
HAL Id: hal-03637290
https://hal.science/hal-03637290

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed-Criticality Scheduling Upon Permitted Failure
Probability and Dynamic Priority

Zhishan Guo, Sudharsan Vaidhun, Luca Satinelli, Samsil Arefin, Jun Wang,
Kecheng Yang

To cite this version:
Zhishan Guo, Sudharsan Vaidhun, Luca Satinelli, Samsil Arefin, Jun Wang, et al.. Mixed-
Criticality Scheduling Upon Permitted Failure Probability and Dynamic Priority. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41 (1), pp.62-75.
�10.1109/TCAD.2021.3053232�. �hal-03637290�

https://hal.science/hal-03637290
https://hal.archives-ouvertes.fr

Mixed-Criticality Scheduling Upon Permitted
Failure Probability and Dynamic Priority

Zhishan Guo , Senior Member, IEEE, Sudharsan Vaidhun , Graduate Student Member, IEEE,
Luca Satinelli, Member, IEEE, Samsil Arefin, Jun Wang , Senior Member, IEEE,

and Kecheng Yang , Member, IEEE

Abstract—Many safety-critical real-time systems are consid-
ered certified when they meet failure probability requirements
with respect to the maximum permitted incidences of failure per
hour. In this article, the mixed-criticality task model with multiple
worst case execution time (WCET) estimations is extended to
incorporate such system-level certification restrictions. A new
parameter is added to each task, characterizing the distribution
of WCET estimations—the likelihood of all jobs of a task finish-
ing their executions within the less pessimistic WCET estimates.
Efficient algorithms are derived for scheduling mixed-criticality
systems represented using this model for both uniprocessor and
multiprocessor platforms for independent tasks. Furthermore,
a 0/1 covariance matrix is introduced to represent the failure
dependency between tasks. An efficient algorithm is proposed
to schedule such failure-dependent tasks. Experimental anal-
yses show our new model and algorithm outperform current
state-of-the-art mixed-criticality scheduling algorithms.

Index Terms—Dependency, failure probability, mixed critical-
ity, multicore real-time scheduling.

I. INTRODUCTION

SAFETY-CRITICAL systems are as failure prone as any
other system, and today’s system certification approaches

recognize this and specify permitted system failure proba-
bilities. The underlying idea is to certify considering more
realistic system models that account for any possible behav-
ior, including faulty conditions, and the probability of these
behaviors occurring. The gap that still exists is between such
enhanced models and the current conservative deterministic
analyses that tend to be pessimistic.

The worst-case execution time (WCET) abstraction plays a
central role in the analysis of real-time systems. The WCET

Manuscript received May 30, 2020; revised September 17, 2020 and
December 2, 2020; accepted January 16, 2021. Date of publication
January 21, 2021; date of current version December 23, 2021. This work
was supported in part by the National Science Foundation under Grant CNS-
1850851 and Grant SPX-2028481. A preliminary version of this article with
early results on uniprocessor was published in RTCSA 2015 [1]. This article
was recommended by Associate Editor C.-L. Yang. (Corresponding author:
Zhishan Guo.)

Zhishan Guo, Sudharsan Vaidhun, and Jun Wang are with the Department of
Electrical and Computer Engineering, University of Central Florida, Orlando,
FL 32816 USA (e-mail: zsguo@ucf.edu).

Luca Satinelli is with the Department of DTIM-LAPS, ONERA, 31055
Toulouse, France, and also with Department of DTIM-LAPS, Airbus Defence
and Space, 82024 Taufkirchen, Germany.

Samsil Arefin is with the Intune Team, Microsoft New England Research
and Development Center, Cambridge, MA 02142 USA.

Kecheng Yang is with the Department of Computer Science, Texas State
University, San Marcos, TX 78666 USA.

of a given piece of code upon a specified platform represents
an upper bound to the duration of time needed to finish execu-
tion. Unfortunately, even when severe restrictions are placed
upon the structure of the code (e.g., known loop bounds), it
is still extremely difficult to determine the absolute WCET.
An illustrative example is provided in [2], which demonstrates
how the simple operation “a = b + c” on integer variables
could take anywhere between 3 and 321 cycles upon a widely
used modern CPU. The number of execution cycles highly
depends upon factors such as the state of the cache when
the operation occurs. WCET analysis has always been a very
active and thriving area of research, and sophisticated timing
analysis tools have been developed (see [3] for an excellent
survey).

Traditional rigorous WCET analysis may lead to a result
of much pessimism, and the occurrence of such WCET is
extremely unlikely, unless under highly pathological circum-
stances. For instance, although a conservative tool would
assign the “a = b + c” operation, a WCET bound of 321
cycles, a less conservative tool may assign it a much smaller
WCET (e.g., 30) with the understanding that the bound may
be violated on rare occasions under certain (presumably highly
unlikely to occur) pathological conditions.

Mixed-Criticality Systems: The gap between the actual run-
ning time and WCET may be significantly large. Instead of
completely wasting the processor capacities within the gap,
recent research focused on implementing functionalities of dif-
ferent degrees of importance, or criticalities, upon a common
platform, so that the less important tasks that may execute
in these gaps under normal circumstances may be dropped in
occasional situations where jobs of higher importance level
execute beyond their estimated common case running time.

Much of the prior research on mixed-criticality scheduling
(see [4] for a review) have focused upon the phenomenon
that different tools for determining WCET bounds may be
more or less conservative than one another, which results in
multiple WCET estimations for each individual task (piece of
code). Typically, in the two-criticality-level case, each task is
designated as being of either higher (HI) or lower (LO) crit-
icality, and two WCETs are specified for each HI-criticality
task: 1) a LO-WCET determined by a less pessimistic tool
and 2) a larger HI-WCET determined by a more conservative
one, which is sometimes larger than the LO-WCET by several
orders of magnitude. The scheduling objective is to determine
a runtime scheduling strategy, which ensures that: 1) all jobs

https://orcid.org/0000-0002-5967-1058
https://orcid.org/0000-0002-3814-5980
https://orcid.org/0000-0002-0926-4761
https://orcid.org/0000-0001-9929-9759

of all tasks complete by their deadlines if each job completes
upon executing for no more than its LO-WCET and 2) all jobs
of tasks designated as being of HI criticality continue to com-
plete by their deadlines (although the LO-criticality jobs may
not) if any job requires execution for more than its LO-WCET
(but no larger than its HI-WCET) to complete.

