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Introducing smooth amnesia to the memory of the Elephant
Random Walk

Lucile Laulin

Abstract

This paper is devoted to the asymptotic analysis of the amnesic elephant random
walk (AERW) using a martingale approach. More precisely, our analysis relies on
asymptotic results for multidimensional martingales with matrix normalization.
In the diffusive and critical regimes, we establish the almost sure convergence
and the quadratic strong law for the position of the AERW. The law of iterated
logarithm is given in the critical regime. The distributional convergences of the
AERW to Gaussian processes are also provided. In the superdiffusive regime, we
prove the distributional convergence as well as the mean square convergence of
the AERW.

MSC: primary 60G50; secondary 60G42; 60F17

Keywords : Elephant random walk; Amnesic random walk; Multi-dimensional
martingales; Almost sure convergence; Asymptotic normality; Distributional
convergence

1 Introduction

The Elephant Random Walk (ERW) is a discrete-time random walk, introduced by Schütz
and Trimper [21] in the early 2000s. At first, the ERW was used in order to see how long-
range memory affects the random walk and induces a crossover from a diffusive to superdif-
fusive behavior. It was referred to as the ERW in allusion to the traditional saying that ele-
phants can always remember anywhere they have been. The elephant starts at the origin at
time zero, S0 = 0. At time n = 1, the elephant moves one step to the right with probability q
and to the left with probability 1− q for some q in [0, 1]. Afterwards, at time n + 1, the ele-
phant chooses uniformly at random an integer k among the previous times 1, . . . , n. Then, it
moves exactly in the same direction as that of time k with probability p or the opposite di-
rection with the probability 1− p, where the parameter p stands for the memory parameter
of the ERW. The position of the elephant at time n + 1 is given by

Sn+1 = Sn + Xn+1 (1.1)

where Xn+1 is the (n + 1)-th increment of the random walk, such that

Xn+1 = αn+1Xβn+1 (1.2)

where αn+1 ∼ R(p) and βn+1 ∼ U(1, n) are mutually independent and independant of the
past. The ERW shows three differents regimes depending on the location of its memory
parameter p with respect to the critical value p = 3/4.
On the one hand, a wide literature is now available on the ERW in dimension d = 1 thanks to
a variety of approaches. Baur and Bertoin [2] used the connection to Pólya-type urns as well
as functional limit theorems for multitype branching processes due to Janson [16]. Bercu [3]
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and Coletti et al. [11] used martingales to obtain the almost sure convergence and asymp-
totic normality, among other results. Kürsten [18] and Businger [9] used the construction of
random trees with Bernoulli percolation. A strong law of large numbers and a central limit
theorem for the position of the ERW, properly normalized, were established in the diffusive
regime p < 3/4 and the critical regime p = 3/4, see [2, 3, 11, 10, 23]. In the superdiffusive
regime p > 3/4, Bercu [3] proved that the limit of the position of the ERW is not Gaus-
sian and Kubota and Takei [17] showed that the fluctuation of the ERW around this limit is
Gaussian.
On the other hand, over the last years, various processes derivated from the ERW have re-
cevied a lot of attention. Bercu and Laulin in [6] extended all the results of [3] to the multi-
dimensional ERW (MERW) where d ≥ 1 and to its center of mass [7] using a martingale
approach, while Bertenghi used the connection [8] to Pólya-type urns for the MERW. The
ERW with stops or minimal RW, changing in particular the distribution of αn, has also been
investigated [5, 4, 14, 20]. The ERW with reinforced memory has been studied by Baur [1]
via the urn approach, and Laulin [19] using martingales.

