) = y0(0). This

gap at the point (0, 0) generates an artificial boundary layer in the approximation of the solution along the

line x = 0 above the characteristic x−a(t) = 0 in the neighborhood of t = 0. This boundary layer propagates

inside the domain along the characteristic x − a(t) = 0 and affects the quality of the approximation. By

analogy with [3, Section 3] devoted to the constant velocity case, one may consider the more involved choice

gε0(w) :=


y0(0), w ≥ 0,

v(0) +
v(0)− y0(0)

2
e
Fw

ε1/2 , w < 0,
(53)

with F := limt→0+
a(t)

β(t)B(t) = a′(0) > 0 leading to W 0
ε = W 0 + U0

ε with

U0
ε (w, t) =

v(0)− y0(0)

2
e

Fw

β(t)ε1/2
+
F2B(t)

ε erfc

(
w

2
√
B(t)β(t)

+
F
√
B(t)

ε1/2

)
,

and W 0 defined by (20). The new function W 0
ε still satisfies the asymptotic conditions limw→+∞W 0

ε (w, t) =

y0(0) and limw→−∞W 0
ε (w, t) = v(0) for all t ∈ (0, T ). Moreover, we now observe that

lim
t→0+

W ε
0

(−a(t)

ε1/2
, t
)

= v(0), lim
x→0+

W 0
ε

( x

ε1/2
, 0
)

= y0(0).

This allows to describe more accurately the discontinuity between the initial and Dirichlet conditions in the

neighborhood of the point (0, 0). By analogy with [3], we may expect a O(ε3/4) rate, but this remains to be

checked. Similarly, as in [3], in order to get a better rate, one would needs to consider additional terms in

the developments, notably the outer term y1 defined by (2.2) not used here, internal layer terms W 1, W 3/2

involving the heat kernel and boundary layer terms Y 1 and Y 3/2 solutions of ordinary differential equations

with respect to the variable z. Whether or not we can perform the computations and get a priori estimates

with these additional terms is an open issue.

In a futur work we plan to study the parabolic system describing the miscible displacement of compressible

fluids in a porous medium. The displacement of one compressible fluid by another, completely miscible with

the first, in a one-dimensional porous medium Ω = (0, 1), assuming for simplicity that the two fluids have

the same compressibility factor z, is described by the following differential system, see for instance [6],

z∂tp+ ∂xq = 0, q = − κ

µ(c)
∂xp, (x, t) ∈ QT , (54)

φ∂tc+ q(x, t)∂xc− ∂x (d(x, t)∂xc)) = 0, (x, t) ∈ QT , (55)

to which initial and boundary conditions are added. The unknowns of system (54), (55) are the functions

p = p(x, t), c = c(x, t) and q = q(x, t); p is the pressure, c is the concentration of one of the two components of

the fluid mixture, and q is the Darcy velocity. The function κ = κ(x) is the permeability of the medium, the

constant φ is the porosity, µ = µ(c) is the concentration-dependent viscosity of the fluid mixture, d = d(x, t)

is a small term representing the molecular diffusion and dispersion in the porous medium. The viscosity
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µ(c) is assumed to be determined by some mixing rule. See [4] for the existence of a weak solution to the

one-dimensional equations governing compressible flows of m miscible components in a porous medium. Our

aim is to perform an asymptotic analysis of system (54), (55) when d is small and the concentration c satisfies

Dirichlet boundary conditions on x = 0 and x = 1.

Acknowledgment. The authors thank the funding by the French government research program “In-

vestissements d’Avenir” through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25).

A Appendix

A.1 Proof of Lemma 3.2

According to (30) and (31),

P ε(x, t) = P 0(x, t) + ε1/2P 1/2(x, t) =y0(x, t) +W 0(w, t)− y0(a(t)±, t)

−
(
y0(1, t) +W 0(τM(1, t), t)− y0(a(t)±, t)

)
e−M(1,t)z

+ ε1/2
(
W 1/2(w, t)− y0

x(a(t)±, t)w
)

− ε1/2
(
C1/2(0, τ, t) +W 0

w(τM(1, t), t)z
)
e−M(1,t)z.

Let us note here that the function P 0 + ε1/2P 1/2 belongs to C1([0, 1] × (0, T ]), and that (P 0 − W 0) +

ε1/2(P 1/2−W 1/2) belongs to C1(QT ). Then, from the regularity assumptions on y0, v and M , (P 0−W 0) +

ε1/2(P 1/2 −W 1/2) belongs to H2(QT ). We have

Lε(W
0) = W 0

t (w, t)− a′(t)

ε1/2
W 0
w(w, t) +

M(x, t)

ε1/2
W 0
w(w, t)−W 0

ww(w, t)

= W 0
t (w, t) +

M(ε1/2w + a(t), t)−M(a(t), t)

ε1/2
W 0
w(w, t)−W 0

ww(w, t).

Using the Taylor expansion

M(ε1/2w + a(t), t)−M(a(t), t) = ε1/2wMx(a(t), t) + ε
w2

2
Mxx(κ1, t), (56)

with inf{a(t), a(t) + ε1/2w} < κ1 < sup{a(t), a(t) + ε1/2w}, and equation (10) we get

Lε(W
0) = ε1/2w

2

2
Mxx(κ1, t)W

0
w(w, t).

By similar calculations we get

Lε(W
1/2) = −w

2

2
Mxx(a(t), t)W 0

w(w, t) + ε1/2w
2

2
Mxx(κ1, t)W

1/2
w (w, t).

We observe that, when calculating Lε(P
0 + ε1/2P 1/2), it suffices to perform the calculation in Ω+ ∪ Ω−,

where Ω+ = {(x, t) ∈ QT : x > a(t)} and Ω− = {(x, t) ∈ QT : x < a(t)}. Straightforward calculations then

give

Lε

(
y0(x, t)− y0(a(t)±, t)

)
= −εy0

xx(x, t). (57)

Moreover,

Lε(y
0
x(a(t)±, t)w) = w

(
y0
xt(a(t)±, t) + a′(t)y0

xx(a(t)±, t)
)
− a′(t)

ε1/2
y0
x(a(t)±, t) +

M(x, t)

ε1/2
y0
x(a(t)±, t),

23



leading, using (56), to

Lε(y
0
x(a(t)±, t)w) =w

(
y0
xt(a(t)±, t) +M(a(t), t)y0

xx(a(t)±, t)
)

+ wMx(a(t), t) y0
x(a(t)±, t) + ε1/2w

2

2
Mxx(κ1, t) y

0
x(a(t)±, t).

