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Filling the gap between individual-based evolutionary models and

Hamilton-Jacobi equations

Nicolas Champagnat* Sylvie Méléard� Sepideh Mirrahimi� Viet Chi Tran §

June 15, 2022

Abstract

We consider a stochastic model for the evolution of a discrete population structured by
a trait with values on a finite grid of the torus, and with mutation and selection. Traits
are vertically inherited unless a mutation occurs, and influence the birth and death rates.
We focus on a parameter scaling where population is large, individual mutations are small
but not rare, and the grid mesh for the trait values is much smaller than the size of mu-
tation steps. When considering the evolution of the population in a long time scale, the
contribution of small sub-populations may strongly influence the dynamics. Our main re-
sult quantifies the asymptotic dynamics of sub-population sizes on a logarithmic scale. We
establish that under the parameter scaling the logarithm of the stochastic population size
process, conveniently normalized, converges to the unique viscosity solution of a Hamilton-
Jacobi equation. Such Hamilton-Jacobi equations have already been derived from parabolic
integro-differential equations and have been widely developed in the study of adaptation
of quantitative traits. Our work provides a justification of this framework directly from a
stochastic individual based model, leading to a better understanding of the results obtained
within this approach. The proof makes use of almost sure maximum principles and careful
controls of the martingale parts.

Keywords: stochastic birth death models, large population approximation, selection, mutation,
viscosity solution, maximum principle.

MSC 2000 subject classification: 92D25, 92D15, 60J80, 60F99, 35F21.

1 Introduction and presentation of the model

Long-term evolutionary dynamics of biological populations may be strongly influenced by small
populations and local extinction in some areas of the phenotypical trait space. Survival of small
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populations in very large populations is crucial when evolution proceeds by selective sweeps
[20] or for the evolution of antibiotic resistance for bacteria [24, 27]. For example, in bacterial
populations involving horizontal transfer, it was shown in [3, 6] that the individual-based long-
term dynamics is very sensitive to random survival of very small populations, which may either
drive the population to evolutionary suicide or to cyclic dynamics. In such context, the bacterial
population is very large making the tracking of small populations very challenging.
From a point of view of mathematical modeling, one wishes to consider large population

scalings allowing for survival of much smaller populations. Two approaches emerged: a purely
deterministic one, based on partial differential equations (PDE), and a stochastic one, based
on birth and death processes (so-called individual-based models in biology). Both approaches
describes exponentially small populations sizes and characterize the dynamics of the exponents.
An analytical approach allowing to deal with negligible but non-extinct populations was pro-

posed in [13] and then widely developed (see for instance [25, 2, 21]) for the asymptotic study
of parabolic integro-differential selection-mutation models. Let us present it in a setting close
to [2]. We consider a population whose individuals are differentiated by a trait x ∈ T, the torus
of dimension 1, identified below with the interval [0, 1). The trait can vary from an individual
to the other. The evolution of the population is driven by two effects: mutation of the traits,
and selection as the reproductive and survival abilities of an individual depend on its trait x.
For an individual of trait x ∈ T, let us denote by b(x) (resp. d(x) and p(x)) the clonal birth
rate (resp. the death rate and the birth rate with mutation), and by G(h) the mutation kernel.
Assuming that the population density solves the PDE{

ε∂tuε(t, x) = uε(t, x) (b(x)− d(x)) +
∫
T

1
εG
(x−y

ε

)
p(y)uε(t, y)dy (t, x) ∈ R+ × T

uε(t, 0) = exp
(
β0(x)

ε

)
, x ∈ T

(1.1)

in the limit ε → 0 of small mutations and large time, and applying the Hof-Cole transformation

βε(t, x) = ε log uε(t, x), or uε(t, x) = exp

(
βε(t, x)

ε

)
, (1.2)

it is proved in [2] (in a slightly different setting, considering x ∈ R and taking into account a
competition term) that βε converges to the unique solution β of the Hamilton-Jacobi equation{

∂
∂tβ(t, x) = b(x)− d(x) + p(x)

∫
RG(h)eh∂xβ(t,x)dh, (t, x) ∈ R+ × T

β(0, x) = β0(x), x ∈ T
(1.3)

Scaling limits of individual-based models on a discrete trait space with rare mutations and
large population, and allowing to deal with negligible populations and local extinction, were
proposed in [14, 5, 10, 11, 4]. These references focus on population sizes of the order of Kβ

and characterize the asymptotic dynamics of the exponent β. In particular, local extinction
is possible when the exponent β hits 0. The fact that the trait space is discrete allows to
describe separately the dynamics of each small sub-population. However, this makes the detailed
description of the asymptotic dynamics very complicated (see [10, 11]). Note that mutations
are assumed individually rare in these references, but they are more frequent than in the scaling
limits of adaptive dynamics (see e.g. [22, 12, 7, 9]), where negligible populations either fixate or go
extinct fast, due to the fact that the populational mutation rate vanishes here. Scaling limits with
non-vanishing populational mutation rates partly solve the criticisms raised by biologists [28]
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concerning the too slow evolutionary speed in adaptive dynamics, particularly in microorganism
populations. Biological criticisms were also raised for the analytical approach [26], because of
the so-called tail problem: exponentially small populations, which may actually be extinct, can
have a strong influence on the future evolutionary dynamics of the population. In particular,
evolutionary branching is too fast. Modification of the Hamilton-Jacobi equation were proposed
in [26, 23, 16] to solve this problem, but we believe that an individual-based approach is crucial
to provide a more realistic and biologically relevant solution to the tail problem.

The purpose of our work is to provide a stochastic individual-based justification of Hamilton-
Jacobi equations. To our knowledge, this is the first proof of this kind in the literature. We follow
an individual-based approach, assuming a continuous trait space with a vanishing discretization

step δK , where K is a scaling parameter such that the population is of the order of K β̃K(t,x),
assuming frequent and small mutations. In the individual-based model, individuals with trait
x ∈ T give birth to a clone at rate b(x), die at rate d(x) or give birth to a mutant at rate
p(x). Mutant traits are drawn according to a discretization of the distribution logKG(logK·).
Mutation steps are of the order of 1/ logK and the discretization step δK is assumed much
smaller than 1/ logK. In this first work, we focus on the understanding of the relevant scales
allowing to capture the limiting Hamilton-Jacobi dynamics. Thus, we consider a simplified
model where the birth rate b is assumed larger than the death rate d, making the stochastic
process super-critical, and the trait space has no boundary. Generalization is a work in progress.

The proof of our main result makes use of uniform Lipschitz bounds on the finite variation part
of β̃K , obtained using an almost sure maximum principle and careful bounds for the martingale
part. The identification of the limit is done by checking that it is almost surely viscosity solution
of (2.12). We describe the model and state our main result in Section 2. The proof is divided
into two main steps—proof of tightness and identification of the limit—which are detailed in
Sections 3 and 4, respectively.

Note that the Hopf-Cole transformation (1.2) is reminiscent of large deviations scalings. How-
ever, our scaling is more of a law of large numbers type. As far as we know, the large deviations
interpretation of the Hamilton-Jacobi equation can be done through a Feynman-Kac interpreta-
tion of the PDE (1.1) [8]. However, the stochastic process involved in the Feynman-Kac formula
does not seem to be directly related to the biological population process, even though some
works suggest that it may be related to the ancestral trait process of living individuals [15].

2 Model and main result

2.1 The model

We consider a super-critical stochastic birth-death-mutation model describing an asexual popu-
lation of individuals characterized by a quantitative phenotypic or genetic trait x ∈ T. Starting
from a finite population whose initial size is parameterized by K ∈ N, our goal is to recover,
in the limit K → +∞, an evolutionary dynamics described by the Hamilton-Jacobi partial dif-
ferential equation (1.3). For this, we consider a discretization of the trait space T with step
δK → 0. For the sake of simplicity, we will consider in what follows that 1/δK ∈ N. Then, the
population is composed of individuals with traits belonging to the discrete space

XK :=

{
iδK : i ∈ {0, 1, · · · , 1

δK
− 1}

}
,
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embedded with the torus distance: ∀x, y ∈ [0, 1),

ρ(x, y) = min
{
|x′ − y′|, x′ = x mod 1, y′ = y mod 1

}
= min

(
|x− y|, 1− |x− y|

)
.