The idea of this paper is to use the approach developped in [7] and [19] to study how chang-
ing the memory allows us to induce amnesia to the ERW. More precisely, the distribution
of the memory βn of our new variation of the ERW is such that the probability of choosing
a fixed instant k ∈ N∗ at time n ≥ k decreases approximatly with speed (k/n)β for some
amnesia parameter β ≥ 0.
The very interesting question of amnesic elephant random walk (AERW) has not been inves-
tigated a lot. Gut and Stadmüller [15, 13] studied variations of the memory for the special
cases of ERW with delays or gradually increasing memory. In [15] the elephant could stop
and only remember the first (and second) step it tooks. Consequently, it did not induced
a phase transition. In [13], the elephant only remembered a portion of its past (recent or
distant), this portion being fixed or depending on the time n, but was always “small”.
The entire study we conduct below can be generalized when β < 0 is not an integer. This
can be interpreted as cases where the elephant remembers more vividly the first steps it
performed. When β < −1, it appears that the AERW only have one regime that is the
diffusive regime. This observation is coherent with the work of Gut and Stadmüller [13].
The AERW will appear to be non-Markovian, as the reinfroced ERW. However, unlike the
reinforced ERW, the AERW can not be studied using Pólya-type urns. The major change for
the AERW is that the distribution of the memory βn in equation (1.2) is no longer uniform
but depends on the amnesia parameter β ≥ 0. In this approach, the elephant chooses an
instant according to βn+1 as follows,

P(βn+1 = k) =
(β+ 1)Γ(k +β)Γ(n)
Γ(k)Γ(n +β+ 1)

=
(β+ 1)

n
µk

µn+1
for 1 ≤ k ≤ n, (1.3)

where

µn =
n−1

∏
k=1

(
1 +

β

k

)
=

Γ(n +β)

Γ(n)Γ(β+ 1)
. (1.4)

The case β = 0 corresponds to the traditionnal ERW. As β grows, the probability of choosing
a recent instant gets bigger, see the illustrative Figure 1.
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β = 0 β = 1 β = 2

β = 3 β = 10 β = 100

Figure 1: Mass function of the memory depending on the value of β.

We have by definition of the step Xn+1 given in (1.2) and the distribution βn+1 (1.3) that

E[Xn+1 | Fn] = E[αn+1]E[Xβn+1 | Fn]

= (2p− 1)E
[ n

∑
k=1

Xk1βn+1=k | Fn

]
=

(2p− 1)(β+ 1)
nµn+1

n

∑
k=1

Xkµk. (1.5)

Then, denote a = 2p− 1 and

Yn =
n

∑
k=1

Xkµk. (1.6)

We deduce from (1.5) that

E[Yn+1 | Fn] =
(

1 +
a(β+ 1)

n

)
Yn. (1.7)

Hereafter, for any n ≥ 1, let

γn = 1 +
a(β+ 1)

n
(1.8)

and

an =
n−1

∏
k=1

γ−1
k =

Γ(n)Γ(a(β+ 1) + 1)
Γ(n + a(β+ 1))

. (1.9)

It follows from standard resultats on the Gamma function that

lim
n→∞ na(β+1)an = Γ(a(β+ 1) + 1) (1.10)
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and
lim

n→∞ n−βµn = Γ(β+ 1). (1.11)

Our strategy for proving asymptotic results for the AERW is as follows. On the one hand,
the behavior of the position Sn is closely related to the one of the sequences (Mn) and (Nn)
defined, for all n ≥ 0, by

Mn = anYn and Nn = Sn +
a(β+ 1)

β− a(β+ 1)
µ−1

n Yn. (1.12)

We immediatly get from (1.7) and (1.9) that (Mn) is a locally square-integrable martingale
adapted to (Fn). Moreover, we have from (1.5) that

E
[

Sn+1 +
a(β+ 1)

β− a(β+ 1)
µ−1

n+1Yn+1 | Fn

]
= Sn +

a(β+ 1)
β− a(β+ 1)

µ−1
n Yn

which also means that (Nn) is also a locally square-integrable martingale adapted to Fn. On
the other hand, we can rewrite Sn as

Sn = Nn −
a(β+ 1)

β− a(β+ 1)
(µnan)

−1 Mn (1.13)

and equation (1.13) allows us to establish the asymptotic behavior of the AERW via an ex-
tensive use of the martingale theory.
The main results of this paper are given in Section 2. We first investigate the diffusive regime
and we establish the strong law of large numbers, the law of iterated logarithm and the
quadratic strong law for the AERW. The functional central limit theorem is also provided.
Next, we prove similar results in the critical regime. Finally, we establish a strong limit
theorem in the superdiffusive regime. Our martingale approach is described in Section 3.
Finally, we give some of the technical proofs in Section 4.