Differentiating equation (6)1 with respect to x yields

y0
xt(x, t) +Mx(x, t) y0

x(x, t) +M(x, t) y0
xx(x, t) = 0 for (x, t) ∈ Ω+ ∪ Ω−.

Letting x→ a(t)+ and x→ a(t)−, we get

y0
xt(a(t)±, t) +Mx(a(t), t) y0

x(a(t)±, t) +M(a(t), t) y0
xx(a(t)±, t) = 0.

Therefore

Lε(y
0
x(a(t)±, t)w) = ε1/2w

2

2
Mxx(κ1, t) y

0
x(a(t)±, t).

It results that

Lε

(
W 0(w, t) + ε1/2

(
W 1/2(w, t)− y0

x(a(t)±, t)w
))

= ε
w2

2
Mxx(κ1, t)

(
W 1/2
w (w, t)− y0

x(a(t)±, t)
)

+ ε1/2w
2

2
W 0
w(w, t)

(
Mxx(κ1, t)−Mxx(a(t), t)

)
. (58)

We have

Lε

(
y0(1, t)e−M(1,t)z

)
= y0

t (1, t)e−M(1,t)z − y0(1, t)
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
ze−M(1,t)z,

Lε

(
y0(a(t)±, t)e−M(1,t)z

)
= −y0(a(t)±, t)

(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
ze−M(1,t)z,

Lε

(
W 0(τM(1, t), t)e−M(1,t)z

)
=

(
W 0
t (τM(1, t), t) +

(
τMt(1, t))−

M(1, t)

ε1/2

)
W 0
w(τM(1, t), t)

)
e−M(1,t)z

−
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
W 0(τM(1, t), t)ze−M(1,t)z,

with 1− εz < κ2 < 1. We deduce that

Lε

((
y0(1, t) +W 0(τM(1, t), t)− y0(a(t)±, t)

)
e−M(1,t)z

)
= y0

t (1, t)e−M(1,t)z −
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)(
y0(1, t)− y0(a(t)±, t)

)
ze−M(1,t)z

+

(
W 0
t (τM(1, t), t) +

(
τMt(1, t)−

M(1, t)

ε1/2

)
W 0
w(τM(1, t), t)

)
e−M(1,t)z

−
(
Mt(1, t) +M(1, t)Mx(κ2, t)W

0(τM(1, t), t)
)
ze−M(1,t)z. (59)

We also have

Lε

(
W 0
w(τM(1, t), t)ze−M(1,t)z

)
=
(
W 0
wt(τM(1, t), t) +

(
τMt(1, t))−

M(1, t

ε1/2

)
W 0
ww(τM(1, t), t)

)
ze−M(1,t)z

+Mx(κ2, t)W
0
w(τM(1, t), t)ze−M(1,t)z

−
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
W 0
w(τM(1, t), t)z2e−M(1,t)z,

24



and

Lε

(
C1/2(0, τ, t)e−M(1,t)z

)
=

(
C1/2,t(0, τ, t)−

C1/2,τ (0, τ, t)

ε1/2

)
e−M(1,t)z

− C1/2(0, τ, t)
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
ze−M(1,t)z, (60)

where C1/2,t(0, τ, t), C1/2,τ (0, τ, t) are given by

C1/2,t(0, τ, t) =W
1/2
t (τM(1, t), t) + τMt(1, t)

(
W 1/2
w (τM(1, t), t)− y0

x(a(t)±, t)
)

+ τM(1, t)Mx(a(t), t)y0
x(a(t)±, t), (61)

and

C1/2,τ (0, τ, t) = M(1, t)
(
W 1/2
w (τM(1, t), t)− y0

x(a(t)±, t)
)
. (62)

Collecting equalities (57)–(60) we obtain the lemma.

A.2 An equality

Lemma A.1. Let K, β and B be the functions defined in Lemma 2.2. Let γ(τ) := β2(τ)B(τ) and

f(ξ, τ) :=
1

2

1√
π

1

γ(τ)1/2
Mxx(a(τ), τ)ξ2e−

ξ2

4γ(τ) , τ ∈ (0, t), ξ ∈ R.

For all (w, t) ∈ R× (0, T ),∫ t

0

∫
R
K(w, t; ξ, τ)f(ξ, τ) dξdτ

=
1

π

e
− w2

4β2(t)B(t)

β2(t)B2(t)
√
B(t)

∫ t

0

Mxx(a(τ), τ)
√
B(τ)

(
B(τ)w2 + 2β2(t)B2(t)− 2β2(t)B(t)B(τ)

)
×

×
√
B(t)−B(τ)dτ. (63)

Proof. We have, for all (w, t) ∈ R× (0, T ),∫
R
K(w, t; ξ, τ)f(ξ, τ) dξ =

1√
π

∫
R
e−v

2

f

(
β(τ)

β(t)
w + 2β(τ)

√
(B(t)−B(τ)) v, τ

)
dv

=
1

π

1

2γ(τ)1/2
Mxx(a(τ), τ)

∫
R
e−v

2

f̃

(
β(τ)

β(t)
w + 2β(τ)

√
B(t)−B(τ) v, τ

)
dv,

with ∫
R
e−v

2

f̃

(
β(τ)

β(t)
w + 2β(τ)

√
B(t)−B(τ) v, τ

)
dv

=

∫
R
e−v

2

e−

(
β(τ)
β(t)

w+2β(τ)
√
B(t)−B(τ) v

)2

4γ(τ)

(
β(τ)

β(t)
w + 2β(τ)

√
B(t)−B(τ) v

)2

dv

= 2e
− w2

4β(t)2B(t) β(τ)
√
B(τ)

(
B(τ)w2 + 2β2(t)B2(t)− 2β2(t)B(t)B(τ)

)√
β2(τ)(B(t)−B(τ))B(τ)

β2(t)B2(t)
√
B(t)

= 2e
− w2

4β(t)2B(t) β2(τ)B(τ)

(
B(τ)w2 + 2β2(t)B2(t)− 2β2(t)B(t)B(τ)

) √
B(t)−B(τ)

β2(t)B2(t)
√
B(t)

,

leading to (63).
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A.3 Proof of Lemma 3.3

Let s ∈ (0, T ] be arbitrary. We estimate the L1(0, s;L2(0, 1)) norm of each term Iεi of the expression

Lε(P
ε) =

∑5
i=1 I

ε
i , given by Lemma 3.2. In particular, we use that

‖z(x)ne−M(1,t)z(x)‖L∞(0,s;L2(Ω)) = O(ε1/2) for n = 0, 1 and z(x) =
1− x
ε

. (64)

Formula (63) will also be used several times. To avoid repetition, some points of the proof are shortened.