Under the current mixed-criticality model, it is assumed
that all HI-criticality jobs may require executions up to their
HI-WCETs in HI mode simultaneously. However, since WCET
tools are normally quite pessimistic, LO-WCET is not very
likely to be exceeded during runtime.

Example 1: Consider a system comprised of two indepen-
dent1 HI-criticality tasks τ1 and τ2, where each task is denoted
by two utilization estimations uLO ≤ uHI. The two tasks
τ1 = {0.4, 0.6} and τ2 = {0.3, 0.5}, represented by utiliza-
tions in different modes, are to be scheduled on a preemptive
unit-speed uniprocessor. It is evident that this system can-
not be scheduled correctly under the traditional model, since
the HI-criticality utilization, at (0.6+ 0.5), is greater than the
processor capacity which is 1.

However, suppose that: 1) absolute certainty of correctness
is not required; instead it is specified that the system fail-
ure probability should not exceed 10−6 per hour and 2) it
is known that the timing analysis tools used to determine
LO-criticality WCETs ensure that the likelihood of any job
of a task exceeding its LO-WCET is no larger than 10−4

per hour.
Based on the task independence assumption, the probabil-

ity of jobs from both tasks exceeding their LO-WCETs is
10−4 × 10−4 = 10−8 per hour. Thus, we know that it is safe
to ignore the case that both tasks simultaneously exceed their
LO-WCETs. Hence, the system is probabilistically feasible,
since the total remaining utilization will not exceed

max{0.4+ 0.3, 0.4+ 0.5, 0.6+ 0.3} = 0.9 ≤ 1.

Example 1 gives us an intuition that with the help of prob-
abilistic analysis, we may be able to ignore some extremely
unlikely cases, and come up with some less pessimistic schedu-
lability analysis—if we have the prior knowledge that there
will be at most a fixed number of HI-criticality tasks with
execution exceptions per hour, then dropping of less important
jobs may not be necessary at all.

In traditional MC models, each HI-criticality task is charac-
terized by two WCETs, cLO and cHI, which could be derived
with different timing analysis tools. By the level of pessimism
and/or other properties in the timing analysis, such a tool usu-
ally provides a confidence for its resulting WCET estimates.
Confidence level of the execution budget estimates is the likeli-
hood that the estimate is true, given the information available.
However, very few work on MC analysis have leveraged any
information from the confidence of the provisioned WCET.

The existing MC analysis usually makes the most pes-
simistic assumption that every HI-criticality task may execute
beyond its LO-WCET and reach its HI-WCET simultaneously.
In real applications, the industry standards usually only require

1Two events are independent if the occurence of one event does not have
any impact on the other.

the expected probability of missing deadlines within a speci-
fied duration to be below some specified small value, as the
deadline miss can be seen as a faulty condition. Instead, our
work aims at leveraging probabilistic information from the
timing analysis tools (i.e., confidence) to rule out the too pes-
simistic scenarios and to improve schedulability of the whole
system under a probabilistic standard.

Our work also differs from most prior work on WCET anal-
ysis as follows. The existing timing analysis works usually
analyze WCET for a task on a per-job basis; i.e., by focusing
on the distribution of WCETs of jobs of a certain task [3].
When it comes to analyzing a series of consecutive jobs gen-
erated from the same task, the distribution is directly applied.
It is usually assumed that: 1) all jobs of WCET of a certain
task obey the same distribution (identically distributed) and
2) the WCET of a job is probabilistically drawn from the dis-
tribution with no dependence on other jobs of the same task
(independence). While the independence assumption holds for
the WCET, as we will see in the next section, it may not hold
for the task execution time. For example, in many applica-
tions such as video frames processing, the execution times of
processing consecutive frames of a certain video are usually
dependent. However, the event that a certain task has ever over
run its provisioned execution time in time intervals of a certain
adequate large length (e.g., an hour) is independent from the
scenario in other such intervals, and the probability of such
event should be derived from the confidence of corresponding
timing analysis tools only.

Contributions: In addition to the existing mixed-criticality
task model, this work introduces a new parameter to each task
that represents the distribution information about its WCET.
This work aims to provide schedulability analysis to instances
with this additional probability information, with respect
to the given safety certification requirement of the whole
system, which is the permitted system failure probability
per hour.

We consider the scheduling of dual-criticality task systems
upon both preemptive uniprocessor and multiprocessor plat-
forms. As stated above, dual-criticality tasks are tra-
ditionally characterized with two WCET estimations—a
LO-WCET and a larger HI-WCET. Our contributions are
as follows.

1) We propose a supplement to current MC task models: an
additional parameter for each HI-criticality task, denot-
ing the probability of no job of this task exceeding its
LO-WCET within an hour of execution.

2) We further generalize our notion of system behavior by
allowing for the specification of a permitted system fail-
ure probability per hour, denoting an upper bound on the
probability that the system may fail to meet its timing
constraints during any hour of running.

3) We derive a novel scheduling algorithm (and an associ-
ated sufficient schedulability test) for a given MC task
set and an allowed system failure probability on unipro-
cessor platforms. We seek to schedule the system such
that the probability of failing to meet timing constraints
during runtime is guaranteed to be no larger than the
specified allowed system failure probability.

4) We further extend our uniprocessor scheduling tech-
nique to multiprocessor platforms by combining with
the partitioned scheduling techniques.

5) While our initial scheduling technique focuses on inde-
pendent task sets, we further introduce a covariance
matrix in the system model to represent the failure
dependencies between tasks in a task set, and we pro-
pose an efficient scheduling technique to schedule task
sets with given failure dependencies.

We emphasize that our algorithm, in the two-criticality-level
case, requires just one probabilistic parameter per task—the
probability that the actual execution requirement will exceed
the specified LO-WCET in an hour. We believe our schedul-
ing algorithm is novel in that it is, to our knowledge, the
first MC scheduling algorithm that makes scheduling deci-
sions (e.g., when to trigger a mode switch) based not only on
release times, deadlines, and WCETs but also on the proba-
bilities drawn from probabilistic timing analysis (PTA) tools
(see [5]–[7]).