2 Main results

2.1 The diffusive regime

Our first result deals with the strong law of large numbers for the AERW in the diffusive
regime where p < 4β+3

4(β+1) . The following strong law for the AERW will be deduced from
both the strong laws for (Nn) and (Mn).

Theorem 2.1. We have the almost sure convergence

lim
n→∞ Sn

n
= 0 a.s. (2.1)

The almost sure rate of convergence for the AERW is as follows, for

σ2
β =

2β+ 1− a
(1− a)(1 + 2β− 2a(β+ 1))

.

Theorem 2.2. We have the quadratic strong law

lim
n→∞ 1

log n

n

∑
k=1

S2
k

k2 = σ2
β a.s. (2.2)
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Hereafter, we are interested in the distributional convergence of the AERW, which holds in
the Skorokhod space D([0, ∞[) of right-continuous functions with left-hand limits.

Theorem 2.3. The following convergence in distribution in D([0, ∞[) holds(Sbntc√
n

, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
(2.3)

where
(
Wt, t ≥ 0

)
is a real-valued centered Gaussian process starting from the origin with covariance

E[WsWt] =
a(1 +β)(1− a) + aβ

(2(β+ 1)(1− a)− 1)(a−β(1− a))(1− a)
s
( t

s

)a−β(1−a)

+
β

(β(1− a)− a)(1− a)
s (2.4)

for 0 < s ≤ t. In particular, we have

Sn√
n
L−→ N

(
0,σ2

β

)
. (2.5)

Remark 2.4. When β = 0 we find again the results from [2] for the ERW(Sbntc√
n

, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
where

(
Wt, t ≥ 0

)
is a real-valued mean-zero Gaussian process starting from the origin and

E[WsWt] =
1

1− 2a
s
( t

s

)a
.

2.2 The critical regime

Hereafter, we investigate the critical regime where p = 4β+3
4(β+1) . It is interesting to notice that,

when β is really large (or β → ∞) the critical regime is reached for the memory parameter
p = 1. Hence, the greater β is, the more there are values of the memory parameter p for
which the AERW stays in the diffusive regime; but whatever the value of β, we still observe
a phase transition.

Theorem 2.5. We have the almost sure convergence

lim
n→∞ Sn√

n log n
= 0 a.s. (2.6)

The almost sure rates of convergence for the AERW are as follows.

Theorem 2.6. We have the quadratic strong law

lim
n→∞ 1

log log n

n

∑
k=1

S2
k

(k log k)2 = (2β+ 1)2 a.s. (2.7)

In addition, we also have the law of iterated logarithm

lim sup
n→∞

S2
n

2n log n log log log n
= (2β+ 1)2 a.s. (2.8)
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Once again, our next result concerns the asymptotic normality of the AERW.

Theorem 2.7. The following convergence in distribution in D([0, ∞[) holds( Sbntc√
nt log n

, t ≥ 0
)
=⇒ (2β+ 1)

(
Bt, t ≥ 0

)
(2.9)

where (Bt, t ≥ 0) is a one-dimensional standard Brownian motion. In particular, we have the
asymptotic normality

Sn√
n log n

L−→ N
(

0, (2β+ 1)2
)

. (2.10)

2.3 The superdiffusive regime

Finally, we focus our attention on the superdiffusive regime where p > 4β+3
4(β+1) .

Theorem 2.8. We have the following distributional convergence in D([0, ∞[)( Sbntc

na(β+1)
, t ≥ 0

)
=⇒ (Λt, t ≥ 0) (2.11)

where the limiting Λt = ta(β+1)Lβ, Lβ being some non-denegerate random variable. In particular,
we have

lim
n→∞ Sn

na(β+1)−β = Lβ a.s. (2.12)

where the limiting Lβ is a non-degenerate random variable. We also have the mean square convergence

lim
n→∞E

[∣∣∣ Sn

na(β+1)−β − Lβ
∣∣∣2] = 0. (2.13)

Remark 2.9. The expected value of Lβ is

E[Lβ] =
a(β+ 1)(2q− 1)Γ(β+ 1)(

a(β+ 1)−β
)
Γ
(
a(β+ 1) + 1

) (2.14)

while its second order moment is given by

E
[
L2
β

]
=

a2(β+ 1)2Γ(β+ 1)2Γ
(
2(a− 1)(β+ 1) + 1

)(
a(β+ 1)−β

)2
Γ
(
(2a− 1)(β+ 1) + 1

)2 . (2.15)

When β = 0 we find again the expected values for the ERW from [3]

E[L] = 2q− 1
Γ(a + 1)

and E[L2] =
1

(2a− 1)Γ(2a)
.