It’s enough to define ρ(x, y) for x, y ∈ T by considering their representative in [0, 1).
The number of individuals with trait iδK is described by the stochastic process (NK

i (t), t ≥ 0).
The total population size at time t is then given by

NK(t) =

1/δK−1∑
i=0

NK
i (t).

An individual with trait x ∈ XK

� gives birth to a new individual with the same trait x at rate b(x);

� dies at rate d(x);

� gives birth to a mutant individual with trait y ∈ XK at rate

p(x)δK logKG ((y − x) logK) , (2.1)

where z is the unique real number of [−1/2, 1/2) that is equal to z modulo 1, i.e. z =
z − ⌊z + 1/2⌋, where ⌊·⌋ is the integer part function.

In the rest of the paper, the following assumptions are made:

Assumption 2.1. 1. We assume that b, d and p are nonnegative Lipschitz continuous functions
defined on T, such that for all x ∈ T,

b(x) > d(x) and p(x) > 0. (2.2)

This means that the birth-death process for each trait is super-critical. In the sequel, we denote
by b̄, p̄ and d̄ the upper bounds of these functions on T, by p > 0 the lower bound of p, and by
∥b∥Lip, ∥d∥Lip and ∥p∥Lip their Lipschitz norm.

2. The function G defined on R is nonnegative, continuous, satisfies
∫
RG(y) dy = 1 and has

finite exponential moments of any order. Moreover, we assume that there exists R > 0 such that
G is nonincreasing on [R,+∞) and nondecreasing on (−∞,−R].
An example of function G satisfying Assumption 2 is given by the Gaussian kernel G(h) =

1√
2πσ

e−h2/2σ2
.

3. There exists a constant a1 > 0 such that, for all K ∈ N and all i ∈ {0, 1, · · · , 1
δK

− 1},

NK
i (0) ≥ Ka1 . (2.3)

4. There exists a2 < a1 such that

K−a2/4 ≪ δK ≪ 1

logK
as K → +∞. (2.4)
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Point 4 above implies that

hK := δK logK ≪ 1. (2.5)

Therefore, the interpretation of (2.1) is that the rate at which x gives birth to a mutant individual
is close to p(x). Indeed, for an individual with trait xK = iKδK with iK = ⌊x/δK⌋ and x ∈ T
fixed,

lim
K→+∞

p(xK)

1
δK

−1∑
j=0

hKG
(
(iK − j)δK logK

)
= lim

K→+∞
p(xK)

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG (hKℓ)

= p(x)

∫
R
G(y) dy = p(x), (2.6)

where we used Assumption 2.1.2 to control the tails of the Riemann sum.

Therefore, the individual mutation rate is order 1 and mutation steps are small: conditionally
on being a mutant, the trait y of the offspring has the distribution G scaled by a factor 1/ logK
representing the order of magnitude of the mutation steps. Note also that (2.5) means that the
mesh size is much smaller than the mutation step.

Our goal is to study the asymptotic behavior (when K tends to infinity) of the population
sizes NK

i when NK
i (0) is of the order of Kαi for some αi > 0. Note that in the case where

p(x) = 0 for all x ∈ T, the process NK
i (t) is a super-critical one-dimensional branching process,

hence E(NK
i (t)) = E(NK

i (0))e(b(iδK)−d(iδK))t. Therefore, if the initial condition is of order Kαi ,
then E[NK

i (t logK)] ∼ Kαi+(b(iδK)−d(iδK))t. This suggests to study

βK
i (t) =

log(NK
i (t logK))

log(K)
, (2.7)

with the convention that βK
i (t) = 0 if NK

i (t logK) = 0. So the sub-population of trait iδK at

time t logK has size NK
i (t logK) = KβK

i (t).

We make the following assumption on the initial condition βK
i (0).

Assumption 2.2. Assume that there exists a constant A > 0 such that

lim
K→+∞

P
(
sup
i ̸=j

|βK
i (0)− βK

j (0)|
ρ(i δK , j δK)

> A
)
= 0. (2.8)

Notations: (i) We shall use the following Riemann approximation repeatedly in the proofs:
for all α > 0,

lim
K→+∞

1
δK

−1∑
j=0

hKG
(
(iK − j)δK logK

)
eα logK ρ(jδK ,iKδK)

= lim
K→+∞

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG (hKℓ) eαhK |ℓ| =

∫
R
eα|y|G(y) dy, (2.9)
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and thus, there exists a constant G(α) depending only on α > 0 such that

sup
K≥1

1
δK

−1∑
j=0

hKG
(
(iK − j)δK logK

)
eL logK ρ(jδK ,iKδK) = : G(α) < +∞. (2.10)

(ii) In what follows and for any function f on {0, 1, · · · , 1
δK

− 1}, we will use the notation

∆Kfi =
fi+1 − fi

δK
,

with the convention that f1/δK = f0.

2.2 The main result - Sketch of the proof

Since we are interested in the convergence of the quantities βK
i to a continuous function defined

on the trait space T, when K → +∞ and δK → 0, we introduce the following interpolation of
the βK

i ’s: for all x ∈ T and K ≥ 1, let i be such that x ∈ [iδK , (i+ 1)δK), and define

β̃K
t (x) = βK

i (t)
(
1− x

δK
+ i
)
+ βK

i+1(t)
( x

δK
− i
)
, (2.11)

with the convention that βK
1/δK

(t) = βK
0 (t). The sequence of processes (β̃K

t , t ∈ [0, T ])K belongs

to D([0, T ], C(T,R)), where C(T,R) is endowed with the topology of uniform convergence and
D([0, T ], C(T,R)) is the Skorohod space of càdlàg paths with the associated Skorokhod topology.
Let us state our main theorem.

Theorem 2.3. Let T > 0. Under the Assumptions 2.1 and 2.2, and assuming that β̃K
0 (·)

converges in probability for the topology of uniform convergence on C(T,R) to a deterministic
function β0(·) ∈ C(T,R), the sequence (β̃K)K converges in probability in D([0, T ], C(T,R)) to the
unique Lipschitz viscosity solution of the Hamilton-Jacobi equation{

∂
∂tβ(t, x) = b(x)− d(x) + p(x)

∫
RG(h)eh∂xβ(t,x)dh, (t, x) ∈ R+ × T

β(0, x) = β0(x), x ∈ T.
(2.12)

The proof of Theorem 2.3 will be classically obtained in two steps: tightness and identification
of the limiting values. Therefore we will prove the two next results, respectively in Sections 3
and 4.

Theorem 2.4. The sequence of laws of (β̃K
t , t ∈ [0, T ])K is relatively compact in P(D([0, T ], C(T,R))).

Theorem 2.5. The limiting values β of (β̃K
t , t ∈ [0, T ])K are characterized as the unique vis-

cosity solution of the Hamilton-Jacobi equation

∂

∂t
β(t, x) = b(x)− d(x) + p(x)

∫
R
G(h)eh∂xβ(t,x)dh.

The proofs of these two results require to control the increments of the functions β̃K
t (.). This

functions can also be written as

β̃K
t (x) = (x− iδK)∆KβK

i (t) + βK
i (t).
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From this expression, we observe that two technical steps are required: to estimate uniformly

βK
i (t) and to control uniformly ∆KβK

i (t) =
βK
i+1(t)−βK

i (t)

δK
(the second estimate being the

harder part, it is a major difficulty and constitutes the technical interest of the paper). Such
estimates are also obtained in the deterministic derivation of Hamilton-Jacobi equations of
type (2.12) from parabolic integro-differential equations using the maximum principle and the
Bernstein method which consists in applying again the maximum principle to the equation
satisfied by the increments (see [2]). Here, since we have stochastic processes we cannot apply
the Bernstein method directly. Using the Doob-Meyer decomposition, the stochastic processes
can be separated into a finite variation part and a martingale part. We show indeed that the
martingale part remains small with our rescaling and we apply the maximum principle almost
surely on the finite variation part.