(a) Estimate of ‖Iε1‖L1(0,s;L2(Ω)). Clearly,

‖Iε1‖L1(0,s;L2(Ω)) ≤ cε. (65)

(b) Estimate of ‖Iε2‖L1(0,s;L2(Ω)).

(b.1) Estimate of
∥∥∥ε1/2

(
Mxx(κ1, t)−Mxx(a(t), t)

)
w2

2 W
0
w(w, t)

∥∥∥
L1(0,s;L2(Ω))

. Let us denote

J1 := ε

∫ s

0

∫ 1

0

∣∣∣∣∣12
(
x− a(t)

ε1/2

)2

W 0
w

(
x− a(t)

ε1/2
, t

)∣∣∣∣∣
2

dxdt.

Using the change of variable x−a(t)
ε1/2

= w, there holds that

J1 = ε3/2

∫ s

0

∫ 1−a(t)
ε1/2

− a(t)

ε1/2

∣∣∣∣w2

2
W 0
w(w, t)

∣∣∣∣2 dwdt ≤ ε3/2

∫ s

0

∫ +∞

−∞

∣∣∣∣w2

2
W 0
w(w, t)

∣∣∣∣2 dwdt,
provided that the last integral is finite. Using the explicit expression

W 0
w(w, t) =

y0(0)− v(0)

2

2√
π

(
1

2β(t)
√
B(t)

)
e
− w2

4β(t)2 B(t) ,

and the change of variable w

2β(t)
√
B(t)

= v, there holds that

J1 ≤ ε3/2

∫ s

0

∫ +∞

−∞
8β(t)2B(t)3/2

∣∣∣∣(c+ − c−2

)
1√
π
v2e−v

2

∣∣∣∣2 dvdt ≤ cε3/2.

We conclude that ∥∥∥∥ε1/2
(
Mxx(κ1, t)−Mxx(a(t), t)

)w2

2
W 0
w(w, t)

∥∥∥∥
L1(0,s;L2(Ω))

≤ cε3/4. (66)

(b.2) Estimate of
∥∥∥εw2

2 Mxx(κ1, t)
(
W

1/2
w (w, t)− y0

x(a(t)±, t)
)∥∥∥

L1(0,s;L2(Ω))
. Let us denote

J2 := ε2

∫ s

0

∫ 1

0

∣∣∣∣∣12
(
x− a(t)

ε1/2

)2(
W 1/2
w

(
x− a(t)

ε1/2
, t

)
− y0

x(a(t)±, t)

)∣∣∣∣∣
2

dxdt.

Using the change of variable x−a(t)
ε1/2

= w, there holds that

J2 = ε5/2

∫ s

0

∫ 1−a(t)
ε1/2

− a(t)

ε1/2

∣∣∣∣w2

2

(
W 1/2
w (w, t)− y0

x(a(t)±, t)
)∣∣∣∣2 dwdt

≤ ε5/2

∫ s

0

∫ +∞

−∞
w4
∣∣∣W 1/2

w (w, t)− y0
x(a(t)±, t)

∣∣∣2 dwdt,
26



provided that the last integral is finite. We have from (23)

W 1/2
w (w, t) = g̃1/2,w(w, t) +

∫ t

0

∫
R
Kw(w, t; ξ, τ)

(
f1/2(ξ, τ)− g?1/2(ξ, τ)

)
dξdτ, w ∈ R, t ∈ (0, T ),

where g̃1/2 is defined by (21) and g?1/2 is defined by (22). Writing

W 1/2
w (w, t)− y0

x(a(t)±, t) =
(
W 1/2
w (w, t)− g̃1/2,w(w, t)

)
+
(
g̃1/2,w(w, t)− y0

x(a(t)±, t)
)
,

and noting that g̃1/2,w(w, t)− y0
x(a(t)±, t) = 0 for |w| ≥ 2, we get

J2 ≤ ε5/2

∫ s

0

∫ +∞

−∞
w4
∣∣∣W 1/2

w (w, t)− g̃1/2,w(w, t)
∣∣∣2 dwdt+ ε5/2.

Let us show that the integral J̃2 :=
∫ s

0

∫ +∞
−∞ w4

∣∣∣W 1/2
w (w, t)− g̃1/2,w(w, t)

∣∣∣2 dwdt is finite. We have

J̃2 =

∫ s

0

∫ +∞

−∞
w4

∣∣∣∣∫ t

0

∫ +∞

−∞
Kw(w, t; ξ, τ)

(
f1/2(ξ, τ)− g?1/2(ξ, τ)

)
dξdτ

∣∣∣∣2 dwdt.
Consider the integral J̃1

2 :=
∫ s

0

∫ +∞
−∞ w4

∣∣∣∫ t0 ∫ +∞
−∞ Kw(w, t; ξ, τ)f1/2(ξ, τ) dξdτ

∣∣∣2 dwdt. Differentiating iden-

tity (63) in w gives ∫ t

0

∫ +∞

−∞
Kw(w, t; ξ, τ)f1/2(ξ, τ) dξdτ = A1(w, t) +A2(w, t),

with

A1(w, t) :=
v(0)− y0(0)

π

(−w)e
− w2

4β2(t)B(t)

2β4(t)B3(t)
√
B(t)

×

×
∫ t

0

Mxx(a(τ), τ)
√
B(τ)

(
B(τ)w2 + 2β2(t)B2(t)− 2β2(t)B(t)B(τ)

)√
B(t)−B(τ)dτ, (67)

A2(w, t) :=
v(0)− y0(0)

π

2w e
− w2

4β(t)2B(t)

β2(t)B2(t)
√
B(t)

∫ t

0

Mxx(a(τ), τ)
√
B(τ)B(τ)