Organization: Section II introduces the model and shows
its advantage by a motivating example. Section III formally
defines probabilistic schedulability and related concepts. In
Section IV, we propose a clustering-based scheduling strat-
egy, and the corresponding schedulability test, while Section V
presents the multiprocessor scheduling algorithm and the cor-
responding schedulability test. In Section VI, we introduce
the covariance matrix to represent the failure dependencies
between the tasks and present the scheduling technique for
such task sets, and finally, Section VII performs their exper-
imental evaluations and comparisons. Section VIII elaborates
the existing results, and Section IX concludes and suggests
future work.

II. MODEL

We start out considering a workload model consisting of
independent implicit-deadline sporadic tasks, where the dead-
line and the period of a task share the same value. In
Section VI, we extend this model to allow for pairwise depen-
dencies between tasks. Throughout this article, an integer
model of time is assumed—all task periods are assumed to
be nonnegative integers, and all job arrivals are assumed to
occur at integer instants in time.

Before detailing our task model, a few statistical notions
need to be introduced in order to clarify previous and
next observations. Given a task τi, its probabilistic WCET
(pWCET) estimate comes from a random variable (the WCET
distribution), notably continuous distributions2 denoted by Ci.
Equivalent representations for distributions are the probabilis-
tic density functions (pdfs) fCi , the cumulative distribution
functions (CDFs) FCi , and the complementary CDFs (CCDFs)
F′Ci

. In the following, calligraphic uppercase letters are used to
refer to probabilistic distributions, while noncalligraphic letters
are used for single value parameters.

2The timing analysis that makes use of the EVT, by definition provides
continuous distributions as pWCET estimates [5]; they are then discretized,
to ease their representation, by assigning them a discrete support.

The CCDF representation relates confidence to probabil-
ities; indeed, from F′Ci

(c(LO)), we have the probability of
exceeding cLO. The confidence is then for c(LO) being an
upper bound to task execution time. The WCET threshold,
simply named pWCET or WCET in the rest of this arti-
cle, is a tuple 〈c(LO), p(LO)〉, where the probability p(LO)

sets the confidence (at the job level) of exceeding c(LO),
p(LO) = F′C(c(LO)) = P(C > c(LO)). By decreasing the prob-
ability threshold p(LO), the confidence on the upper bounding
worst case c(LO) increases.

Given the event A that a job exceeds its threshold and its
probability of happening pA = P(Ci > c(LO)); given B the
event that another job exceeds its threshold (in a different
execution interval) with pB = P(Ci > c(LO)) its probability of
happening. With separate jobs as well as separate execution
intervals, and considering WCETs, the conditional probability
P(A|B) is equal to P(A), thus the joint probability is

P(A, B) = P(A|B)× P(B) = P(A)× P(B) (1)

due to the independence between WCETs. Projecting the per
job probability threshold p(LO) = F′Ci

(c(LO)) to 1-h task exe-
cution interval, we make use of the joint probability of all the
exceeding threshold events within the 1-h interval. The joint
probability is

1− P(Ci ≤ c(LO), Ci ≤ c(LO), Ci ≤ c(LO), . . . , Ci ≤ c(LO))

(2)

as the probability of at least one task job exceeding its
thresholds c(LO). With full independence, the probability of
exceeding threshold in 1 h would be at most 1−FCi(c(LO))×
�Ti/3600000�, with the task τi period Ti expressed in
millisecond.

III. PROBABILISTIC SCHEDULABILITY

System Failure Probability Fs: In our model, an allowed
system failure probability FS is specified. It describes the
permitted probability of the system failing to meet timing con-
straints during 1 h of execution.3 FS may be very close to zero
(e.g., 10−12 for some safety critical avionics functionalities).4

Failure Probability: A failure probability parameter fi is
added to HI-criticality task τi, denoting the probability that the
actual execution requirement of any job of the task exceed-
ing ci(LO) [but still below ci(HI)] in 1 h (i.e., the adequate
long time interval we assumed in this article). fi depends on a
failure distribution Fi(t) that describes the task τi probability
of failure up to and including time t. Since Fi(t) would refer
to time (interval) and to task execution, it is going to be the
one we computed for 1-h interval or any another interval (2).
Thus, fi can be directly derived from FCi .

5

3Failure probability is easily referable to failure rate, being careful at
considering the failure rate as a probability.

4From DO-178B/C at the highest DAL—Level A, the acceptable failure
rate is below 10−9/h [8].

5It is possible to apply existing timing analysis tools to determine fi – by
monitoring executions of a piece of code for enough length, one may derive
a stable pWCET, or may need to adapt EVT in case there are significant
changes of execution time (to guarantee the safety of pWCET).

A HI-criticality task is represented by: τi =
([ci(LO), ci(HI)], fi, Ti, χi), where Ti is the task period
and χi ∈ {LO, HI} is the criticality level of the task;
LO-criticality tasks continue to be represented with three
parameters as before. This enhanced model is essentially
asserting, for each HI-criticality task τi, within a time interval
of 1 h, no job of τi has an execution greater than ci(HI)

and the probability of any job of τi having an execution
greater than ci(LO) is fi—we would expect fi to be a very
small positive value. In our work, we assume ci(HI) the
deterministic WCET, 〈ci(HI), 0〉, while 〈ci(LO), fi > 0〉 the
pWCET with ci(LO) ≤ ci(HI). Normally, we do not guarantee
higher assurance for LO-criticality tasks (than HI-criticality
ones), and thus only ci(LO) is adopted for them. In the
traditional MC model, ci(LO) and ci(HI) values are chosen
from the WCET distribution. However, the corresponding
probabilities, fi and 0, respectively, are omitted from the
task model. The proposed task model retains the probability
information associated with the WCET estimates.

Definition 1 (MC Task Instance): An MC task instance I is
composed of an MC task set τ = {τ1, τ2, . . . , τn} and a system
failure requirement FS ∈ (0, 1). (Although FS may be arbitrar-
ily close to 0, FS = 0 is not an acceptable value—“nothing is
impossible.”)