Let us detail now the semimartingale Doob-Meyer decomposition of the processes βK
i , i =

0, · · · , 1/δK − 1, which can easily be deduced from the Doob-Meyer decomposition of the semi-
martingales NK

i , i = 0, · · · , 1/δK − 1.

We have
βK
i (t) = MK

i (t) +AK
i (t) (2.13)

with

AK
i (t) = βK

i (0) +
1

logK

∫ t logK

0

(
b(iδK)NK

i (s) log

(
1 +

1

NK
i (s)

)
(2.14)

+ d(iδK)NK
i (s) log

(
1− 1

NK
i (s)

))
ds

+
1

logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hK p((i+ ℓ)δK)G(hKℓ)

∫ t logK

0
NK

i+ℓ(s) log

(
1 +

1

NK
i (s)

)
ds,

with the conventions that, when the index j /∈ {0, . . . , 1/δK − 1},

NK
j = NK

j−⌊jδK⌋/δK and p(jδK) = p((j − ⌊jδK⌋/δK)δK), when j ≥ 1/δK , (2.15)

NK
j = NK

j+⌈|j|δK⌉/δK and p(jδK) = p((j + ⌈|j|δK⌉/δK)δK), when j < 0. (2.16)

The process MK
i is a local martingale with quadratic variation

⟨MK
i ⟩t =

1

log2K

∫ t logK

0

(
b(iδK)NK

i (s) log2
(
1 +

1

NK
i (s)

)
(2.17)

+ d(iδK)NK
i (s) log2

(
1− 1

NK
i (s)

))
ds

+
1

log2K

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((i+ ℓ)δK)G(hKℓ)

∫ t logK

0
NK

i+ℓ(s) log
2

(
1 +

1

NK
i (s)

)
ds.

In Section 3, we will prove technical uniform estimates on the martingale part ∆KMK
i (t) and

the finite variation part ∆KAK
i (t) of the processes ∆KβK

i (t). In that aim, let us introduce
sequences of stopping times playing an important role in the proofs.
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Let a ∈ (a2, a1) be fixed during the rest of the proof, a1 being defined in (2.3) and a2 in(2.4).
For any K, we define

τ ′K = inf
{
t ≥ 0, ∃i ∈ {0, 1, · · · , 1

δK
− 1};NK

i (t logK) < Ka
}
. (2.18)

Recall Assumption 2.3 on the initial condition. It implies that NK
i (t logK) ≥ 1 for all t ≤ τ ′K .

For all L > 0, we also define

τK = τK(L) = inf

{
t ≥ 0 : ∃i ∈ {0, 1, · · · , 1

δK
− 1}, |βK

i+1(t)− βK
i (t)| > LδK

}
, (2.19)

with the usual convention that βK
1/δK

= βK
0 . It is easy to check that

τK(L) = inf

{
t ≥ 0 : ∃i, j ∈ {0, 1, · · · , 1

δK
− 1}, |βK

i (t)− βK
j (t)| > Lρ(iδK , jδK)

}
and

τK(L) = inf
{
t ≥ 0 : ∃x, y ∈ T, |β̃K

t (x)− β̃K
t (y)| > L ρ(x, y)

}
. (2.20)

We will study the processes until the stopping time

θK(L) = τK(L) ∧ τ ′K . (2.21)

Before the stopping time θK(L), the functions β̃K
t are Lipschitz and the population size of each

trait is controlled by Ka, by definition. For each L fixed, we will provide uniform estimates on
the martingale parts MK

i (t) and ∆KMK
i (t) and the finite variation parts AK

i (t) and ∆KAK
i (t)

of the processes βK
i (t) and ∆KβK

i (t), before the stopping time θK(L). This will allow us to
prove the next lemma:

Lemma 2.6. For all T > 0, there exists L0 > 0 large enough, such that

lim
K→+∞

P(θK(L0) > T ) = 1.

An expression for L0 will be given in (3.18) in the proof.

3 Proof of the tightness

We will use the criterion of Theorem 3.1 in Jakubowski [18]: let us consider the set F of functions
Ff , for f ∈ C(T,R), defined on C(T,R) by

∀g ∈ C(T,R), Ff (g) =

∫
T
f(x)g(x)dx.

We have to prove that F satisfies the required properties:

(i) For each ε > 0, there exists a compact set Cε ⊂ C(T,R) such that

∀K, P
(
β̃K ∈ D([0, T ], Cε)

)
> 1− ε.
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(ii) For each f ∈ C(T,R), the sequence of laws of real-valued processes

XK
f (·) =

∫
T
β̃K(., x)f(x)dx (3.1)

is tight.

Point (i) is the hard part of the proof. Using Ascoli’s characterization of compact subsets of
C(T,R), we need to obtain estimates related to equi-boundedness and to equi-continuity for the
processes β̃K

t (.). The proof relies on Lipschitz estimates (in x) of the functions β̃K
t . In Section

3.1, we show that the martingale part of βK
i remains small with our rescaling and in Section 3.2,

we apply the maximum principle almost surely on the finite variation part of βK
i . This allows

us to prove Lemma 2.6 in Section 3.3. The proof of the tightness is ended in Section 3.4.

3.1 Control of the martingale part

Our first estimate will be useful to prove the tightness of the laws of β̃K . In the sequel, C
denotes a constant not depending on any parameter and that may change from line to line.
The following estimate will be used repeatedly: by (2.20), for all t ≤ τK(L) and all i, j ≤

1/δK − 1,
NK

j (t logK)

NK
i (t logK)

= exp(logK(βj(t)− βi(t)) ≤ eLρ(jδK ,iδK) logK . (3.2)

Lemma 3.1. For all T > 0, there exists a constant C independent of K, T , L and i such that,
almost surely, for all t ≤ T and all i ∈ {0, . . . , 1/δK − 1},

⟨MK
i ⟩t∧θK(L) ≤

(
CG(L)

Ka logK

)
t. (3.3)

In particular,

E
(

sup
t≤T∧θK(L)

sup
i
⟨MK

i ⟩t
)
≤ CG(L)T

Ka logK
(3.4)

and for all A > 0,

P
(

sup
t≤T∧θK(L)

sup
i

|MK
i (t)| ≥ A

)
≤ CG(L)T

A2δKKa logK
. (3.5)

Proof. It follows from (2.17) that

⟨MK
i ⟩t∧θK ≤ C(b̄+ d̄)

log2K

∫ (t∧θK) logK

0

ds

NK
i (s)

+
p̄

log2K

∫ (t∧θK) logK

0

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG(hKℓ)
NK

i+ℓ(s)

(NK
i (s))2

ds.

Therefore, using (2.18) and (3.2), (3.3) follows. Then

P
(

sup
t≤T∧θK

sup
i

|MK
i (t)| ≥ A

)
≤

1/δK−1∑
i=0

P
(

sup
t≤T∧θK

|MK
i (t)| ≥ A

)

≤ 1

A2

1/δK−1∑
i=0

E
(

sup
t≤T∧θK

|MK
i (t)|2

)
,

9



so we obtain (3.5) using Doob’s inequality and (3.3).

The second step is a technical lemma that we state now.

Lemma 3.2. Let t ≤ T . Then, for any ε > 0 and any i ∈ {0, . . . , 1/δK − 1}

P
(

sup
s≤t∧θK(L)

|∆KMK
i (s)| > ε

)
≤ C

ε

√
G(L)t

δ2KKa logK
, (3.6)

where the constant G(L) is defined in (2.10).

Proof. Let ε > 0. By the submartingale maximal lemma, we have that

P
(
sup
s≤t

|∆KMK
i (s)| > ε

)
≤ 1

ε
E(|∆KMK

i (t)|) ≤ 1

ε
E
(
|∆KMK

i (t)|2
)1/2

.

Now, Lemma 3.1 yields

⟨∆KMK
i ⟩t∧θK ≤ 2

δ2K
(⟨MK

i+1⟩t∧θK + ⟨MK
i ⟩t∧θK ) ≤

4CG(L)t

δ2KKa logK
.

Hence (3.6) and thus Lemma 3.2 are proved.

Using a similar argument as in the proof of Lemma 3.1, we have the following result.