√
B(t)−B(τ)dτ. (68)

It results that

J̃1
2 ≤ 2

∫ s

0

∫ +∞

−∞
w4
(∣∣A1(w, t)

∣∣2 +
∣∣A2(w, t)

∣∣2) dwdt. (69)

Using the change of variable w

2β(t)
√
B(t)

= v, there holds that

∫ s

0

∫ +∞

−∞
w4
∣∣A1(w, t)

∣∣2 dwdt =

∫ s

0

∫ +∞

−∞
32

(
v(0)− y0(0)

π

)2
v6e−2v2

β(t)B7/2(t)
×

×
∣∣∣∣∫ t

0

Mxx(a(τ), τ)
√
B(τ)

(
B(τ)(4β2(t)B(t)v2) + 2β2(t)B2(t)− 2β2(t)B(t)B(τ)

)
×

×
√
B(t)−B(τ)dτ

∣∣∣2 dvdt,
then, using that B is strictly increasing, it results that∫ s

0

∫ +∞

−∞
w4
∣∣A1(w, t)

∣∣2 dwdt
≤ c

∫ s

0

∫ +∞

−∞
β3(t)B3/2(t)

(∫ t

0

|Mxx(a(τ), τ)|
√
B(t)−B(τ)dτ

)2

v6(v2 + 1)2e−2v2dvdt,
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hence
∫ s

0

∫ +∞
−∞ w4

∣∣A1(w, t)
∣∣2 dwdt <∞. Similarly,∫ s

0

∫ +∞

−∞
w4
∣∣A2(w, t)

∣∣2 dwdt
≤ c

∫ s

0

∫ +∞

−∞
β3(t)B3/2(t)

(∫ t

0

|Mxx(a(τ), τ)|
√
B(t)−B(τ)dτ

)2

v6e−2v2 dvdt,

hence
∫ s

0

∫ +∞
−∞ w4

∣∣A2(w, t)
∣∣2 dwdt <∞. It results from (69) that the integral J̃1

2 is finite.

Consider the integral J̃2
2 :=

∫ s
0

∫ +∞
−∞ w4

∣∣∣∫ t0∫ +∞
−∞ Kw(w, t; ξ, τ)g?1/2(ξ, τ) dξdτ

∣∣∣2 dwdt. Since g?1/2(ξ, τ) = 0

for |w| ≥ 2 we have

J̃2
2 =

∫ s

0

∫ +∞

−∞
w4

∣∣∣∣∫ t

0

∫ +2

−2

Kw(w, t; ξ, τ)g?1/2(ξ, τ) dξdτ

∣∣∣∣2 dwdt.
Explicitly,

Kw(w, t; ξ, τ) =
−
(

w
β(t) −

ξ
β(τ)

)
4
√
πβ(t)β(τ)(B(t)−B(τ))3/2

e−
( w
β(t)

− ξ
β(τ) )

2

4(B(t)−B(τ)) , (w, ξ) ∈ R2, 0 ≤ τ < t ≤ T,

then, using the change of variable
ξ

β(τ)
− w
β(t)

2
√

(B(t)−B(τ))
= v gives∫ +2

−2

Kw(w, t; ξ, τ)g?1/2(ξ, τ) dξ

=
1

4
√
πβ(t)β(τ)(B(t)−B(τ))

∫ b(w,t,τ)

a(w,t,τ)

2ve−v
2

g?1/2

(
β(τ)

β(t)
w + 2β(τ)

√
B(t)−B(τ) v, τ

)
dv,

with a(w, t, τ) :=
−2− β(τ)

β(t)
w

2β(τ)
√
B(t)−B(τ)

and b(w, t, τ) :=
2− β(τ)

β(t)
w

2β(τ)
√
B(t)−B(τ)

. Since g?1/2(ξ, τ) is uniformly bounded,

we have ∣∣∣∣∫ +2

−2

Kw(w, t; ξ, τ)g?1/2(ξ, τ) dξ

∣∣∣∣ ≤ c

β(t)β(τ)(B(t)−B(τ))

∫ b(w,t,τ)

a(w,t,τ)

2|v|e−v
2

dv.

There are two positive constants c1 and c2 such that c1 ≤ β(τ)
β(t) ≤ c2, 0 ≤ τ < t ≤ T. Let w1 = 4

c1
, and

w2 = − 4
c2

. We observe that:

w ≥ w1 =⇒ a(w, t, τ) ≤ b(w, t, τ) ≤ 0; w ≤ −w2 =⇒ b(w, t, τ) ≥ a(w, t, τ) ≥ 0,

then deduce that:

for w ≥ w1,

∫ b(w,t,τ)

a(w,t,τ)

2|v|e−v
2

dv = e−b(w,t,τ)2 − e−a(w,t,τ)2 ;

for w ≤ −w2,

∫ b(w,t,τ)

a(w,t,τ)

2|v|e−v
2

dv = e−a(w,t,τ)2 − e−b(w,t,τ)2 .

For w ≥ w1, using the inequality −2 − β(τ)
β(t)w ≤ −

β(τ)
β(t)w, we deduce that e−a(w,t,τ)2 ≤ e

− (c1w)2

4β2(t)(B(t)−B(τ)) .

Then there is a positive constant c3 such that

1

β(t)β(τ)(B(t)−B(τ))
e−a(w,t,τ)2 ≤ c3e

− (c1w)2

8β2(t)(B(t)−B(τ)) . (70)

We also have, for w ≥ w1,
(

2− β(τ)
β(t)w

)2

≥
(

1
2
β(τ)
β(t)w

)2

≥
(

1
2c1w

)2
, then we deduce that

1

β(t)β(τ)(B(t)−B(τ))
e−b(w,t,τ)2 ≤ c3e

− (c1w)2

8β2(t)(B(t)−B(τ)) . (71)
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Inequalities (70) and (71) hold similarly for w ∈ (−∞, w2) so that, for w ∈ (−∞, w2) ∪ (w1,∞),∣∣∣∣∫ t

0

∫ +2

−2

Kw(w, t; ξ, τ)g?1/2(ξ, τ) dξdτ

∣∣∣∣ ≤ c∫ t

0

e
− (c1w)2

8β2(t)(B(t)−B(τ)) dτ.