3 A two-dimensional martingale approach

In order to investigate the asymptotic behavior of (Sn), we introduce the two-dimensional
martingale (Mn) defined by

Mn =

(
Nn
Mn

)
(3.1)
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where (Mn) and (Nn) are the two locally square-integrable martingales introduced in (1.12).
As for the CMERW and the RERW, the main difficulty we face is that the predictable quadratic
variations of (Mn) and (Nn) increase to infinity with two different speeds. A matrix normal-
ization will again be necessary to establish the asymptotic behavior of the AERW. We will al-
ternatively study (Mn), (Mn) or (Nn). Denote the martingale incrementεn+1 = Yn+1−γnYn.
We obtain that

∆Mn+1 =Mn+1 −Mn

=

(
Sn+1 − Sn +

a(β+1)
β−a(β+1)

(Yn+1
µn+1
− Yn

µn

)
an+1Yn+1 − anYn

)

=

((
1 + a(β+1)

β−a(β+1)

)
Xn+1 − a(β+1)

(β−a(β+1))µn+1

β
n Yn

an+1εn+1

)

=

(
β

(β−a(β+1))µn+1

(
Yn + Xn+1µn+1 − (γn − 1)Yn

)
an+1εn+1.

)
Consequently

∆Mn+1 =
( β
(β−a(β+1))µn+1

an+1

)
εn+1.

We also obtain that

E[ε2
n+1 | Fn] = E[Y2

n+1 | Fn]−γ2
nY2

n

= Y2
n + 2(γn − 1)Y2

n +µ
2
n+1 −γ2

nY2
n

= µ2
n+1 − (γn − 1)2Y2

n . (3.2)

Therefore, we deduce that

E
[
(∆Mn+1)(∆Mn+1)

T | Fn
]
=

(µ2
n+1 − (γn − 1)2Y2

n)

((
β

(β−a(β+1))µn+1

)2 βan+1
(β−a(β+1))µn+1

βan+1
(β−a(β+1))µn+1

a2
n+1

)
.

We are now able to compute the quadratic variation ofMn

〈M〉n =
n−1

∑
k=0

((
β

β−a(β+1)

)2 βak+1µk+1
β−a(β+1)

βak+1µk+1
β−a(β+1) (ak+1µk+1)

2

)
−ξn (3.3)

where

ξn =
n−1

∑
k=0

(γk − 1)2Y2
k

((
β

(β−a(β+1))

)2 βak+1µk+1
(β−a(β+1))

βak+1µk+1
(β−a(β+1)) (ak+1µk+1)

2

)
.

Hereafter, we immediatly deduce from (3.3) that

〈M〉n =
n

∑
k=1

(akµk)
2 −ζn where ζn =

n

∑
k=1

a2
k(γk − 1)2Y2

k (3.4)

and
〈N〉n =

( β

β− a(β+ 1)

)2
n. (3.5)
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The asympotic behavior of Mn is closely related to the one of

wn =
n

∑
k=1

(akµk)
2 (3.6)

as one can observe that we always have 〈M〉n ≤ wn and that ζn is negligeable when com-
pared to wn. Consequently, it follows from the definitions of (an) and (µn)that we have three
regimes of behavior for (Mn). In the diffusive regime where is p < 4β+3

4(β+1) or a < 1− 1
2(β+1) ,

lim
n→∞ wn

n1−2(a(β+1)−β) = ` where ` =
1

1 + 2(β− a(β+ 1))

( Γ(a(β+ 1) + 1)
Γ(β+ 1)

)2
. (3.7)

In the critical regime where p = 4β+3
4(β+1) or a = 1− 1

2(β+1) ,

lim
n→∞ wn

log n
=
( Γ(β+ 1 + 1

2 )

Γ(β+ 1)

)2
. (3.8)