Corollary 3.3. Let T > 0 and εK = δ−1
K (Ka logK)−1/4. We define the event

ΩK(L) =

{
sup

0≤i≤1/δK−1, t≤T∧θK(L)
|∆KMK

i (t)| ≤ εK

}
.

Then there exists a constant C > 0 such that

P(Ωc
K(L)) ≤

C
√
G(L)T

δKεKδK
√
Ka logK

=
C
√
G(L)T

δK(Ka logK)1/4
.

Note that, by (2.4), δ4KKa logK tends to infinity, so P(ΩK(L)) tends to 1, asK goes to infinity.
In addition, since |j − i|δK ≤ 1 for all 0 ≤ i, j ≤ 1/δK − 1, we also have that

ΩK(L) ⊂

{
sup

0≤i,j≤1/δK−1, t≤T∧θK(L)

∣∣MK
i (t)−MK

j (t)
∣∣ ≤ εK

}
,

so it also follows from the last corollary that

P

(
sup

0≤i,j≤1/δK−1, t≤T∧θK(L)

∣∣MK
i (t)−MK

j (t)
∣∣ > εK

)
≤ C

√
G(L)TεK . (3.7)

From now on, we will work on the probability subspace ΩK(L).
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3.2 Control of the finite variation part

Let us now focus on the finite variation part AK
i . We will prove that

Proposition 3.4. Let T > 0. Then, there exists a constant C1 such that for K large enough,
for all t ≤ T and all i ∈ {0, . . . , 1/δK−1} the following inequality holds almost surely on ΩK(L):

|AK
i (t ∧ θK(L))| ≤ max

0≤j≤1/δK−1
βK
i (0) + C1t. (3.8)

Proof. We only provide the proof of the upper bound on AK
i (t ∧ θK). The lower bound can be

obtained following similar arguments.
Let t and s be less than T such that s < t. Using that log(1 + x) ≤ x and (3.2), we have

AK
i (t ∧ θK)−AK

i (s ∧ θK)

=
1

logK

∫ (t∧θK) logK

(s∧θK) logK

(
b(iδK)NK

i (u) log

(
1 +

1

NK
i (u)

)
+ d(iδK)NK

i (u) log

(
1− 1

NK
i (u)

))
du

+
1

logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((i+ ℓ)δK)G(hKℓ)

∫ (t∧θK) logK

(s∧θK) logK
NK

i+ℓ(u) log

(
1 +

1

NK
i (u)

)
du

≤ C(b̄+ d̄)(t− s) +
1

logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((i+ ℓ)δK)G(hKℓ)

∫ (t∧θK) logK

(s∧θK) logK

NK
i+ℓ(u)

NK
i (u)

du

≤ C(b̄+ d̄)(t− s)

+
1

logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((i+ ℓ)δK)G(hKℓ)

∫ (t∧θK) logK

(s∧θK) logK
exp(logK(βK

i+ℓ(u)− βK
i (u))du.

Recall that on ΩK(L),

βK
j (u)− βK

i (u) = AK
j (u)−AK

i (u) +MK
j (u)−MK

i (u) ≤ AK
j (u)−AK

i (u) + εK .

Thus we obtain that, on the event ΩK(L),

AK
i (t ∧ θK)−AK

i (s ∧ θK) ≤ C(b̄+ d̄)(t− s) +
1

logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((i+ ℓ)δK)G(hKℓ)

∫ (t∧θK) logK

(s∧θK) logK
eεK logK exp(logK(AK

i+ℓ(u)−AK
i (u)))du.

We deduce that, almost surely on ΩK(L) and for all t ≤ θK(L),

dAK
i (t)

dt
≤ C(b̄+ d̄)

+
1

logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((i+ ℓ)δK)G(hKℓ)eεK logK exp(logK(AK
i+ℓ(t)−AK

i (t))) (3.9)
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Defining ÃK
i (t) = AK

i (t)− 2C(b̄+ d̄)t− 2p̄t, we deduce that for any t ≤ θK ,

dÃK
i (t)

dt
< p̄eεK logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG(hKℓ) exp(logK(ÃK
i+ℓ(t)− ÃK

i (t))− 2p̄. (3.10)

Let us introduce

(iK , tK) = (iK(ω), tK(ω)) = argmaxi∈{0,··· , 1
δK

−1},t∈[0,θK(ω)]Ã
K
i (t).

We can prove that tK = 0. Indeed, if conversely we assume that tK > 0, then the right term
of (3.10), for K large enough, is non positive for i = iK and t = tK and then the left term is
negative, contradicting the fact that ÃK

iK
(t) is maximal for t = tK . Hence, we have proved that

for K large enough, almost surely on the event ΩK , for all t ≤ θK and 0 ≤ i ≤ 1/δK − 1,

AK
i (t) = ÃK

i (t) + 2C(b̄+ d̄)t+ 2p̄t ≤ max
0≤j≤1/δK

ÃK
j (0) + 2C(b̄+ d̄)t+ 2p̄t

= max
0≤j≤1/δK

βK
j (0) + 2C(b̄+ d̄)t+ 2p̄t.

The last result has a consequence that will be useful to prove the tightness of β̃K in Section 3.4.

Corollary 3.5. For all T > 0, there exists C(T ) such that,

lim
K→+∞

P

(
sup

0≤i≤1/δK−1
sup

t∈[0,T∧θK(L)]
βK
i (t) ≥ C(T )

)
= 0.

Proof. We use the semimartingale decomposition (2.13) of βK
i , Proposition 3.4, (3.5) with A = 1

and Corollary 3.3 to deduce that, for all t ≤ T and K large enough,

|βK
i (t ∧ θK)| ≤ sup

0≤j≤1/δK−1
|βK

j (0)|+ C1T + 1

with probability at least 1 − CG(L)T
δKKa logK − C

√
G(L)T

δK(Ka logK)1/4
. Since β̃K

i (0) converges in probability

to β0, P(supi βK
i (0) ≥ ∥β0∥∞ + 1) converges to 0 when K goes to +∞. Hence the result follows

with C(T ) = ∥β0∥∞ + C1T + 2.

3.3 Proof of Lemma 2.6

The proof of Lemma 2.6 results from the following two results:

Lemma 3.6. Under Assumption 2.1.1 and 2.1.3, for all T > 0,

lim
K→+∞

P(τ ′K ≥ T ) = 1.
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Proof of Lemma 3.6. By a coupling procedure, it is easy to prove that for each i, the process
(NK

i (t))t is pathwisely bounded below by a branching process (ZK
i (t))t with birth rate b(iδK),

death rate d(iδK) and initial condition Ka+ε for ε = a1 − a > 0. In addition, the processes
(ZK

i (t))t for 0 ≤ i ≤ 1
δK

− 1 are independent. Let us define

θ′′K = inf
{
t ≥ 0, ∃i ∈ {0, 1, · · · , 1

δK
− 1};ZK

i (t logK) < Ka
}
.

In order to prove that limK→∞ P(τ ′K > T ) = 1, it is enough to prove that

lim
K→∞

P(θ′′K = +∞) = 1.

We have

P(θ′′K = +∞) = P
(
∀i ∈ {0, 1, · · · , 1

δK
− 1}, ∀t ≥ 0 ZK

i (t logK) > Ka
)

=

1
δK

−1∏
i=0

P
(
inf
t≥0

ZK
i (t logK) > Ka

)
.

Fix i ∈ {0, . . . , 1
δK

−1}. It is usual to prove (by time change) that the probability P
(
inft≥0 Z

K
i (t logK) >

Ka
)
is equal to the probability for a random walk M( b(iδK)

b(iδK)+d(iδK) ,
d(iδK)

b(iδK)+d(iδK)) on Z+ (adding

+1 with probability b(iδK)
b(iδK)+d(iδK) and −1 with probability d(iδK)

b(iδK)+d(iδK)) with initial value Ka+ε

never to attain Ka. This quantity is well known and equal to

1−
(d(iδK)

b(iδK)

)Ka+ε−Ka

.

Since α = maxx∈T d(x)/b(x) < 1, it follows from (2.4) that

P(θ′′K = +∞) ≥ exp

(
1

δK
log
(
1− αKa+ε−Ka))

∼ exp

(
− 1

δK
αKa+ε−Ka

)
≫ 1−Ka2/4αKa+ε−Ka

,

which tends to 1 when K tends to infinity.