Using the Cauchy-Schwarz inequality, there holds that∣∣∣∣∫ t

0

∫ +2

−2

Kw(w, t; ξ, τ)g?1/2(ξ, τ) dξdτ

∣∣∣∣2 ≤ cT ∫ t

0

e

(
− (c1w)2

4β2(t)(B(t)−B(τ))

)
dτ,

then ∫ +∞

−∞
|w|4

∣∣∣∣∫ t

0

∫ +2

−2

Kw(w, t; ξ, τ)g?1/2(ξ, τ) dξdτ

∣∣∣∣2 dw ≤ cT ∫ t

0

∫ +∞

−∞
|w|4e−

(c1w)2

4β2(t)(B(t)−B(τ)) dτ dw.

Using the change of variable w

2β(t)
√

(B(t)−B(τ))
= v, we get that

∫ t

0

∫ +∞

−∞
|w|4e−

(c1w)2

4β2(t)(B(t)−B(τ)) dτ dw =

∫ t

0

25β(t)5(B(t)−B(τ))
5/2
∫ +∞

−∞
|v|4e−c

2
1v

2

dτ dv,

then clearly, J̃2
2 < ∞. Using the Young inequality, we deduce that J̃2 < ∞, then conclude that J2 ≤ cε5/2,

and ∥∥∥∥εw2

2
Mxx(κ1, t)

(
W 1/2
w (w, t)− y0

x(a(t)±, t)
)∥∥∥∥

L1(0,s;L2(Ω))

≤ cε5/4. (72)

It results from (66) and (72) that

‖Iε2‖L1(0,s;L2(Ω)) ≤ cε3/4. (73)

(c) Estimate of ‖Iε3‖L1(0,s;L2(Ω)) .

(c.1) Using (64) there holds that ∥∥∥y0
t (1, t)e−M(1,t)z

∥∥∥
L1(0,s;L2(Ω))

≤ cε1/2,

∥∥∥M(1, t)Mx(κ2, t)
)(
y0(1, t)− y0(a(t)±, t)

)
ze−M(1,t)z

∥∥∥
L1(0,s;L2(Ω))

≤ cε1/2.

(c.2) From the explicit expression ofW 0, see (20), we get the uniform bound |W 0(τM(1, t), t)| ≤ max{|v(0)|, |y0(0)|}
then, using (64), there holds that∥∥∥(Mt(1, t) +M(1, t)Mx(κ2, t)

)
W 0(τM(1, t), t)ze−M(1,t)z

∥∥∥
L2(0,s;L2(Ω))

≤ cε1/2.

(c.3) Let γ(t) := β2(t)B(t). By a direct calculation we have, for all C ∈ R,

W 0
t (w, t) + CW 0

w(w, t) =
v(0)− y0(0)

2

1

2
√
π

2wα(t)γ(t) + w − 2Cγ(t)

γ(t)3/2
e−

w2

4γ(t) . (74)

Taking w = τM(1, t) = T1−t
ε1/2

M(1, t) and C =
(
τMt(1, t)− M(1,t)

ε1/2

)
=
(
T1−t
ε1/2

Mt(1, t)− M(1,t)
ε1/2

)
, we get

‖W 0
t (w, t) + CW 0

w(w, t)‖L1(0,s) = CO(ε1/2) +O(ε) = O(1),

then ∥∥∥∥(W 0
t (τM(1, t), t) +

(
τMt(1, t))−

M(1, t)

ε1/2

)
W 0
w(τM(1, t), t)

)
e−M(1,t)z

∥∥∥∥
L1(0,s;L2(Ω))

≤ cε1/2.
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From the previous estimate and the estimates in (c.1) and (c.2) we deduce that

‖Iε3‖L1(0,s;L2(Ω)) ≤ cε
1/2. (75)

(d) Estimate of ‖Iε4‖L1(0,s;L2(Ω)) .

(d.1) A direct calculation gives

W 0
wt(w, t) + CW 0

ww(w, t) =
v(0)− y0(0)

2

1

4
√
π

−2w2α(t)γ(t)− w2 + 2wCγ(t) + 4γ(t)2α(t) + 2γ(t)

γ(t)5/2
e−

w2

4γ(t) .

(76)

Taking w = τM(1, t) = T1−t
ε1/2

M(1, t) and C =
(
τMt(1, t)− M(1,t)

ε1/2

)
=
(
T1−t
ε1/2

Mt(1, t)− M(1,t)
ε1/2

)
, we get

‖W 0
wt(τM(1, t), t) + CW 0

ww(τM(1, t), t)‖L1(0,s) = O(ε1/2) + CO(ε) = O(ε1/2),

hence∥∥∥∥ε1/2

(
W 0
wt(τM(1, t), t) +

(
τMt(1, t)−

M(1, t)

ε1/2

)
W 0
ww(τM(1, t), t)

)
ze−M(1,t)z

∥∥∥∥
L1(0,s;L2(Ω))

≤ cε3/2.

(d.2) From W 0
w(w, t) = y0(0)−v(0)

2
1√
π

1
γ(t)1/2

e−
w2

4γ(t) with w = τM(1, t) = T1−t
ε1/2

M(1, t), we get

‖W 0
w(τM(1, t), t)‖L1(0,s) = O(ε1/2), (77)

then ∥∥∥ε1/2Mx(κ2, t)W
0
w(τM(1, t), t)ze−M(1,t)z

∥∥∥
L1(0,s;L2(Ω))

≤ cε3/2,∥∥∥ε1/2
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
W 0
w(τM(1, t), t)z2e−M(1,t)z

∥∥∥
L1(0,s;L2(Ω))

≤ cε3/2.

From the two last estimates and that in (d.1) we deduce that

‖Iε4‖L1(0,s;L2(Ω)) ≤ cε
3/2. (78)

(e) Estimate of ‖Iε5‖L1(0,s;L2(Ω)) .

(e.1) Using (64) we deduce that∥∥τM(1, t)Mx(a(t), t)y0
x(a(t)±, t)

∥∥
L1(0,s)

= O(ε−1/2).