Let nHI ≤ n denote the number of HI-criticality tasks
in τ . We assume that the tasks are indexed such that the
HI-criticality ones have lower indices, i.e., the HI-criticality
tasks are indexed 1, 2, . . . , nHI.

We seek to determine the probabilistic schedulability of any
given MC task instance.

Definition 2 (Probabilistic Schedulability): An MC task set
is strongly probabilistic schedulable by a scheduling strategy
if it possesses the property that upon execution, the probability
of missing any deadline is less than FS. It is weakly probabilis-
tic schedulable if the probability of missing any HI-criticality
deadline is less than FS. (In either case, all deadlines are met
during system runs where no job exceeds its LO-WCET.)

That is, if a schedulability test returns strongly schedulable,
then all jobs meet their deadlines with a probability no less
than 1− FS, while weakly schedulable only guarantees (with
probability no less than 1 − FS) that HI-criticality jobs meet
their deadlines. Moreover, similar to all MC works, for either
strongly or weakly probabilistic schedulable, all deadlines are
met when all jobs finish upon executing their LO-WCETs.
Again, FS comes from the natural need of some system cer-
tifications, while fi is the additional information for each task
that we need to derive from WCET estimations to achieve
such probabilistic certification levels.

A. On the WCET Dependencies

In our model, the failure probability per hour of each task
fi represents the probability of any job of the task τi exceed-
ing its LO-WCET. Thus, dependencies between tasks and task
executions could have a strong impact on fi. We hereby detail
how we intend to cope with statistical dependence.

In [9], it has been shown that neither probabilistic depen-
dence among random variables nor statistical dependence

of data implies the loss of independence between tasks’
pWCETs or WCET estimates. WCET is an upper bound to
any execution time, which makes the important consequence
on the independence between WCETs: jobs and tasks mod-
eled with WCETs are independent because WCETs already
embed dependence effects. Although both execution bounds
(LO-WCET and HI-WCET) are so far called WCET estima-
tions, the LO-WCET may also serve as an execution time
upper bound, where dependence between tasks and within
tasks needs to be more carefully accounted for (see [10] for
the original definition of the MC task model).

Each MC task may generate an unbounded number of jobs.
Since jobs generated from the same task set typically repre-
sent execution of the same piece of code, and such consecutive
jobs could experience similar circumstances, in the definition
of the failure probability fi (of a task τi), we naturally assume
dependence among jobs of the same task, i.e., it represents the
likelihood that the required execution time of any job gener-
ated within an hour by τi will exceed ci(LO). In [11] and [12],
it has been shown that real safety-critical embedded systems
have natural variability on the task execution time, thus it is
reasonable to assume independence or extremal independence
between jobs.

Concerning task dependencies, we can cope with the depen-
dence by specifying the task pairwise dependence model.
Assuming we are given a list of pairs (τi, τj) indicating that
(WC)ETs of these two tasks may be dependent on each other.
It means that the probability of them both exceeding their
LO-WCET is no longer the product of their individual prob-
abilities. By knowing P(Ci > ci(LO), Cj > cj(LO)), we are
able to model (τi, τj) dependence including the execution time
task dependencies in our framework, (Section IV-A). For many
real-world systems, it is reasonable to assume that many (or
most) task pairs do not have such dependencies to each other
(although at the execution time level), since the limited impact
of one task to another in a mixed-critical partitioned system.
In Sections IV and V, we consider intertask independence
(no pairwise failure-dependencies) to schedule the MC task
set on uniprocessor and multiprcessor platforms, respectively.
Furthermore, in Section VI, we introduce a covariance matrix
to represent the pairwise failure dependencies and present the
corresponding scheduling technique.

To summarize, intratask as well as intertask job dependences
are covered by our model.

B. Utilization Costs

The notion of additional utilization cost, defined below,
helps quantify the capacity that must be provisioned under
HI-criticality mode.

Definition 3 (Additional Utilization Cost): The additional
utilization cost of HI-criticality task τi is given by

δi = (ci(HI)− ci(LO))/Ti. (3)

Since we consider EDF schedulability instead of fixed-
priority, we would like to know whether and how likely system
utilization may exceed 1: 1) if it is extremely unlikely that the
total HI-criticality utilization exceeds 1 (weakly probabilistic

schedulable), we could assert a system that is infeasible in
the traditional MC model to be probabilistic feasible and 2) if
it is extremely unlikely that total system utilization exceeds
1 (strongly probabilistic schedulable), we could decide not
to drop any LO-criticality task even if some HI-criticality
tasks accidentally suffer from failures (that they require more
execution time than expected).

Example 1 has shown an infeasible task set (under tradi-
tional MC scheduling) being weakly probabilistic schedulable
under our model. As seen from the definitions, existing mixed-
criticality systems are often analyzed under two modes—the
HI mode and the LO mode, and mode switch is triggered
when any HI-criticality job exceeds its LO-WCET without
signaling finishing. Upon such a mode switch, deadlines of
all LO-criticality jobs will no longer be guaranteed. A natural
questions arises—is such sacrifice (dropping all LO-criticality
jobs) necessary whenever a HI-criticality job requires execu-
tion for more than its LO-WCET? The following example illus-
trates the potential benefits in terms of enhanced schedulability
of the proposed probabilistic MC model.

Example 2: Consider a system composed of the three
independent MC tasks that τ1 = {[2, 3], 0.1, 5, HI}, τ2 =
{[3, 4], 0.05, 10, HI}, and τ3 = {[1, 1], 10, LO}, to be sched-
uled on a preemptive uniprocessor, with desired system failure
probability threshold of FS = 0.01.

Since HI-utilization of the system is uHI = 3/5 + 4/10 =
1, any deterministic MC scheduling algorithm will prioritize
τ1 and τ2 over the LO-criticality task τ3, and drop τ3 if any
HI-criticality job exceeds its LO-WCET.