Proposition 3.7. Under the Assumptions 2.1 and 2.2, for all T > 0, there exists L0 in the
definition (2.19) of τK(L) such that

lim
K→+∞

P(τK(L0) > T ) = 1.

Proof of Proposition 3.7. For i ∈ {0, . . . , 1/δK − 1}, let us consider the increments

∆KβK
i (t ∧ θK) =

βK
i+1(t ∧ θK)− βK

i (t ∧ θK)

δK
= ∆KMK

i (t ∧ θK) + ∆KAK
i (t ∧ θK).
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Our aim is to prove that ∆KβK
i (t) − ∆KβK

i (s) is close to its finite variation part for large K
and to apply to the latter an almost sure maximum principle.

Let us introduce

gKi (t) = ∆KAK
i (t ∧ θK) +

∥p∥Lip
p

AK
i+1(t ∧ θK), (3.11)

Using (2.14), we obtain for K large enough and 0 ≤ s < t ≤ T ,

gKi (t)− gKi (s)

=
1

hK

∫ (t∧θK) logK

(s∧θK) logK

[
b((i+ 1)δK)NK

i+1(u) log

(
1 +

1

NK
i+1(u)

)
− b(iδK)NK

i (u) log

(
1 +

1

NK
i (u)

)]
du

+
1

hK

∫ (t∧θK) logK

(s∧θK) logK

[
d((i+ 1)δK)NK

i+1(u) log

(
1− 1

NK
i+1(u)

)
− d(iδK)NK

i (u) log

(
1− 1

NK
i (u)

)]
du

+
1

hK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG(hKℓ)

[
p((i+ 1 + ℓ)δK)NK

i+1+ℓ(u) log

(
1 +

1

NK
i+1(u)

)
− p((i+ ℓ)δK)NK

i+ℓ(u) log

(
1 +

1

NK
i (u)

)
)

]
du

+
∥p∥Lip
p logK

∫ (t∧θK) logK

(s∧θK) logK

[
b((i+ 1)δK)NK

i+1(u) log

(
1 +

1

NK
i+1(u)

)
+ d((i+ 1)δK)NK

i+1(u) log

(
1− 1

NK
i+1(u)

)]
du

+
∥p∥Lip
p logK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG(hKℓ)p((i+ 1 + ℓ)δK)NK
i+1+ℓ(u) log

(
1 +

1

NK
i+1(u)

)
du

≤ C(b̄+ d̄)

hK

∫ (t∧θK) logK

(s∧θK) logK

[
1

NK
i+1(u)

+
1

NK
i (u)

]
du+ (C1(b̄+ d̄) + ∥b∥Lip + ∥d∥Lip)(t ∧ θK − s ∧ θK)

+
1

hK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

[
NK

ℓ+i+1(u) log

(
1 +

1

NK
i+1(u)

)

−NK
ℓ+i(u) log

(
1 +

1

NK
i (u)

)]
du

+
3∥p∥Lip
p logK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)NK
ℓ+i+1(u) log

(
1 +

1

NK
i+1(u)

)
du, (3.12)

where we used that for all x such that |x| ≤ 1/2 we have

∣∣∣∣1x log(1 + x)

∣∣∣∣ ≤ C, (3.13)

∣∣∣∣1x log(1 + x)− 1

y
log(1 + y)

∣∣∣∣ ≤ C(|x|+ |y|). (3.14)
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and the fact that (recalling the convention (2.15) and that p is periodic)

|p((ℓ+ i+ 1)δK)− p((ℓ+ i)δK)| =p((ℓ+ i)δK)
|p((ℓ+ i+ 1)δK)− p((ℓ+ i)δK)|

p((ℓ+ i)δK)

≤
∥p∥LipδK

p
p((ℓ+ i)δK) (3.15)

in the last inequality. Note also that, to obtain this last inequality we have taken K large enough
such that

∥p∥LipδK
p

≤ 1,

so that

p((ℓ+ i+ 1)δK) ≤ 2p((ℓ+ i)δK).

Next, notice that for all x′, y′, x, y such that |x|, |y| ≤ 1/2,

1

y′
log(1 + y)− 1

x′
log(1 + x) ≤ y

y′
− x

x′
+ C

(y2
y′

+
x2

x′

)
. (3.16)

Using this inequality and (3.2), we have

1

hK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

[
NK

ℓ+i+1(u) log

(
1 +

1

NK
i+1(u)

)

−NK
ℓ+i(u) log

(
1 +

1

NK
i (u)

)]
du

≤ 1

hK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

[
NK

ℓ+i+1(u)

NK
i+1(u)

−
NK

ℓ+i(u)

NK
i (u)

]
du

+
Cp̄

hK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG(hKℓ)eLhK |ℓ|

(
1

NK
i+1(u)

+
1

NK
i (u)

)
du.

Therefore, using (2.10) and the definition of τ ′K , we have proved that

gKi (t)−gKi (s) ≤
(
CḠ(L) logK

Ka hK
+ C

)
(t− s)

+
1

hK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

[
NK

ℓ+i+1(u)

NK
i+1(u)

−
NK

ℓ+i(u)

NK
i (u)

]
du

+
3∥p∥Lip
p logK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)
NK

ℓ+i+1(u)

NK
i+1(u)

du.
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Using that for any real numbers λ, α, eλ ≤ eα + eλ(λ− α) and then (2.13), we have

1

hK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

[
NK

ℓ+i+1(u)

NK
i+1(u)

−
NK

ℓ+i(u)

NK
i (u)

]
du

≤ logK

hK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

(
βK
ℓ+i+1

( u

logK

)
− βK

ℓ+i

( u

logK

)
− (βK

i+1

( u

logK

)
− βK

i

( u

logK

)
)

)
NK

ℓ+i+1(u)

NK
i+1(u)

du

≤
∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

(
∆KβK

ℓ+i

( u

logK

)
−∆KβK

i

( u

logK

)) NK
ℓ+i+1(u)

NK
i+1(u)

du

≤
∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

(
∆KMK

ℓ+i

( u

logK

)
−∆KMK

i

( u

logK

)
+∆KAK

ℓ+i

( u

logK

)
−∆KAK

i

( u

logK

)) NK
ℓ+i+1(u)

NK
i+1(u)

du.

Thus, using (2.4) and (3.11), we deduce that

gKi (t)− gKi (s)

−
∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

(
gℓ+i

( u

logK

)
− gi

( u

logK

)) NK
ℓ+i+1(u)

NK
i+1(u)

du

≤ C0(K,L)(t− s) +
3∥p∥Lip
p logK

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)
NK

ℓ+i+1(u)

NK
i+1(u)

du

− ∥p∥Lip
p

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

(
βℓ+i+1

( u

logK

)
− βi+1

( u

logK

)) NK
ℓ+i+1(u)

NK
i+1(u)

du

+
∥p∥Lip

p

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

(
Mℓ+i+1

( u

logK

)
−Mi+1

( u

logK

)) NK
ℓ+i+1(u)

NK
i+1(u)

du

+

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

(
∆KMK

ℓ+i

( u

logK

)
−∆KMK

i

( u

logK

)) NK
ℓ+i+1(u)

NK
i+1(u)

du,
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where

C0(K,L) = C +
CḠ(L)

δKKa
.

Now, using Corollary 3.3 and (3.2), on the event ΩK(L),∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

∣∣∣∣∆KMK
ℓ+i

( u

logK

)
−∆KMK

i

( u

logK

)∣∣∣∣ NK
ℓ+i+1(u)

NK
i+1(u)

du

≤ 2p̄ logK(t− s)εK
∑
ℓ∈Z

hKG(kkℓ)e
LhK |ℓ| ≤ 2p̄ logKεKḠ(L)(t− s).

Similarly, using (3.7), on the event ΩK(L),

∫ (t∧θK) logK

(s∧θK) logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

×
∣∣∣∣Mℓ+i+1

( u

logK

)
−Mi+1

( u

logK

)∣∣∣∣ NK
ℓ+i+1(u)

NK
i+1(u)

du ≤ p̄ logKεKḠ(L)(t− s).