In the superdiffusive regime where p > 4β+3
4(β+1) or a > 1− 1

2(β+1) ,

lim
n→∞ wn =

∞
∑
k=1

( Γ(a(β+ 1) + 1)Γ(k +β)
Γ(k + a(β+ 1))Γ(β+ 1)

)2
< +∞. (3.9)

4 Proofs of the main results

4.1 The diffusive regime

Lemma 4.1. Let (Vn) be the sequence of positive definite diagonal matrices of order 2 given by

Vn =
1√
n

(
1 0
0 a(β+1)

β−a(β+1) (anµn)−1

)
. (4.1)

Let v =

(
1
−1

)
such that

vTVnMn =
Sn√

n
. (4.2)

The quadratric variation of 〈M〉n satisfies in the diffusive regime where is a < 1− 1
2(β+1) ,

lim
n→∞ Vn〈M〉nVT

n = V a.s. (4.3)

where the matrix V is given by

V =
1

(β− a(β+ 1))2

(
β2 aβ

1−a
aβ

1−a
a2(β+1)2

1+2β−2a(β+1) .

)
(4.4)

Remark 4.2. Following the same steps as in the proof of Lemma 4.1, we find that in the critical regime
a = 1− 1

2(β+1) , the sequence of normalization matrices (Vn) has to be replaced by

Wn =
1√

n log n

(
1 0
0 (2β+ 1)(anµn)−1

)
. (4.5)

The limit matrix V also need to be replaced by

W = (2β+ 1)2
(

0 0
0 1

)
. (4.6)

8



Introducing smooth amnesia to the memory of the elephant random walk

Proof of Lemma 4.1. We obtain from Theorem 2.1, equations (1.10) and (3.7) that

lim
n→∞Vn〈M〉nVT

n

= lim
n→∞ 1

n

 ∑
n−1
k=0

(
β

(β−a(β+1))

)2 a(β+1)β
(β−a(β+1))2anµn

∑
n−1
k=0 ak+1µk+1

a(β+1)β
(β−a(β+1))2anµn

∑
n−1
k=0 ak+1µk+1

( a(β+1)
(β−a(β+1))anµn

)2
∑

n−1
k=0 (ak+1µk+1)

2


=

1
(β− a(β+ 1))2

 β2 a(β+1)β
β+1−a(β+1)

a(β+1)β
β+1−a(β+1)

a(β+1)2

2(β−a(β+1))+1


which is exactly what we wanted to prove.

�

Proof of Theorem 2.1. We shall make extensive use of the strong law of large numbers for
martingales given, e.g. by theorem 1.3.24 of [12]. First, we have for (Mn) that for any γ > 0,

M2
n = O

(
(log wn)

1+γwn
)

a.s.

which by definition of Mn and as an is asymptotically equivalent to n−a(β+1) and wn is asymp-
totically equivalent to n1+2(β−a(β+1)) ensures that

Y2
n

n2 = O
(
(log n)1+γ n1+2(β−a(β+1))

n2(1−a(β+1))

)
a.s.

Finally as µn is asymptotically equivalent to nβ, we obtain that

Y2
n

(µnn)2 = O
( (log n)1+γ

n

)
a.s.

which reduces to
lim

n→∞ Yn

µnn
= 0 a.s. (4.7)

We now focus our attention on (Nn). By the same token as before, we have that for any
γ > 0,

N2
n = O

(
(log n)1+γn

)
a.s.

which by definition of (Nn) gives us(
Sn − a(β+1)

β−a(β+1)µ
−1
n Yn

)2

n2 = O
( (log n)1+γ

n

)
a.s.

and we conclude that

lim
n→∞ Sn

n
− a(β+ 1)
β− a(β+ 1)

Yn

µnn
= 0 a.s. (4.8)

This achieves the proof of Theorem 2.1 as the convergences (4.7) and (4.8) hold almost surely.

�
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Proof of Theorem 2.3. In order to apply Theorem A.2 from [19], we must verify that (H.1),
(H.2) and (H.3) are satisfied.

(H.1) We have from (4.3) and the fact that abntc is asymtotically equivalent to t−a(β+1)an that

Vn〈M〉bntcV
T
n −→n→∞Vt a.s.

where

Vt =
1

(β− a(β+ 1))2

 β2t
aβ

1− a
t1+β−a(β+1)

aβ
1− a

t1+β−a(β+1) a2(β+ 1)2

1 + 2β− 2a(β+ 1)
t1+2β−2a(β+1)

 .