With the additional probability information provided in our
richer model, however, more sophisticated scheduling and
analysis can be done. Recalling from the definition of fi, τ1 has
a probability of no larger than 0.1 to exceed a 2-unit execution
within an hour, while the probability of any job in τ2 exceeding
a 3-unit execution within an hour is 0.05. Under the task-level
independence assumption, the probability of jobs from both
HI-criticality tasks requiring more than their LO-WCETs in an
hour [P(x1 = x2 = 1) = P(x1 = 1)×P(x2 = 1) = 0.1×0.05 =
0.005] is smaller than FS.6

Hence, in the schedulability test, we do not need to consider
the case that both HI-criticality tasks exceed their LO-WCETs
simultaneously. Moreover, either one of them exceeding its
LO-WCET will not result in an overutilized system—an HI-
criticality “server” with budget 0.2 and period 1 can be added
to provide the additional capacity (over and above the LO-
WCET amount). This server will be scheduled and executed
as a virtual task, and both HI-criticality tasks may run on the
server. The additional budget of 0.2 is sufficient to handle
either δ1 = 0.2 or δ2 = 0.1, which is necessary when one
of the HI tasks exceed their LO-WCET. The server needs not
provide δ1+ δ2 = 0.3 budget, since the probability of such an
event is less than Fs.

The total system utilization thus provisioned for the HI-
criticality tasks is 2/5+3/10+0.2/1 = 0.9; upon provisioning

6In general, we cannot simply ignore an event when its failure probability
is below FS. Instead, we do not need to consider a set of events only when
the sum of their failure probability is below FS. More details on this can be
found in Section III.

an additional utilization of 1/10 = 0.1 for the LO-criticality
task τ3, the total utilization becomes 1. Thus, under any
optimal uniprocessor scheduling strategy, e.g., EDF, the fail-
ure (any deadline miss) rate of the system in any hour will
be no greater than FS, and the MC instance is strongly proba-
bilistic schedulable under this scheduling strategy (EDF plus
the HI-criticality server) for the specified threshold FS.

IV. SCHEDULING STRATEGY

A. LFF-Clustering Algorithm

In this section, we present our strategy for scheduling
independent preemptive MC task instances, by combining
HI-criticality tasks into clusters intelligently, and provide a
sufficient schedulability test for it. Consider what we have
done in Example 2 above. We essentially: 1) conceptually
combined the HI-criticality tasks τ1 and τ2 into a single
cluster, provisioning an additional server into the system to
accommodate their possible occasional HI-mode behaviors
(execution beyond their LO-WCETs) and 2) performed two
EDF schedulability tests: one considering only HI-criticality
tasks (with LO-WCETs) and the server, and the other also
considering the LO-criticality task (τ3). Since both tests suc-
ceed, we declare strongly probabilistic schedulable for the
given instance; we would have declared weakly probabilistic
schedulable if the second schedulability test had failed while
the first one succeeded.

The technique that was illustrated in Example 2 forms the
basis of the scheduling strategy that we derive in this section.
To obtain a good upper bound to HI-criticality utilization of
the system, we combine tasks into clusters—suppose that the
nHI HI-criticality tasks have been partitioned into M clusters
G1, G2, . . . , GM , and let yi ∈ {1, 2, . . . , M} denote to which
the cluster (number) task τi is assigned.

Definition 4 (Failure Probability of a Cluster): Failure of
a cluster Gm is defined as jobs generated by more than one
tasks in a single cluster exceeding their LO-WCETs within an
hour. The probability of a failure occurring in cluster m is
denoted as gm and is given by

gm
def= 1−

∏

i|yi=m

(1− fi)−
∑

j|yj=m

fj

∏
i|yi=m(1− fi)

1− fj
(4)

where the second term of right-hand side is the probability
of no task (in the cluster) exceeding its LO-WCET, and the
last term represents the probability of exactly one of the tasks
exceeding its LO-WCET in an hour.

Lemma 1: If gm < FS/M holds for every cluster Gm, then
the probability of having no failure in all clusters is greater
than (1− FS).

Proof: Since clusters do not overlap with each other (each
HI-criticality task belongs to a single cluster) and thus are
independent of each other, the probability of having no failure
in all clusters is given by the product of each cluster being
failure free, which is:

∏M
m=1(1− gm) >

∏M
m=1(1− FS/M) =

(1− FS/M)M ≥ 1− FS (from the binomial theorem).
Lemma 1 provides a safe failure threshold FS/M for each

cluster, i.e., the rule for forming clusters is gm < FS/M, where
M is the current number of clusters.

Algorithm 1: Algorithm LFF-Clustering

Input: FS, {fi}nHI
i=1 , {δi}nHI

i=1
Output: maximum total additional utilization cost �

begin
Sort the tasks in non-increasing order of δi;
m← 1, M← nHI, yi ← 0 for i = 1, ..., n;
while

∏nHI
i=1 yi = 0 (an unassigned task exists) do

�m ← 0 (additional utilization of each cluster);
for i← 1 to nHI do

if yi > 0: continue;
yi ← m, M← M − 1;
if gm ≥ FS/(M + m): yi ← 0, M← M + 1;

end
�m ← maxi|yi=mδi; m← m+ 1, M← M + 1;

end
return

∑M
m=1 �M;

end

The additional utilization cost of a cluster Gm is defined
to be equal to the additional utilization cost (δi) of the task
within the cluster with the largest δi value, i.e.,

�m
def= maxi|τi∈Gmδi. (5)

The total system additional utilization cost is given by the
sum of additional utilization cost of all M clusters

�
def=

M∑

m=1

�m. (6)

A critical observation is that if a task τi with additional
utilization cost δi has been assigned to a cluster, assign-
ing any other task τj with δj ≤ δi to the cluster will not
increase the additional utilization cost. To minimize the total
additional utilization cost of the entire task set, we, there-
fore, greedily expand existing clusters with tasks of larger
additional utilization cost while ensuring that the relationship
gm < FS/M continues to hold, which leads to the largest fit
first (LFF)-clustering algorithm.

This algorithm greedily expands each existing cluster with
unassigned tasks while the condition gm < FS/M holds; while
a new cluster is created only if it is not possible to assign
a task to any current cluster without violating the condition
(gm < FS/M).

Remark 1: Similar to what has been done in [13] and [14],
we may achieve a precise distribution to the total utilization
of all tasks by applying the convolution operation “⊗,” which
results in an exponential [O(2nHI), to be precise] running time
(see Appendix B). The sufficient schedulability test based on
the LFF-Clustering algorithm runs in O(n2

HI) time, where nHI
is the number of HI-criticality tasks.