To conclude, we use the inequality ex(3− x) ≤ e2 for all x ∈ R to deduce that

NK
ℓ+i+1(u)

NK
i+1(u)

[
3− logK

(
βℓ+i+1

( u

logK

)
− βi+1

( u

logK

))]
≤ e2.

Combining the four previous inequalities, we deduce that

gKi (t)− gKi (s) ≤ C(K,L)(t− s)

+ p̄ logK

∫ (t∧θK)

(s∧θK)

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG(hKℓ)
[
gKℓ+i(v)− gKi (v)

]+
ehKL|ℓ|dv,

where [x]+ = x ∨ 0 is the positive part of x and

C(K,L) = C +
CḠ(L)

δKKa
+

(
2 +

∥p∥Lip
p

)
p̄ logKεKḠ(L).

Thus

dgKi (t)

dt
≤ C(K,L) + p̄ logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG(hKℓ)
[
gKℓ+i(t)− gKi (t)

]+
ehKL|ℓ|.

We will now use the maximum principle for ω ∈ ΩK(L) fixed. Defining g̃Ki (t) = gKi (t) −
2C(K,L)t, we deduce that for any t ≤ θK ,

dg̃Ki (t)

dt
< p̄ logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG(hKℓ)
[
g̃Kℓ+i(t)− g̃Ki (t)

]+
ehKL|ℓ|. (3.17)
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Let us introduce

(iK , tK) = (iK(ω), tK(ω)) = argmaxi∈{0,··· , 1
δK

−1},t∈[0,θK(ω)]g̃
K
i (t)

and let us prove that

tK = 0.

By contradiction, if we assume that tK > 0, then the right term of (3.17) is non-positive for
i = iK and then the left term is negative, contradicting the fact that g̃KiK (t) is maximal for
t = tK . Hence, we have proved that, almost surely on the event ΩK(L), for all t ≤ θK and
0 ≤ i ≤ 1/δK − 1,

gKi (t) = g̃Ki (t) + 2C(K,L)t ≤ max
0≤j≤1/δK−1

g̃Kj (0) + 2C(K,L)t = max
0≤j≤1/δK−1

gKj (0) + 2C(K,L)t,

so that, by Proposition 3.4,

∆KβK
i (t ∧ θK) = gKi (t)−

∥p∥Lip
p

AK
i+1(t ∧ θK) + ∆KMK

i (t ∧ θK)

≤ max
0≤j≤1/δK

gKj (0) + 2C(K,L)t+
∥p∥Lip

p

(
max

0≤j≤1/δK−1
βK
i (0) + C1t

)
+ εK .

A similar argument applied to (βK
i (t ∧ θK)− βK

i−1(t ∧ θK))/δK gives the converse inequality, so
we finally obtain that there exists a constant C independent of K, i, t and L such that, almost
surely on the event ΩK(L), for all i ∈ {0, . . . , 1/δK − 1} and t ≤ T ,

|∆KβK
i (t∧θK)| ≤ C

[
max

0≤j≤1/δK−1

(
|∆KβK

i (0)|+ βK
i (0)

)
+ 1 + T + Ḡ(L)T

(
1

δKKa
+ εK logK

)]
,

Finally, defining Ω̃K as the event of probability converging to 1 where max0≤j≤1/δK−1 |∆KβK
i (0)|+

βK
i (0) ≤ A + ∥β0∥∞ + 1, where the constant A comes from Assumption 2.2, on the event

ΩK(L) ∩ Ω̃K , we have

|∆KβK
i (t ∧ θK)| ≤ C

[
A+ ∥β0∥∞ + 2 + T + Ḡ(L)T

(
1

δKKa
+ εK logK

)]
.

To conclude the proof of Proposition 3.7, we first fix T > 0, set

L0 = C(A+ ∥β0∥∞ + 3 + T ) (3.18)

and choose K large enough such that C T Ḡ(L)
(

1
δKKa + εK logK

)
< 1. Then

P(τK(L0) > T ) ≥ P(ΩK(L0) ∩ Ω̃K) −−−−→
K→∞

1.

Hence Proposition 3.7 is proved.
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3.4 Proof of Theorem 2.4: tightness of β̃K

Our goal is to prove that the sequence of laws of (β̃K
t , t ∈ [0, T ])K is tight in P(D([0, T ], C(T,R))).

We will see in Corollary 3.8 that it is actually C-tight.

Let us recall that the random functions β̃K ∈ D([0, T ], C(T,R)) is defined in (2.11) as follows.
For all x ∈ T, let i ∈ {0, . . . , 1/δK − 1} be such that x ∈ [iδK , (i+ 1)δK), and set

β̃K
t (x) := β̃K(t, x) = βK

i (t)
(
1− x

δK
+ i
)
+ βK

i+1(t)
( x

δK
− i
)
,

where, by convention, βK
1/δK

(t) = βK
0 (t).

Let us recall that the proof of Theorem 2.4 is based on the criterion of Jakubovski [18] recalled
in Section 3. Our goal is to prove Conditions (i) and (ii) therein.

Let us first prove (i). By Ascoli’s Theorem, we know that a compact set Kε is a set of equi-
continuous and equi-bounded functions. By Corollary 3.5 and Proposition 3.7, we have, on an
event of probability converging to 1 when K tends to infinity, that, for all x ∈ T and all t ∈ [0, T ],

β̃K
t (x) = (x− iδK)∆KβK

i (t) + βK
i (t) ≤ LδK + C(T ),

so the sequence (β̃K
t , t ∈ [0, T ])K is equi-bounded. Furthermore, recall that, by (2.20), for

x, y ∈ T, ∣∣∣β̃K
t (x)− β̃K

t (y)
∣∣∣ = ρ(x, y) sup

0≤j≤1/δK−1

∣∣∆KβK
j (t)

∣∣ ≤ Lρ(x, y).

We deduce that the sequence is equi-continuous and (i) is proved.

Let us now prove (ii), i.e. that for all f ∈ C(T,R), the sequence of laws of the real-valued
processes

XK(t) =

∫
T
β̃K(., x)f(x)dx

=

1/δK−1∑
i=0

[
βK
i (t)

∫ (i+1)δK

iδK

(
1 + i− x

δK

)
f(x)dx+ βK

i+1(t)

∫ (i+1)δK

iδK

( x

δK
− i
)
f(x)dx

]

is tight. Recalling that βK
i (t) = AK

i (t)+MK
i (t), the process XK

f is a local semi-martingale with

Doob-Meyer decomposition XK
f = AK

f +MK
f , where

AK
f (t) =

∑
i

[
AK

i (t)

∫ (i+1)δK

iδK

(1 + i− x

δK
)f(x)dx+AK

i+1(t)

∫ (i+1)δK

iδK

(
x

δK
− i)f(x)dx

]

and MK
f is defined similarly using MK

i (t) instead of AK
i (t).

We use Aldous and Rebolledo criteria (see for example Joffe-Métivier [19]) to prove the tightnes
of the sequence (XK

f ). Let S be a stopping times for the filtration of the underlying Poisson

point measures, a.s. in [0, T ]. We need to estimate for α > 0, the quantity P(|AK
f ((S + α) ∧
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T )−AK
f (S)| > η) for η > 0. From (2.14), we deduce

AK
f ((S + α) ∧ T )−AK

f (S) =∑
i

{(∫ (i+1)δK

iδK

(1 + i− x

δK
)f(x)dx

)[
1

logK

∫ ((S+α)∧T ) logK

S logK

(
b(iδK)NK

i (s) log

(
1 +

1

NK
i (s)

)

+ d(iδK)NK
i (s) log

(
1− 1

NK
i (s)

))
ds

+
1

logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)

×
∫ ((S+α)∧T ) logK

S logK
NK

ℓ+i(s) log

(
1 +

1

NK
i (s)

)
ds

]

+

(∫ (i+1)δK

iδK

(
x

δK
− i)f(x)dx

)[
1

logK

∫ ((S+α)∧T ) logK

S logK

(
b((i+ 1)δK)NK

i+1(s) log

(
1 +

1

NK
i+1(s)

)

+ d((i+ 1)δK)NK
i+1(s) log

(
1− 1

NK
i+1(s)

))
ds

+
1

logK

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i+ 1)δK)G(hKℓ)

×
∫ ((S+α)∧T ) logK

S logK
NK

ℓ+i+1(s) log

(
1 +

1

NK
i+1(s)

)
ds

]}
.

