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Abstract. A short account of origins of mathematical formalism of neural
networks is presented for physicists and computer scientist in basic discrete
mathematical setting informally. The discourse of the development of
mathematical formalism on the dynamics of lattice models in statistical physics
and learning internal representations of neural networks as discrete architectures
as quantitative tools evolve in two almost distinct fields more than half a century
with limited overlap. We aim at bridging the gap by claiming that the analogy
between two approaches are not artificial but naturally occuring due to how
modelling cooperative phenomenon is constructed. We define the Lenz-Ising
architectures (ILAs) for this purpose.
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1. Introduction

Understanding natural or artificial phenomenon in the language of discrete
mathematics is probably one of the most powerful toolbox scientist use [1]. Large
portion of computer science and statistical physics deals with such finite structures.
One of the most prominent successful usage of such approach was Lenz and Ising’s
work on modelling ferromagnetic materials [2-5] and neural networks as a model to
biological neuronal structures [6-8].

The analogy between two areas of distinct research have been pointed out by
many researchers [9-13]. However, the discourse and evolution of these approaches
were kept as two distinct research fields and many innovative approaches rediscovered
under different names.

2. Cooperative phenomenon

Statistical definition of cooperative phenomenon pioneered by Wannier and Kremer
[14-16]. Even though their technical work focused on extension of Ising model to
2D with cyclic boundary condition and introduction of exact solutions with matrix
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algebra, they were the first to document the potential of how Lenz-Ising model actually
represent a more generic system than marely model to ferromagnets, namely anything
falls under cooperative phenomenon can be addressed with Lenz-Ising type model,
summarized in Definition 1.

Definition 1. Cooperative phenomenon of Wannier type [14]

Set of N discrete units, % , identified with a function s;, i=1,..,N forms a collection or
assembly. The function that identifies the units is a mapping s; : R — R. A statistic
< applied on % is called cooperative phenomenon of Wannier type # .

A statistic . can be any mapping or set of operations on the assembly of units
% . For example inducing ordering on the assembly of units and summation over
s; values, would corresponds to non-interacting magnetic system with unit external
field or non-connected set of neurons capacity of inhibition or exhibition. However,
amazingly, Definition 1 is so generic that Rosenblatt’s perceptron [17], current deep
learning systems [18] and complex networks [19] falls into this category as well.

The originality of Cooperative phenomenon of Wannier type comes on a secondary
concept, so called event propagation as given in Definition 2.

Definition 2. Fvent propagation [1]]

An event is defined as a snapshot of cooperative phenomenon of Wannier type W . If
an event takes place of one unit of assembly %, the same event will be favored by
other units, this is expressed as event propagation between two disjoint set of units
&(ur,u2), and uy Nug = @ and uy,us € % and with an additional statistic . is
defined.

The parallels between Wannier’s event propagations are remarkably the same
as of neural network formalism defined by McCulloch-Pitts-Kleene [6, 7], not only
conceptually but matematical treatment is identical and originates from Lenz-Ising
model’s treatment of discrete units. As we mentioned, this goes beyond doubt
not a simple analogy but forms a generic framework as envisioned by Wannier.
The similarity between ferromagnetic systems and neural networks is probably first
documented directly by Little [8]: Spin states of magnetic spins corresponds to firing
state of a neuron. Unfortunately, Little only see it as simple analogy, and missed the
opportunity provided by Wannier as a generic natural phenomenon of cooperation.

The conceptual similarity and inference on Wannier's event propagation
appears to be quite close to Hebb’s learning [20] and gives natural justification
for backpropagation for multilayered networks. History of backpropagation is
exhaustively studied elsewhere [18].

3. Lenz-Ising architectures: Ferromagnets to Nerve Nets

As we establised two basic definitions of cooperative phenomenon, we can now define
a generic setting of Lenz-Ising model that captures both physics literature that
extensively used this in so called spin-glasses research and for neural networks. A
guiding principle will be based on Wannier’s definition of cooperative phenomenon.

Definition 3. Lenz-Ising Architectures

Given Wannier type cooperative phenomenon # , imposing constrains on the discrete
units, 2 ¢ that they should be spatially correlated on the edges E of an arbirary graph
Y (E,V) with ordering and with vertices V' of the arbitrary graph carring coupling
weight between connected two units with biases. Set of event propagations &€ defined
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on the cooperative phenomeon can induce dynamics on defining vertice weights, or vice
versa. ILAs are defined as statistic . applied to % ¢ with propagations &°.

Lenz-Ising Architectures (ILAs) should not be confused with graph neural
networks as it does not model data structures. It could be seen as subset of
graph dynamical systems in some sense but formal connections should be established
elsewhere. However, primary characteristic of ILAs are that it is conceptual and
mathematical representation of spin-glass systems (including Lenz-Ising, Anderson,
Sherrington-Kirkpatrick, Potts systems) and neural networks (including recurrent and
convolutional networks) under the same umbrella.

4. Learning representations inherent in Metropolis-Glauber dynamics

The primary originality in any neural network research papers lies in so called learning
representation from data and generalisation. However, it isn’t obvious to the that
community that actually spin-glasses are capable of learning representations inherently
by induced dynamics such as Metropolis or Glauber dynamics by construction, as an
inverse problem.

In physics literature this appears as finding a solution to the problem of how
to express free energy and minimisation of this with respect to weights or coupling
coefficients, This is noting but a learning represenations. Usually a simulation
approach is taken as a route, for example Monte Carlo techniques [5,21,22] via
Metropolis or Glauber dynamics. The intimate connection between concepts of
ergodicity and learning in deep learning is recently shown [13,23,24] in this context.

As we argued earlier the generic definition provided by Wannier on cooperative
phenomenon and ILAs; there is an intimate connection with learning and so called
solving spin-glasses that usually boils down to computing free energies as mentioned.
And a link between two distinct fields, computing backpropagation and free energies
are natural candidates to establish equivalance relations.

5. Conclusions and Outlook

Apart from honouring physicists Lenz and Ising, based on understanding of
cooperative phenomenon’s origins, naming the research outpus from of spin-glasses and
neural networks under an umbrella term Lenz-Ising architectures (ILAs) is historically
accurate and technically a resonable naming scheme under the overwhelming evidence
given in the literature. This is akin to naming current computers with von Neumann
architectures. This forms the origins of connectionist learning from statistical physics,
where this approach currently enjoying vast engineering success today.

The rich connection between two areas in computer science and statistical physics
should be celebrated. For more fruitful collaborations, both literatures, embracing
large statistics literature as well, should converge much more closely. This would help
communities to avoid awkward situations of reinventing the wheel again and hindering
recognition of the work done by physicists decades earlies, i.e., Ising and Lenz.
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