Remark 2: In the case that all tasks share the same fi
value, the schedulability test based on LFF-clustering becomes
necessary and sufficient.

Runtime Strategy: During execution, an HI-criticality server
τs with utilization � and a period of 1 tick is added to the
task system. The server is represented as τs = {�, 1, HI}.

We need the server period as 1 tick because the mechanism
and the analysis will not work if there is release or deadline
within a server period. At any time instant that the server
is executing, if there are active7 HI-criticality jobs, they are
executed following the earliest deadline first policy; if not,
then the current server job is dropped.8 All jobs including the
server are scheduled and executed in the EDF order, and a job
is dropped at its deadline if it is not completed by then.

Although we introduce a server task with period of 1, pre-
emption does not necessarily happen that often. The goal of
the sever task with utilization � is to preserve a “bandwidth”
of at least � for HI-criticality jobs if the HI-criticality ready
queue is not empty. There are three situations to be considered
as follows.

Situation 1: The job with the earliest deadline is an HI-
criticality job. In this situation, we execute the HI-criticality
job with 100% processor share, and no more preemption is
incurred by the server.

Situation 2: The job with the earliest deadline is an LO-
criticality job and the HI-criticality ready queue is empty. In
this situation, we execute the LO-criticality job with 100%
processor share, and hence, there is no additional preemption
in this situation either.

Situation 3: The job with the earliest deadline is an LO-
criticality job and the HI-criticality ready queue is not empty.
In this situation, we want to preserve a processor share of �

for HI-criticality jobs and to execute the LO-criticality ones
with the rest 1 −� of the processor capacity. Therefore, the
server creates preemptions every time unit.

That is, only in situation 3, our algorithm “introduces”
extra preemptions due to the server scheme, and normal EDF
scheduling is applied in other cases. One may claim that such
server allocation scheme may result in more preemptions than
the approaches where the server capacity is only used for
overruns. Actually this is because that the goal here is trying
not to drop LO-criticality tasks even when a few HI-criticality
ones exceed their LO-WCETs. Thus, in order to guarantee
HI-deadline being always met, we have to make certain use of
the server even when no HI-criticality behavior is detected –
simply taking “precautions.” Alternative way such as assigning
HI-criticality jobs virtual deadlines may lead to fewer preemp-
tions, at a cost of losing the performance of schedulability ratio
(see Section VII).

B. Schedulability Test

It is evident that for strongly probabilistic schedulable
(i.e., to ensure that the probability of missing any dead-
line is no larger than the specified system failure probability
FS – see Definition 2), it is (necessary and) sufficient that
(
∑n

i=1 ci(LO)/Ti +�) must be no larger than the capacity of
the processor (which is 1).

7A job is active if it is released and incomplete at that time instant.
8Since an integer model of time is assumed (i.e., all task periods are integers

and all job arrivals occur at integer instants in time), and the server has a
period of 1, it is safe to drop the current job of the server if there are no
active HI-criticality jobs since there can be no HI-criticality job releases in
the current period of the server.

Algorithm 2: Schedulability Test pMC
Input: τ, FS

Output: schedulability

begin
Calculate δi values for all HI-criticality tasks in τ ;
uLO ←∑n

i=1 ci(LO)/Ti;
u′LO ←

∑
i|χi=HI ci(LO)/Ti;

�← LFF-Clustering(FS, {fi}nHI
i=1 , {δi}nHI

i=1);
if uLO +� ≤ 1 then

return strongly probabilistic schedulable;
else if u′LO +� ≤ 1, � · (1− u′LO)+ uLO ≤ 1 then

return weakly probabilistic schedulable;
return unknown;

end

For weakly probabilistic schedulable (i.e., to ensure that
the probability of missing any HI-criticality deadline is no
larger than FS – again, see Definition 2), it is necessary that
(
∑

i|χi=HI ci(LO)/Ti + �) must be no larger than 1 as well.
The following theorem helps establish a sufficient condition
for ensuring weakly probabilistic schedulable.

Theorem 1: If no job exceeds its LO-WCET, then no dead-
line is missed if

� ·
⎛

⎝1−
∑

i|χi=HI

ci(LO)

Ti

⎞

⎠+
n∑

i=1

ci(LO)

Ti
≤ 1. (7)

Proof: Refer to the conference version [1].
Theorem 1 yields the schedulability test pMC (Algorithm 2),

while the following theorem establishes its correctness.
Theorem 2: The schedulability test pMC is sufficient in the

following sense. If it returns strongly probabilistic schedu-
lable, the probability of any task missing its deadline is no
greater than FS; and if it returns weakly probabilistic schedu-
lable, the probability of any HI-criticality task missing its
deadline is no greater than FS, and no deadline is missed when
all jobs finish upon execution of their LO-WCETs.

Proof: Refer to the conference version [1].
The schedulability test pMC returns strongly probabilistic

schedulable if we are able to schedule the system such that
the probability of missing any deadline is at most the specified
threshold FS, or weakly probabilistic schedulable if we are able
to schedule the system such that the probability of missing any
HI-criticality deadline is at most FS. We will then use EDF to
schedule and execute the task set with LO-WCETs and the
additional server task τs = {�, 1, HI}.

In the case that the schedulability test pMC returns
unknown, we are not able to schedule the system using
the proposed probabilistic analysis technique. Normally, it is
because either the safety requirement of the system is too high
(i.e., the threshold FS is too small), or the WCET estimations
are not precise enough for HI-criticality tasks [i.e., the fi val-
ues are not small enough compared to FS (and nHI), and/or
the ci(LO) values are not differentiable enough against ci(HI)

values].

V. MULTIPROCESSOR CASE

Multiprocessor devices are becoming more and more pop-
ular, while it is becoming more efficient to schedule real-time
tasks in multiprocessor platforms to achieve better throughput.
Considering the pragmatic application of applying probabilis-
tic scheduling, implementing a similar technique in multi-
processors will dissipate the pessimistic assumption of the
existing scheduling mechanism and improve the resource effi-
ciency. This section proposes a multiprocessor scheduling
technique of MC tasks considering the failure probability
based on an partitioned-based approach.