Using (3.13) and the definition of θK , proceeding as in the proof of Proposition 3.7 we have

E(|AK
f ((S + α) ∧ θK ∧ T )−AK

f (S ∧ θK)|)

≤ C

logK

1/δK−1∑
i=0

∫ (i+1)δK

iδK

|f(x)|dx

{
2(b̄+ d̄)α logK

+

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i)δK)G(hKℓ)E
(∫ ((S+α)∧θK∧T ) logK

(S∧θK) logK

NK
ℓ+i(s)

NK
i (s)

ds
)

+

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ i+ 1)δK)G(hKℓ)E
(∫ ((S+α)∧θK∧T ) logK

(S∧θK) logK

NK
ℓ+i+1(s)

NK
i+1(s)

ds
)}

≤ αC
[
2(b̄+ d̄) + 2p̄G(L)

]
∥f∥∞.

By Proposition 3.7, θK > T with probability converging to 1, so we deduce from Markov’s
inequality that, for all ε > 0 and η > 0, there exists α such that,

lim sup
K→+∞

sup
S

P(|AK
f ((S + α) ∧ T )−AK

f (S)| > η) ≤ ε,

where the supremum is taken over all stopping times S ≤ T . This is Aldous criterion for AK
f (t).
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It remains to to prove a similar property replacing AK
f by ⟨MK

f ⟩. This can be done similarly
using (2.17). Computations are actually simpler by Lemma 3.1. 2

Hence we have proved Theorem 2.4.We prove in the next corollary that the sequence of laws
of (β̃K

t , t ∈ [0, T ])K is actually C-tight.

Corollary 3.8. The sequence of laws of (β̃K
t , t ∈ [0, T ])K is C-tight in P(D([0, T ], C(T,R))).

In addition, for all T > 0, given a value of L as in Proposition 3.7, for any β distributed as a
limiting value of the laws of (β̃K

t , t ∈ [0, T ])K , we have almost surely

sup
t∈[0,T ]

sup
x,y∈T s.t. x̸=y

|β(t, x)− β(t, y)|
ρ(x, y)

≤ L.

Proof. Since |βK
i (t)− βK

i (t−)| ≤ C/ logK for any K, i and t, we have

lim
K

P(sup
t≤T

∥β̃K
t − β̃K

t−∥∞ > ε) = 0.

Then, we deduce from Proposition 3.26 in Jacod-Shiryaev p.351 [17] that, for all f ∈ C(T,R),
the sequence of laws of XK

f defined in (3.1) is C-tight. We proceed by contradiction to deduce

that β̃K is also C-tight: if this is not true, there exists an event Ω1 of positive probability such
that, for all ω ∈ Ω1, there exists t0(ω), α(ω) and a ball B(ω) ⊂ T of positive radius such that,
for all x ∈ B,

|β̃K
t0 (x)− β̃K

t0−(x)| > α. (3.19)

Therefore, there exists non-random α > 0 and ε > 0 and i ∈ {0, 1, . . . , ⌊1/ε⌋ − 1} and an event
Ω2 ⊂ Ω1 of positive probability such that (3.19) holds true for all x ∈ [iε, (i + 1)ε] and for
this non-random α. Now, we define fi ∈ C(T,R) with support in [iε, (i + 1)ε] and positive on
(iε, (i+ 1)ε). Then, for all ω ∈ Ω2,

lim inf
K→+∞

|XK
fi
(t0)−XK

fi
(t0−)| ≥ α inf

x∈[(i+1/3)ε,(i+2/3)ε]
|fi(x)| > 0.

This is a contradiction with the C-tightness of XK
fi
.

We now prove the Lipschitz estimate for β. Using the Skorohod representation theorem, we
can construct copies β̂K of β̃K and β̂ of β such that β̂K converges (up to a subsequence) almost
surely for the L∞ norm on [0, T ] to β̂. We then define

τ̂K = inf
i ̸=j∈{0,...,1/δK−1}

inf

{
t ≥ 0 :

|β̂K(t, iδK)− β̂K(t, jδK)|
ρ(iδK , jδK)

> L

}
.

Then τ̂K is distributed as τK in (2.19). It then follows from Propostion 3.7 that τ̂K > T with
probability converging to 1. Hence, for all x ̸= y ∈ T, almost surely

|β̂(t, x)− β̂(t, y)| = lim
K→+∞

|β̂K(t, x)− β̂K(t, y)| ≤ Lρ(x, y).

By continuity of β̂ we deduce that this property holds, almost surely, for all x, y ∈ T.
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4 Identification of the limit as a viscosity solution of a Hamilton-
Jacobi equation

In the previous section, we obtained the tightness of the laws of (β̃K
t , t ∈ [0, T ])K for all T > 0.

Hence, the sequence of laws of (β̃K
t , t ∈ [0,+∞))K admits at least one limiting value. Our

aim is now to identify the limiting path as the unique viscosity solution of the Hamilton-Jacobi
equation

∂

∂t
β(t, x) = b(x)− d(x) + p(x)

∫
R
G(h)eh∂xβ(t,x)dh.

Let β be distributed as a limiting value of the laws of (β̃K
t , t ∈ [0,+∞))K . By Corollary 3.8,

β belongs to C([0,+∞)× T,R). In the sequel and with an abuse of notation, we denote again
by (β̃K

t , t ∈ [0,+∞))K the subsequence that converges in distribution to β.

It also follows from Lemma 3.1 that ÃK − β̃K converges in law, and thus in probability, to
0. Therefore (ÃK − β̃K , β̃K) converges in law to (0, β) and thus (ÃK , β̃K) converges in law
to (β, β). Using Skorokhod’s representation theorem, there exist a new probability space, still

denoted (by abuse of notation) by (Ω,A,P), and random variables still denoted by ÃK , β̃K , M̃K

and β on this space, such that (ÃK , β̃K) converges almost surely to (β, β). Let us denote by Ω̃0

the event where the convergence holds.

We also define for the value L0 defined in Theorem 2.6

Ω̃K =

{
ω ∈ Ω : sup

x∈T
sup

t∈[0,T ]
|M̃K(t, x)| ≤ ε′K , ∥β̃K∥Lip ≤ L0

}
,

where ε′K = δ
−1/2
K K−a/2 converges to 0 by (2.4). It follows from Lemma 3.1 and Proposition 3.7

that P(Ω̃K) → 1 when K → +∞. Hence, the set

Ω0 := Ω̃0 ∩ lim sup
K→+∞

Ω̃K

has probability 1.

To prove that β is a viscosity sub-solution of Equation (2.12), we work ω by ω in Ω0. Let
ω ∈ Ω0 and T > 0 and consider a continuous function φ : [0, T ] × T (depending on ω) such
that β(ω)− φ attains a strict global maximum on [0, T ]× T at the point (t̄(ω), x̄(ω)) such that
t̄(ω) > 0. We will prove that

∂

∂t
φ(t̄, x̄) ≤ b(x̄)− d(x̄) + p(x)

∫
R
G(h)eh∂xφ(t̄,x̄)dh.