(e.2) Estimate of
∥∥C1/2(0, τ, t)

∥∥
L1(0,s)

. We use that

W 1/2(w, t)− y0
x(a(t)±, t)w =

(
W 1/2(w, t)− g̃1/2(w, t)

)
+
(
g̃1/2(w, t)− y0

x(a(t)±, t)w
)
,

with
(
g̃1/2(w, t)− y0

x(a(t)±, t)w
)

= 0 for |w| ≥ 2. Taking w = T1−t
ε1/2

M(1, t) in (63) there holds that

J1
3 (t) :=

∫ t

0

∫ +∞

−∞
K

(
T1 − t
ε1/2

M(1, t), t; ξ, σ

)
f1/2(ξ, σ) dξdσ =

v(0)− y0(0)

π

e
−

(
T1−t
ε1/2

M(1,t)

)2
4β2(t)B(t)

β2(t)B2(t)
√
B(t)

×

×
∫ t

0

Mxx(a(σ), σ)
√
B(σ)

(
B(σ)

(
T1 − t
ε1/2

M(1, t)

)2

+ 2β2(t)B2(t)− 2β2(t)B(t)B(σ)

)
×

×
√
B(t)−B(σ)dσ.

30



Consequently,

∣∣J1
3 (t)

∣∣ ≤ cT e
−

(
T1−t
ε1/2

M(1,t)

)2
4β(t)2B(t)√
B(t)

((
T1 − t
ε1/2

M(1, t)

)2

+ 1

)
≤ cT e

−

(
T1−t
ε1/2

M1

)2
2β22B2 ,

where we used the bounds 0 < M1 ≤M(x, t), B(t) ≤ B2 and β(t) ≤ β2 for all (x, t) ∈ QT . Then

∫ T1

0

∣∣J1
3 (t)

∣∣2 dt ≤ cT 2

∫ T1

0

e
−

(
T1−t
ε1/2

M1

)2
β22B2 dt.

Using the change of variable T1−t
ε1/2

= τ , there holds that∫ T1

0

∣∣J1
3 (t)

∣∣2 dt ≤ cT 2ε1/2

∫ +∞

0

e
− (τM1)2

β22B2 dτ ≤ cT 2ε1/2.

When s ≥ T1, we derive similarly the estimate
∫ s
T1

∣∣J1
3 (t)

∣∣2 dt ≤ cT 2ε1/2, then get∫ s

0

∣∣J1
3 (t)

∣∣2 dt ≤ cT 2ε1/2.

Let J2
3 (t) :=

∫ t
0

∫ +∞
−∞ K

(
T1−t
ε1/2

M(1, t), t; ξ, σ
)
g?1/2(ξ, σ) dξdσ. We show similarly that∫ s

0

∣∣J2
3 (t)

∣∣2 dt ≤ cT 2ε1/2,

then derive the estimate∥∥∥W 1/2(τM(1, t), t)− τM(1, t)y0
x(a(t)±, t)

∥∥∥
L1(0,s)

≤ cT 2ε1/2,

then ∥∥C1/2(0, τ, t)
∥∥
L1(0,s)

= O(ε1/2),

and the first term of I5 satisfies the estimate∥∥∥ε1/2
(
Mt(1, t) +M(1, t)Mx(κ2, t)

)
C1/2(0, τ, t)ze−M(1,t)z

∥∥∥
L1(0,s;L2(Ω))

≤ cε3/2.

(e.3) Estimate of‘
∥∥∥W 1/2

t (τM(1, t), t)
∥∥∥
L1(0,s)

. Let us denote F1(w, t) := v(0)−y0(0)
π

e
− w2

4β2(t)B(t)

β2(t)B2(t)
√
B(t)

,

F2(w, t) :=

∫ t

0

Mxx(a(σ), σ)
√
B(σ)

(
B(σ)w2 + 2β2(t)B2(t)− 2β2(t)B(t)B(σ)

)√
B(t)−B(σ)dσ,

and F (w, t) := F1(w, t)F2(w, t). We have from (63), for all (w, t) ∈ R× (0, T ),∫ t

0

∫
R
K(w, t; ξ, σ)f1/2(ξ, σ) dξdσ = F (w, t).

Differentiating the previous equality in t yields∫ t

0

∫
R
Kt(w, t; ξ, σ)f1/2(ξ, σ) dξdσ + f1/2(w, t) = Ft(w, t).

We have

F1,t(w, t) =
v(0)− y0(0)

π
e
− w2

4β2(t)B(t)

(w2
(

2β′(t)B(t) + β(t)B′(t)
)

4β5(t)B9/2(t)
− 2β′(t)B(t) + 5/2B′(t)β(t)

β3(t)B7/2(t)

)
,
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F2,t(w, t) =

∫ t

0

Mxx(a(σ), σ)
√
B(σ) ×

×
(

4β(t)β′(t)B2(t) + 4B(t)B′(t)β2(t)− 4β(t)β′(t)B(t)B(σ)− 2β2(t)B′(t)B(σ)
)√

B(t)−B(σ) dσ

+

∫ t

0

Mxx(a(σ), σ)
√
B(σ)

(
B(σ)w2 + 2β2(t)B2(t)− 2β2(t)B(t)B(σ)

)1

2
(B(t)−B(σ))

−1/2
B′(t)dσ.

Differentiating (23) in t gives

W
1/2
t (w, t) =g̃1/2,t(w, t) +

∫ t

0

∫
R
Kt(w, t; ξ, σ)

(
f1/2(ξ, σ)− g?1/2(ξ, σ)

)
dξdσ + f1/2(w, t)− g?1/2(w, t).

Then

W
1/2
t (w, t) = g̃1/2,t(w, t) + Ft(w, t)−

∫ t

0

∫
R
Kt(w, t; ξ, σ)g?1/2(ξ, σ) dξdσ − g?1/2(w, t). (79)

Arguing as in (e.2), using the bounds 0 < M1 ≤ M(x, t), B(t) ≤ B2 and β(t) ≤ β2 for all (x, t) ∈ QT , we

find that

|F1(w, t)| ≤ ce
− w2

4β22B2 , |F1,t(w, t)| ≤ ce
− w2

4β22B2 (w2 + 1), |F2(w, t)| ≤ c(w2 + 1),

|F2,t(w, t)| ≤ c+ c(w2 + 1)

∫ t

0

(B(t)−B(σ))−1/2B′(t) dσ

= c+ c(w2 + 1)

∫ t

0

(B(t)−B(σ))−1/2B′(σ)
B′(t)

B′(σ)
dσ ≤ c(w2 + 1).