(H.2) In order to verify that Lindeberg’s condition is satisfied, we start by deducing from
(1.12) together with (3.1) and Vn given by (4.1) that for all 1 ≤ k ≤ n

Vn∆Mk =
1

(β− a(β+ 1))
√

nµn

(βµn
µk

a ak
an

)
εk

which implies that

‖Vn∆Mk‖2 =
1

(β− a(β+ 1))2n

(β2

µ2
k
+

a2a2
k

(anµn)2

)
ε2

k . (4.9)

Consequently, we obtain that for all ε > 0,
n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ 1
ε2

n

∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
. (4.10)

It follows from (1.10) that

a−2
n

n

∑
k=1

a2
k = O(n) and a−4

n

n

∑
k=1

a4
k = O(n).

Hence, using that the sequence (εn) is bounded

sup
1≤k≤n

|εk| ≤ sup
1≤k≤n

(β+ 2)µk ≤ (β+ 2)µn a.s. (4.11)

we find that
n

∑
k=1

E
[
‖Vn∆Mk‖4 | Fk−1

]
= O

( 1
n

)
a.s.

which ensures that Lindeberg’s condition (H.2) holds almost surely, that is for all ε > 0,

lim
n→∞

n

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
= 0 a.s. (4.12)

Since VnV−1
bntc converges, we immediatly obtain that

lim
n→∞

bntc

∑
k=1

E
[
‖Vn∆Mk‖21{‖Vn∆Mk‖>ε} | Fk−1

]
≤ lim

n→∞
bntc

∑
k=1

E
[
‖Vn∆Mk‖4]

≤ lim
n→∞

bntc

∑
k=1

E
[
‖(VnV−1

bntc)Vbntc∆Mk‖4]
= 0 a.s.

10
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(H.3) In this particular case, we have Vt = tK1 + tα2 K2 + tα3 K3 where

α2 = 1− a(β+ 1) > 0 and α3 = 1− 2a(β+ 1) > 0

as a < 1− 1
2(β+1) , and the matrix are symmetric

K1 =
β2

(β− a(β+ 1))2

(
1 0
0 0

)
, K2 =

aβ
(1− a)(β− a(β+ 1))2

(
0 1
1 0

)
,

K3 =
a2(β+ 1)2

(1 + 2β− 2a(β+ 1))(β− a(β+ 1))2

(
0 0
0 1

)
.

Consequently, we obtain that(
VnMbntc, t ≥ 0

)
=⇒

(
Bt, t ≥ 0

)
where B is defined as in Theorem A.2 from [19]. Finally, using the fact that Sbntc is asymp-

totically equivalent to Nbntc + tβ−a(β+1) a(β+1)
β−a(β+1) (µnan)−1 Mbntc, and multiplying by ut =( 1

ta(β+1)−β

)
, we conclude

( 1√
n

Sbntc, t ≥ 0
)
=⇒

(
Wt, t ≥ 0

)
(4.13)

where Wt = uT
t Bt. It only remains to compute the covariance function of (Wt) that is for

0 ≤ s ≤ t

E
[
WsWt

]
= uT

s E
[
BsBT

t
]
ut

= uT
s Vsut

= uT
s
(
sK1 + s1+β−a(β+1)K2 + s1+2β−2a(β+1)K3)ut

=
β2

(β− a(β+ 1))2 s +
aβs1+β−a(β+1)

(1− a)(β− a(β+ 1))2 (s
a(β+1)−β + ta(β+1)−β)

+
a2(β+ 1)2

(1 + 2β− 2a(β+ 1))(β− a(β+ 1))2 s1+2β−2a(β+1)(st)a(β+1)−β

=
a(1 +β)(1− a) + aβ

(2(β+ 1)(1− a)− 1)(a−β(1− a))(1− a)
s
( t

s

)a−β(1−a)

+
β

(β(1− a)− a)(1− a)
s.