Since ÃK(ω) converges in L∞([0, T ]×T) to β, there exists for K large enough a local maximum
of ÃK(ω) − φ on [0, T ] × T at a point (tK(ω), xK(ω)) such that (tK(ω), xK(ω)) → (t̄(ω), x̄(ω))
as K → ∞. Assume K is large enough so that tK(ω) > 0. From now on, we will omit the
dependencies with respect to ω ∈ Ω0 to avoid heavy notation.
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Defining iK ∈ {0, . . . , 1/δK − 1} such that iKδK ≤ xK < (iK + 1)δK , we have

∂

∂t
ÃK(tK , xK) = (1− xK

δK
+ iK)

d

dt
AK

iK
(tK) + (

xK
δK

− iK)
d

dt
AK

iK+1(tK)

= (1− xK
δK

+ iK)NK
iK
(tK)

(
b(iKδK) log

(
1 +

1

NK
iK
(s)

)
+ d(iKδK) log

(
1− 1

NK
iK
(s)

))
+ (

xK
δK

− iK)NK
iK+1(tK)

(
b
(
(iK + 1)δK

)
log
(
1 +

1

NK
iK+1(s)

)
+ d
(
(iK + 1)δK

)
log
(
1− 1

NK
iK+1(s)

))
+ (1− xK

δK
+ iK)

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ iK)δK)G(hKℓ)NK
ℓ+iK

(tK) log
(
1 +

1

NK
iK
(tK)

)

+ (
xK
δK

− iK)

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ iK + 1)δK)G(hKℓ)NK
ℓ+iK+1(tK) log

(
1 +

1

NK
iK+1(tK)

)
.

Using that forall x ≥ −1/2,

b log(1 + x) + d log(1− x) ≤ (b− d)x. (4.1)

and using Lemma 3.6, we deduce that

∂

∂t
ÃK(tK , xK) ≤ (1− xK

δK
+ iK)

(
b(iKδK)− d(iKδK)

)
(1 +

C

Ka
)

+ (
xK
δK

− iK)
(
b((iK + 1)δK)− d((iK + 1)δK)

)
(1 +

C

Ka
)

+ (1− xK
δK

+ iK)

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ iK)δK)G(hKℓ)e
log(K)(βK

ℓ+iK
(tK)−βK

iK
(tK))

(1 +
C

Ka
)

+ (
xK
δK

− iK)

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKp((ℓ+ iK + 1)δK)G(hKℓ)e
log(K)(βK

ℓ+iK+1(tK)−βK
iK+1(tK))

(1 +
C

Ka
)

We next use the fact that µ, b and d are C1 functions in T to obtain, modifying the constant C
if necessary,

∂

∂t
ÃK(tK , xK) ≤

(
b(xK)− d(xK) + CδK)(1 +

C

Ka
)

+ (1− xK
δK

+ iK)

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hK(p(xK) + CδK(|ℓ|+ 1))G(hKℓ)e
log(K)(βK

ℓ+iK
(tK)−βK

iK
(tK))

(1 +
C

Ka
)

+ (
xK
δK

− iK)

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hK(p(xK) + CδK(|ℓ|+ 1))G(hKℓ)e
log(K)(βK

ℓ+iK+1(tK)−βK
iK+1(tK))

(1 +
C

Ka
)

(4.2)
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Since (tK , xK) is a maximum point of ÃK − φ, we deduce that

βK
j (tK)− βK

iK
(tK)

= β̃K(tK , jδK)− β̃K(tK , xK)−
(
βK
iK
(tK)− β̃K(tK , xK)

)
≤ φ(tK , jδK)− φ(tK , xK) + M̃K(tK , jδK)− M̃K(tK , xK)−

(
βK
iK
(tK)− β̃K(tK , xK)

)
and similarly for βK

j+1(tK)− βK
iK+1(tK).

In addition,

φ(tK , jδK)− φ(tK , xK) ≤ (j − iK)δK∂xφ(tK , xK) +O(|xK − iKδK |) +O(|j − iK |2δ2K).

Therefore, since ω ∈ lim sup Ω̃K , there exists a subsequence in K (still denoted K) along which

βK
j (tK)− βK

iK
(tK) ≤ (j − iK)δK∂xφ(xK) + C

(
|xK − iKδK |+ |j − iK |2δ2K + εK

)
≤ (j − iK)δK∂xφ(xK) + C(|j − iK |2δ2K + δK + εK)

and
βK
j+1(tK)− βK

iK+1(tK) ≤ (j − iK)δK∂xφ(tK , xK) + C(|j − iK |2δ2K + δK + εK).

Combining these inequalities with (4.2), we obtain

∂

∂t
φ(tK , xK) ≤ ∂

∂t
ÃK(tK , xK) ≤

(
b(xK)− d(xK) + CδK)(1 +

C

Ka
)

+

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hK(p(xK) + CδK(|ℓ|+ 1))G(hKℓ)e
hKℓ∂xφ(tK ,xK)+C

(hKℓ)2

logK
+o(1)

(1 +
C

Ka
) (4.3)

Since p(xK) → p(x̄) when K → +∞, to prove the convergence of the sum in the right-hand side
of (4.3), it is sufficient to study the convergence of

S =

1/δK−1−⌊1/2δK⌋∑
ℓ=−⌊1/2δK⌋

hKG
(
hKℓ

)
e
hKℓ∂xφ(tK ,xK)+C

(hKℓ)2

logK .

Recall from Assumption 2.1 that G is continuous and that there exists R > 0 such that G is
nonincreasing on [R,+∞) and nondecreasing on (−∞,−R]. We first notice that

S0 =

⌊R/hK⌋∑
ℓ=⌊−R/hK⌋

hKG
(
hKℓ

)
e
hKℓ∂xφ(tK ,xK)+C

(hKℓ)2

logK

is a Riemann sum which converges to
∫ R
−R G(y)ey∂xφ(t̄,x̄)dy. Hence we only have to deals with

the remainder S − S0. We detail the analysis for

S+ =

1/δK−1−⌊1/2δK⌋∑
ℓ=⌊R/hK⌋+1

hKG
(
hKℓ

)
e
hKℓ∂xφ(tK ,xK)+C

(hKℓ)2

logK .

A similar computation applies to the lower tail.
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For all ε > 0, there exists K0 such that for K ≥ K0, |∂xφ(tK , xK) − ∂xφ(t̄, x̄)| ≤ ε. Hence,
setting a = ∂xφ(t̄, x̄) and recalling that G is nonincreasing on [R,+∞), for K large enough,

S+ ≤
1/δK−1−⌊1/2δK⌋∑

ℓ=⌊R/hK⌋+1

hKG
(
hKℓ

)
e
ahKℓ+C

(hKℓ)2

logK
+εhK |ℓ|

≤
1/δK−1−⌊1/2δK⌋∑

ℓ=⌊R/hK⌋+1

∫ hKℓ

hK(ℓ−1)
G
(
hKℓ

)
e
ahKℓ+C

(hKℓ)2

logK
+εhK |ℓ|

dy

≤
∫ hK/2δK

R
G(y)e

ay+|a|hK+C
y2+hK (2|y|+hK ))

logK
+ε(|y|+hK)

dy

≤
∫ logK

R
G(y)e

ay+C
y2+2hK |y|

logK
+ε|y|

(1 + ε) dy.

Observing that, for |y| ≤ (logK)1/3, y2+2hK |y|
logK ≤ (logK)−1/3 + 2δK(logK)1/3 → 0 when K →

+∞ and that, for |y| ≤ logK, y2+2hK |y|
logK ≤ y + 2hK , we can decompose the domain integration

as [R, logK] = [R, (logK)1/3) ∪ [(logK)1/3, logK] to deduce that, for K large enough,

S+ ≤ (1 + 2ε)

∫ (logK)1/3

R
G(y)eay+ε|y|dy + (1 + 2ϵ)

∫ logK

(logK)1/3
G(y)e(a+C)y+ε|y|dy

≤ (1 + 2ε)

∫ +∞

R
G(y)eay+ε|y|dy +

1 + 2ϵ

e(logK)1/3

∫
R
G(y)e(a+C+2)|y|dy.

Now, by dominated convergence,∫ +∞

R
G(y)eay+ε|y|dy −−−→

ε→0

∫ +∞

R
G(y)eaydy.

To conclude, we have proved that

lim sup
K→+∞

S ≤
∫
R
G(y)ey∂xφ(t̄,x̄)dy.

Therefore,
∂

∂t
φ(t̄, x̄) ≤ b(x̄)− d(x̄) + p(x̄)

∫
R
G(h)eh∂xφ(t̄,x̄)dh.

We conclude that β is a viscosity sub-solution of (2.12) in (0, T ]× T.
Following similar arguments, we can prove that β is a viscosity super-solution, and hence a

viscosity solution of (2.12) in (0, T ]× T. The result then follows from uniqueness of a Lipschitz
viscosity solution of (2.12) [1].
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