The partitioned-based scheduling of implicit-deadline spo-
radic task system can be converted into a bin-packing
problem [15]. Hence, each processor is modeled as a bin of
capacity one, and each task τi has the capacity of size ui (its
utilization). As bin packing is NP-hard [15], heuristics can be
applied for solving the problem. As our system model con-
siders MC tasks with failure probability, we need to modify
the task sets to fit into a traditional bin packing heuristics.
Here, we briefly discuss three most-common heuristics [first
fit (FF), best fit (BF), and worst fit (WF)] and then present
an algorithm to schedule our system model in multiprocessor
environments.

Different Allocation Heuristics: For partitioned scheduling,
most common heuristics are FF, BF, and WF. Note that rea-
sonable allocation decreasing (RAD) algorithms are proven
to provide optimal utilization bound [16]. Hence, we adapt
such approach, and thus, the three algorithms discussed above
would have been called FF decreasing (FFD), BF decreasing
(BFD), and WF decreasing (WFD) partitioned algorithms.

Task Allocation: To schedule tasks in our proposed system
model in multiprocessor platforms, we present a slightly dif-
ferent scheduling approach than the one for uniprocessor in
Section IV. Initially, all the tasks are grouped into different
clusters using the same LFF-clustering algorithm presented
before. Then, we schedule the clusters on different proces-
sors by using different RAD partitioned heuristics. Note that
for every cluster, there is an additional utilization cost �m,
which is also needed to be allocated in case any task of the
cluster exceeds its LO-criticality WCET. For every processor,
we need to allocate a server that has a utilization equal to
the sum of additional utilization cost �m of all the clusters
allocated in that processor. For example, while considering
scheduling three clusters on two processors, if the Clusters 1
and 2 are allocated on Processor 1 and the Cluster 3 is allo-
cated on Processor 2, then we also need to allocate a server
with utilization (�1 +�2) to Processor 1, and another server
with utilization �3 to Processor 2. In short, while applying the
partitioned heuristic, we need to accommodate the demand of
server utilization as well. Specifically, the LO-criticality tasks
are considered for allocation once all the HI-criticality clus-
ters and their �s are allocated, using the same partitioning
techniques used for the HI tasks.

A. Schedulability Analysis

The schedulability of the task set is determined in two dif-
ferent steps. First, we have to check whether the tasks can

be properly allocated to the available processors. Upon suc-
cessful allocation, we need to check whether the correctness
of each uniprocessor MC task system can be guaranteed in
runtime even under worse conditions. In each step, there is a
possibility that either only HI tasks or all the tasks are allo-
cated/schedulable. Based on the allocation, the task sets can be
strongly allocated or weakly allocated. If all the HI-task clus-
ters, �s, and LO-tasks are allocated, then we call it strongly
allocated task set. If only the clusters and �s are allocated
properly but not the LO-tasks, then we call it weakly allocated
task set. If neither, then the task sets cannot be considered
for further schedulability test. Upon successful allocation, we
need to check the schedulability of the allocated task set on
all the processors. The schedulability test is done by following
the similar technique used for the uniprocessor scheduling.

Before going into the schedulability conditions, it is neces-
sary to introduce the parameter α and β. α is the utilization
factor of a task set, i.e., the maximum utilization among all
tasks. β is the maximum number of tasks of α, which fit into
one processor under EDF scheduling. β can be expressed as
a function of α

β = �1/α�. (8)

López et al. [16] proved that for multiprocessor partitioned
scheduling using EDF, FFD, BFD, and WFD algorithms
provide the optimal upper bound, which is the following.

Lemma 2 [16]: Let U(N, α) denote the utilization bound
to schedule N tasks using RAD algorithms on m processors
and α represent the utilization factor for the task set, then
U(N, α) = (βN + 1/β + 1) when m > βN.

Task Allocation Conditions: For the HI-tasks we need to
allocate each cluster with its �m in the same processor as
in the partitioned scheduling, a task is always needed to be
executed on the same processor, which it was initially allo-
cated. Let us assume there are M clusters with utilization
UC1, UC2, . . . , UCM with the corresponding delta values as
�1,�2, . . . ,�M . As each cluster is to be allocated to a pro-
cessor with its corresponding �, let us define the HI mode
utilization factor αh and the overall utilization factor αs as
follows:

αh = maxi∈1,2,...,M(UCi +�i); αs = max(αh, αl) (9)

where αl is the utilization factor for the LO-tasks.
Furthermore, corresponding β values can be defined

βh = �1/αh�; βs = �1/αs�. (10)

Theorem 3: All the HI-criticality clusters along with their
server allocation (�) and all the LO-criticality tasks can be
allocated (i.e., strongly allocated task-set) to K processors if
the following two conditions hold:

K > βs(M + n); Us ≤ βs(M + n)+ 1

βs + 1
(11)

where Us is the sum of the utilization of all clusters, their �s
and LO-criticality tasks.

Proof: Here, each cluster and LO-criticality tasks can be seen
as a single entity with specific utilization demand. The total
number of entity here is (M+n). Thus, according to Lemma 2, the

Algorithm 3: pMCMP Algorithm
Data: Allocation of HI-criticality �is and LO-criticality task-set

τi on each processor κi
Result: The schedulability of the task set
if ∀κi, pMC returns strongly-schedulable then

return strongly-schedulable;
else if ∀κi, pMC returns weakly-schedulable then

return weakly-schedulable;
else

return non-determined;
end

maximum utilization bound can be [(βs(M + n)+ 1)/(βs + 1)].
So for a successful allocation, the system utilization Us must
be no greater than the utilization bound.

Theorem 4: All the HI-criticality clusters along with their
server allocation (�) can be allocated (i.e., weakly allocated
task-set) to K processor if the following two conditions hold:

K > βhM; U = βhM + 1

βh + 1
. (12)

Proof: The proof is very similar to Theorem 3 (omitted).
Partition Approach and Its Correctness: Upon successful

allocation (either strongly or weakly allocated), the schedu-
lability of the task set can be determined by running the
probabilistic mixed-criticality on multiprocessor (pMCMP)
algorithm (presented in Algorithm 3). The pMCMP algorithm
basically uses the pMC algorithm presented in Section IV on
all the processors to check the schedulability. The result of
pMCMP can be strongly schedulable, weakly schedulable, or
nondetermined. If a task set is only weakly allocated on the
available processors, the task set can never be considered as
strongly schedulable.