�

Proof of Theorem 2.2. We need to check that all the hypotheses of Theorem A.3 in [19] are
satisfied. Thanks to Lemma 4.1, hypothesis (H.1) holds almost surely. We also immediately
obtain from (4.12) that (H.2) is verified almost surely when t = 1.
Hereafter, we need to verify (H.4) is satisfied in the special case β = 2 that is

∞
∑

n=1

1(
log(det V−1

n )2
)2E

[
‖Vn∆Mn‖4∣∣Fn−1

]
< ∞ a.s.

11
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We immediately have from (4.1)

det V−1
n =

β− a(β+ 1)
a(β+ 1)

anµn
√

n. (4.14)

Hence, we obtain from (1.10) and (4.14) that

lim
n→∞ log(det V−1

n )2

log n
= 1 + 2β− 2a(β+ 1). (4.15)

Therefore, we can replace log(det V−1
n )2 by log n in (4.1). Hereafter, we obtain from (4.9) and

(4.11) that

∞
∑

n=2

1
(log n)2E

[
‖Vn∆Mn‖4∣∣Fn−1

]
= O

( ∞
∑

n=1

1
(n log n)2

)
. (4.16)

Thus, (4.16) guarentees that (H.4) is verified. We are now going to apply the quadratic strong
law given by Theorem A.3 in [19]. We get from equation (4.15) that

lim
n→∞ 1

log n

n

∑
k=1

( (det Vk)
2 − (det Vk+1)

2

(det Vk)2

)
VkMkMT

k VT
k =

(
1 + 2β− 2a(β+ 1)

)
V a.s.

(4.17)
However, we obtain from (1.10) and (4.14) that

lim
n→∞ n

( (det Vn)2 − (det Vn+1)
2

(det Vn)2

)
= 1 + 2β− 2a(β+ 1). (4.18)

Finally, we can deduce from (4.2), (4.17) and (4.18) that

lim
n→∞ 1

log n

n

∑
k=1

S2
k

k2 = vTVv a.s. (4.19)

which, together with

vTVv =
2β+ 1− a

(1− a)(1 + 2β− 2a(β+ 1))
(4.20)

completes the proof of Theorem 2.2.

�

4.2 The critical regime

The proofs of Theorems 2.5 and 2.7 follows essentially the same lines as the ones in the
diffusive regimes, provided one exchange Vn with Wn. Hence, they shall not be explicited
here.

Proof of Theorem 2.6. The proof of the quadratic strong law (2.7) is left to the reader as it
follows essentially the same lines as that of (2.2). The only minor change is that the matrix
Vn has to be replaced by the matrix Wn defined in (4.5). We shall now proceed to the proof of
the law of iterated logarithm given by (2.8). On the one hand, it follows from (1.10) and (3.7)
that

+∞
∑

n=1

a4
n

w2
n
< ∞. (4.21)

12
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Moreover, we have from (3.4) and (3.5) that

lim
n→∞ 〈M〉nwn

= 1 a.s. and lim
n→∞ 〈N〉nn

=
( β

β− a(β+ 1)

)2
a.s.

Consequently, we deduce from the law of iterated logarithm for martingales due to Stout
[22], see also Corollary 6.4.25 in [12], that (Mn) satisfies when a = 1− 1/2(β+ 1)

lim sup
n→∞

Mn

(2wn log log wn)1/2
= − lim inf

n→∞ Mn

(2wn log log wn)1/2

= 1 a.s.

However, as anw−1/2
n is asymptotically equivalent to (n2β+1 log n)−1/2, we immediately ob-

tain from (3.8) that

lim sup
n→∞

Yn

(2n2β+1 log n log log log n)1/2
= − lim inf

n→∞ Yn

(2n2β+1 log n log log log n)1/2

lim sup
n→∞

n−βYn

(2n log n log log log n)1/2
= − lim inf

n→∞ n−βYn

(2n log n log log log n)1/2

= 1 a.s. (4.22)

The law of iterated logarithm for martingales also allow us to find that (Nn) satisfies

lim sup
n→∞

Nn

(2n log log n)1/2
= − lim inf

n→∞ Nn

(2n log log n)1/2

=
√

4β2 a.s.

which ensures that
lim sup

n→∞
Nn

(2n log n log log log n)1/2
= 0 a.s.