It results that

|Ft(w, t)| ≤ ce
− w2

4β22B2 (w2 + 1) ≤ c̃e
− w2

4β22B2 , (80)

for some constant c̃ > c. Taking w = T1−t
ε1/2

M(1, t) in (79) we have, for ε small enough,

W
1/2
t

(
T1 − t
ε1/2

M(1, t), t

)
= Ft

(
T1 − t
ε1/2

M(1, t), t

)
−
∫ t

0

∫
R
Kt

(
T1 − t
ε1/2

M(1, t), t; ξ, σ

)
g?1/2(ξ, τ)

)
dξdσ. (81)

Using inequality (80) and the change of variable T1−t
ε1/2

= τ , there holds that∫ T1

0

∣∣∣∣Ft(T1 − t
ε1/2

M(1, t), t

)∣∣∣∣ dt ≤ cε1/2

∫ +∞

0

e
− (τM1)2

β22B2 dτ ≤ cε1/2.

When s ≥ T1, we derive similarly the estimate
∫ s
T1

∣∣Ft (T1−t
ε1/2

M(1, t), t
)∣∣ dt ≤ cε1/2, then get∫ s

0

∣∣∣∣Ft(T1 − t
ε1/2

M(1, t), t

)∣∣∣∣ dt ≤ cε1/2. (82)

Consider the term
∫ t

0

∫
RKt(w, t; ξ, σ)g?1/2(ξ, σ) dξdσ. We have Kt (w, t; ξ, σ) = R (w, t; ξ, σ) e−

( w
β(t)

− ξ
β(σ) )

2

4(B(t)−B(σ)) ,

with

R (w, t; ξ, σ) =− 1

β(σ)

2πB′(t)

(4π(B(t)−B(σ)))
3/2

− 1

β(σ)
√

4π(B(t)−B(σ))

 −wβ
′(t)

β2(t)

(
w
β(t) −

ξ
β(σ)

)
2(B(t)−B(σ))

−
B′(t)

(
w
β(t) −

ξ
β(σ)

)2

4(B(t)−B(σ))2

 .
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Using the change of variable
ξ

β(σ)
− w
β(t)

2
√

(B(t)−B(σ))
= v, there holds that

∫ +2

−2

Kt(w, t; ξ, σ)g?1/2(ξ, σ) dξ

= 2β(σ)
√
B(t)−B(σ)

∫ b(w,t,σ)

a(w,t,σ)

e−v
2

R

(
w, t;

β(σ)

β(t)
w + 2β(σ)

√
B(t)−B(σ) v, σ

)
×

× g?1/2
(
w, t;

β(σ)

β(t)
w + 2β(σ)

√
B(t)−B(σ) v, σ

)
dv,

with a(w, t, σ) =
−2− β(σ)

β(t)
w

2β(σ)
√
B(t)−B(σ)

and b(w, t, σ) =
2− β(σ)

β(t)
w

2β(σ)
√
B(t)−B(σ)

. We have

2β(σ)
√
B(t)−B(σ) R

(
w, t;

β(σ)

β(t)
w + 2β(σ)

√
B(t)−B(σ) v, σ

)

=
1√
π

 B′(t)(2v2 − 1)

2(B(t)−B(σ))
−

vwβ′(t)
β2(t)√

B(t)−B(σ)

 ,

then ∫ +2

−2

Kt(w, t; ξ, σ)g?1/2(ξ, σ) dξ =
1√
π

∫ b(w,t,σ)

a(w,t,σ)

e−v
2

g?1/2

(
β(σ)

β(t)
w + 2β(σ)

√
(B(t)−B(σ)) v, σ

)
× B′(t)(2v2 − 1)

2(B(t)−B(σ))
−

vwβ′(t)
β2(t)√

B(t)−B(σ)

 dv.

Using that g?1/2(ξ, τ) is uniformly bounded, there holds that

∫ +2

−2

∣∣∣Kt(w, t; ξ, σ)g?1/2(ξ, σ)
∣∣∣ dξ ≤ c∫ b(w,t,σ)

a(w,t,σ)

e−v
2

 B′(t)(2v2 + 1)

2(B(t)−B(σ))
+

|vw|β′(t)
β2(t)√

B(t)−B(σ)

 dv.

Let us denote

A1(t, σ) :=
B′(t)

2(B(t)−B(σ))
, A2(t, σ) :=

β′(t)
β2(t)√

B(t)−B(σ)
, A3(t, σ) := b(w, t, σ)− a(w, t, σ),

so that ∫ +2

−2

∣∣∣Kt(w, t; ξ, σ)g?1/2(ξ, σ)
∣∣∣ dξ ≤ c∫ b(w,t,σ)

a(w,t,σ)

e−v
2 (
A1(t, σ)(2v2 + 1) +A2(t, σ)|vw|

)
dv.

Using the inequalities e−v
2

(2v2 + 1) ≤ ce− v
2

2 , e−v
2 |v| ≤ ce− v

2

2 , we have∫ +2

−2

∣∣∣Kt(w, t; ξ, σ)g?1/2(ξ, σ)
∣∣∣ dξ ≤ c(A1(t, σ) +A2(t, σ)|w|

) ∫ b(w,t,σ)

a(w,t,σ)

e−
v2

2 dv

≤ c
(
A1(t, σ) +A2(t, σ)|w|

)
A3(t, σ)e−

a(w,t,σ)2

4 .

Let us take w = T1−t
ε1/2

M(1, t) in the previous inequality. For ε small enough and t ≤ T1 we have a(w, t, σ) < 0,

then (
A1(t, σ) +A2(t, σ)|w|

)
A3(t, σ)e−

a(w,t,σ)2

2 ≤ c
(
|w|+ 1

)
e−

a(w,t,σ)2

4 .
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Then ∫ +2

−2

∣∣∣∣Kt

(
T1 − t
ε1/2

M(1, t), t; ξ, σ

)
g?1/2(ξ, σ)

∣∣∣∣ dξ ≤ c(T1 − t
ε1/2

M(1, t) + 1

)
e−

a

(
T1−t
ε1/2

M(1,t),t,σ

)2
4 .

Integrating in σ, we have∫ t

0

∫ +2

−2

∣∣∣∣Kt

(
T1 − t
ε1/2

M(1, t), t; ξ, σ

)
g?1/2(ξ, σ)

∣∣∣∣ dξdσ ≤ c(T1 − t
ε1/2

M(1, t) + 1

)∫ t

0

e−
a

(
T1−t
ε1/2

M(1,t),t,σ

)2
4 dσ.