Hence, we deduce from (1.13) and (4.22) that

lim sup
n→∞

Sn

(2n log n log log log n)1/2
= lim sup

n→∞
Nn + (2β+ 1)(µnan)−1 Mn

(2n log n log log log n)1/2

= lim sup
n→∞ (2β+ 1)

Yn

(2n2β+1 log n log log log n)1/2

= − lim inf
n→∞ (2β+ 1)

Yn

(2n2β+1 log n log log log n)1/2

= − lim inf
n→∞ Sn

(2n log n log log log n)1/2
.

Hence, we obtain that

lim sup
n→∞

S2
n

2n log n log log log n
= lim sup

n→∞ (2β+ 1)2 Y2
n

2n log n log log log n

= (2β+ 1)2

which immediately leads to (2.8), thus completing the proof of Theorem 2.6.

�
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4.3 The superdiffusive regime

Proof of Theorem 2.8. Hereafter, we shall again make extensive use of the strong law of
large numbers for martingales given, e.g. by theorem 1.3.24 of [12] in order to prove (2.12).
When a > 1− 1

2(β+1) , we have from (3.9) that wn converges. Hence, as 〈M〉n ≤ wn, we clealy
have that 〈M〉∞ < ∞ almost surely and we can conclude that

lim
n→∞ Mn = M a.s. where M =

∞
∑
k=1

akεk

which by definition of Mn, and as an is asymptotically equivalent to Γ(a(β+ 1) + 1)n−a(β+1),
ensures that

lim
n→∞ Yn

na(β+1)
= Y a.s. where Y =

1
Γ(a(β+ 1) + 1)

M. (4.23)

Moreover, we still have that for any γ > 0,

N2
n = O

(
(log n)1+γn

)
a.s.

which by definition of Nn gives us for all t ≥ 0(
Sn +

a(β+1)
β−a(β+1) (µn)−1Yn)2

n2a(β+1)−2β
= O

( (log n)1+γ

n2a(β+1)−2β−1

)
a.s.

We know that a > 1− 1
2(β+1) in the superdiffusive regime, which ensures that 2a(β+ 1)−

2β− 1 > 0. Then, we obtain thanks to (1.11) and (4.7) that for all t ≥ 0

lim
n→∞

Sbntc

bntca(β+1)−β +
a(β+ 1)

β− a(β+ 1)
Ybntc

bntca(β+1)
= 0 a.s. (4.24)

The convergences (4.23) and (4.24) hold almost surely and bntc is asymptotically equivalent
to nt which implies

lim
n→∞

Sbntc
na(β+ 1)

= ta(β+1)Lβ a.s. (4.25)

Finally, the fact that (4.25) holds almost surely ensures that it also holds for the finite-dimensional
distributions, and we obtain (2.11) with Λt = ta(β+1)Lβ and Lβ = a(β+1)

a(β+1)−βY.

We shall now proceed to the proof of the mean square convergence (2.13). On the one hand,
as M0 = 0 we have from (3.4) that

E
[
M2

n
]
= E

[
〈M〉n

]
≤ wn.

Hence, we obtain from (3.9) that
sup
n≥1

E
[
M2

n
]
< ∞

which ensures that the martingale (Mn) is bounded in L2. Therefore, we have the mean
square convergence

lim
n→∞E

[∣∣Mn −M
∣∣2] = 0

which implies that

lim
n→∞E

[∣∣∣ Yn

na(β+1)
−Y

∣∣∣2] = 0. (4.26)
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On the other hand, for any n ≥ 0, the martingale (Nn) satisfies

E
[
N2

n
]
= E

[
〈N〉n

]
≤
( β

β− a(β+ 1)

)2
n

and since a(β+ 1)−β > 1
2 we obtain

lim
n→∞E

[∣∣∣ Nn

na(β+1)−β

∣∣∣2] = 0. (4.27)

Finally, we obtain the mean square convergence (2.13) from (4.26) and (4.27) and we achieve
the proof of Theorem 2.8.

�
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[9] BUSINGER, S. The shark random swim (Lévy flight with memory). J. Stat. Phys. 172, 3 (2018),
701–717.

[10] COLETTI, C., AND PAPAGEORGIOU, I. Asymptotic analysis of the elephant random walk. J. Stat.
Mech. Theory Exp., 1 (2021), 013205.
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