(83)

Integrating in t and using the change of variable T1−t
ε1/2

= τ , there holds that∫ T1

0

∫ t

0

∫ +2

−2

∣∣∣∣Kt

(
T1 − t
ε1/2

M(1, t), t; ξ, σ

)
g?1/2(ξ, σ)

∣∣∣∣ dξdσdt
≤ cε1/2

∫ T1

ε1/2

0

(τM(1, t) + 1)

∫ t

0

e−
a(τM(1,t),t,σ)2

4 dσdτ

≤ cε1/2

∫ +∞

0

(τM(1, t) + 1)

∫ t

0

e−
a(τM(1,t),t,σ)2

4 dσdτ

≤ cε1/2.

When s ≥ T1, we derive similarly the estimate
∫ s
T1

∫ +2

−2

∣∣∣Kt

(
T1−t
ε1/2

M(1, t), t; ξ, σ
)
g?1/2(ξ, σ)

∣∣∣ dξdσ ≤ cε1/2, then

get ∫ s

0

∣∣∣∣∫ t

0

∫
R
Kt(w, t; ξ, σ)g?1/2(ξ, σ) dξdσ

∣∣∣∣ dt ≤ cε1/2.

We conclude that ∥∥∥W 1/2
t (τM(1, t), t)

∥∥∥
L1(0,s)

≤ cε1/2.

(e.4) Estimate of‘
∥∥∥τMt(1, t)

(
W

1/2
w (τM(1, t), t)− y0

x(a(t)±, t)
)∥∥∥

L1(0,s)
. Let us denote

J4(t) := W 1/2
w

(
T1 − t
ε1/2

Mt(1, t), t

)
− y0

x(a(t)±, t).

We have from (23)

W 1/2
w (w, t) = g̃1/2,w(w, t) +

∫ t

0

∫
R
Kw(w, t; ξ, τ)

(
f1/2(ξ, τ)− g?1/2(ξ, τ)

)
dξdτ, w ∈ R, t ∈ (0, T ).

Writing

W 1/2
w (w, t)− y0

x(a(t)±, t) =
(
W 1/2
w (w, t)− g̃1/2,w(w, t)

)
+
(
g̃1/2,w(w, t)− y0

x(a(t)±, t)
)
,

then taking w = T1−t
ε1/2

Mt(1, t) we have, for ε small enough,

W 1/2
w

(
T1 − t
ε1/2

Mt(1, t), t

)
− y0

x(a(t)±, t) = W 1/2
w

(
T1 − t
ε1/2

Mt(1, t), t

)
− g̃1/2,w

(
T1 − t
ε1/2

Mt(1, t), t

)
.

Then

W 1/2
w

(
T1 − t
ε1/2

Mt(1, t), t

)
− y0

x(a(t)±, t) =

∫ t

0

∫
R
Kw

(
T1 − t
ε1/2

Mt(1, t), t; ξ, τ

)(
f1/2(ξ, τ)− g?1/2(ξ, τ)

)
dξdτ.

(84)
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We have from (b.2)

J1
4 (t) : =

∫ t

0

∫ +∞

−∞
Kw

(
T1 − t
ε1/2

Mt(1, t), t; ξ, τ

)
f1/2(ξ, τ) dξdτ

= A1

(
T1 − t
ε1/2

Mt(1, t), t

)
+A2

(
T1 − t
ε1/2

Mt(1, t), t

)
,

where A1(w, t) and A2(w, t) are defined by (67) and (68). We have |A1(w, t)|+ |A2(w, t)| ≤ ce
− w2

2β22B2 where

we used the bounds 0 < M1 ≤M(x, t), B(t) ≤ B2 and β(t) ≤ β2 for all (x, t) ∈ QT . Then

∫ T1

0

∣∣J1
4 (t)

∣∣ dt ≤ c∫ T1

0

e
−

(
T1−t
ε1/2

M1

)2
2β22B2 dt ≤ cε1/2

∫ +∞

0

e
− (τM1)2

2β22B2 dτ ≤ cε1/2,

using the change of variable T1−t
ε1/2

= τ . When s ≥ T1, we derive similarly the estimate
∫ s
T1

∣∣J1
4 (t)

∣∣2 dt ≤ cε1/2,

then get
∫ s

0

∣∣J1
4 (t)

∣∣ dt ≤ cε1/2. Let J2
4 (t) =

∫ t
0

∫ +∞
−∞ K

(
T1−t
ε1/2

M(1, t), t; ξ, σ
)
g?1/2(ξ, σ) dξdσ. We show similarly

that
∫ s

0

∣∣J2
4 (t)

∣∣ dt ≤ cε1/2, then derive the estimates∥∥∥W 1/2
w (τM(1, t), t)− y0

x(a(t)±, t)
∥∥∥
L1(0,s)

≤ cε1/2,∥∥∥τMt(1, t)
(
W 1/2
w (τM(1, t), t)− y0

x(a(t)±, t)
)∥∥∥

L1(0,s)
≤ c.

(e.5) Estimate of
∥∥ε1/2C1/2,t(0, τ, t)e

−M(1,t)z
∥∥
L1(0,s;L2(Ω))

. Using (64) and the estimates in (e.3) and (e.4),

we deduce that ∥∥∥ε1/2C1/2,t(0, τ, t)e
−M(1,t)z

∥∥∥
L1(0,s;L2(Ω))

≤ cε1/2.

(e.6) We have from (e.4) that
∥∥∥W 1/2

w (τM(1, t), t)− y0
x(a(t)±, t)

∥∥∥
L1(0,s)

≤ cε1/2, then, using (64) we deduce

that ∥∥∥C1/2,τ (0, τ, t)e−M(1,t)z
∥∥∥
L1(0,s;L2(Ω))

≤ cε1/2.

From the previous estimate, the last estimate in (e.2), and the estimate in (e.5) we deduce that

‖Iε5‖L1(0,s;L2(Ω)) ≤ cε
1/2. (85)

Collecting estimates (65), (73), (75), (78), and (85) we get the desired result.
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[18] C. Laurent and M. Léautaud, On uniform observability of gradient flows in the vanishing viscosity
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