Theorem 5: Algorithm pMCMP is correct. That is, if
pMCMP returns strongly probabilistic schedulable, the prob-
ability of any task missing its deadline is no greater than FS;
while if pMCMP returns weakly probabilistic schedulable, the
probability of any HI-criticality task missing its deadline is no
greater than FS, and no deadline is missed when all jobs finish
upon execution of their LO-WCETs.

Proof: After a successful allocation, each processor has
a specific set of �’s and LO-criticality tasks assigned for
scheduling. Let UC1, UC2, . . . , UCM denote the number of
clusters assigned to K processors (note that there are total M
number of clusters). Hence, each processor assignment can be
seen as a subset problem of uniprocessor scheduling presented
in [1].

For an arbitrary processor i, similar to the proof of [1, eq.
(5.2)], the failure probability of processor i is no greater that
(UCi × FS)/M. As the tasks are independent, the total fail-
ure probability of the system is no greater than

∑M
i=1(UCi ×

FS)/M = FS.

VI. CONSIDERING FAILURE DEPENDENCY

In previous sections, we have considered only independent
tasks, i.e., the failure of a task τi is independent to whether
another task fails or not. In other words, whether a HI task fails
to complete within its LO-WCET budget does not affect the

TABLE I
COVARIANCE MATRIX OF A SET OF EIGHT TASKS

completion of other HI tasks. On the contrary, most existing
work in MC scheduling assumed that all HI tasks may exceed
their LO-WCET budgets at the same time. That means fail-
ure probabilities of all HI tasks are dependent on each other,
which is rather a pessimistic assumption in certain scenarios.
However, in practical systems, not every failure probability is
independent. It is possible that while most of the HI tasks are
independent, a certain amount of task is directly dependent
to each other with respect to their probability of exceeding
LO-WCET, i.e., once a HI task exceeds the LO-WCET, other
dependent tasks may also exceed their LO-WCET budgets,
regardless of their own failure probability. Techniques such
as fault tree analysis [17], [18] can be used to analyze tasks
for failure dependency. With the dependency information pro-
vided as input, we propose a covariance matrix representation
and propose a graph-coloring-based partitioning approach to
handle such a scenario.

A. Covariance Matrix

We introduce a covariance matrix to represent the depen-
dencies between each pair of tasks regarding their potential
failures to complete before LO-WCETs. In Table I, a sample
covariance matrix is shown for eight HI-criticality tasks. Here,
the covariance matrix is binary, where for each item, 0 repre-
sents the independence between two tasks while 1 represents
that there is dependency on failure probability between two
tasks. Note that 1 does not mean fully dependant, while it is a
safe (although pessimistic) measurement in terms of schedula-
bility guarantees. As a result, if there is a dependency between
two tasks, we assume that upon exceeding the LO-WCET bud-
get of one task, the other dependent task/s will also exceed
their LO-WCET budget simultaneously.

Remark 2: Failure dependency is not statistical dependence.
Definition 5 (Failure-Dependent Tasks): When scheduling

a pair of tasks on the same processor, if one of those tasks
exceeds its LO-WCET and, the other one’s failure likelihood
becomes larger than the given value, or the other way around,
then two tasks are considered failure dependent.

In other words, it is safe to assume that both of the tasks
exceed their LO-WCET simultaneously. Taking the task set
shown in Table I as an example, τ2 and τ3 are failure dependent
but τ1 and τ2 are not. Note that two tasks are failure depen-
dent only if those are scheduled on the same processor. Upon
scheduling on different processors, those tasks can be exe-
cuted independently since we conduct partitioned scheduling
and assume isolation between processors.

B. Task Isolation Using Graph Model

Similar to the clustering problem without covariance, find-
ing the optimal clustering for the new problem is also NP-
Hard. Thus, we propose a heuristic to find an efficient solution
to the problem. From the covariance matrix, we can visual-
ize a task set as a graph problem. We can assume the tasks
as a node of the graph and the failure dependencies as edges
between the nodes, i.e., if there is a 1 between two tasks, we
can consider an edge between those two nodes (tasks). Note
that if the graph is fully connected, the problem will become
a traditional MC scheduling problem as in our strategy, we
will need to create a cluster for each task. In practical sce-
narios, the graph is assumed to be a disconnected graph as
there can be both independent and failure dependent tasks in
a system. Hence, there will be multiple islands in the graph,
which consist of interdependent tasks.

Definition 6 (Transitive Failure Dependency): If two tasks
are not directly dependent but have a common failure-
dependent task, then we call the failure dependency between
the first two tasks transitive failure dependency.

For example, τ1 and τ8 in Table I are not directly failure-
dependent, but they both are dependent with τ5. Hence, if we
partition these three tasks into a same processor, they may
exceed their LO-WCET budgets simultaneously. However, if
we schedule τ5 in a separate processor, τ1 and τ8 will have
no failure dependency and can act as independent task pairs.

Upon transforming the covariance matrix into a graph, we
apply our clustering heuristics. In the aforementioned LFF-
clustering algorithm, we sorted all the tasks in descending
order based on their additional utilization δi value and we
keep adding the tasks one by one to clusters until Lemma 1 is
not violated. While scheduling the task set including failure-
dependent tasks, we isolate the tasks of each island into m
(number of processors) number of groups in a way such that
there are no failure-dependent tasks in any group. By doing
that we ensure that no two interdependent tasks are grouped
into a single processor.

C. Isolating Tasks of Each Island

Once we convert the task set into a graph with different
islands, m number of groups of independent tasks are created.
One can visualize this problem as a m-coloring graph problem,
where the nodes of a graph are colored with at most m number
of colors with no two nodes of same color adjacent to each
other (i.e., there is no edge between them). If we can properly
color the graph with m or less number of colors, then we can
easily allocate nodes with the same color into the same proces-
sor. Unfortunately, the m-coloring problem is an NP-Complete
problem [19]. As a result, we will need an approximate algo-
rithm to solve such problems. Furthermore, it may not always
be possible to color the subgraph in each island with m colors
by using the approximate algorithm (even by using an optimal
algorithm). Hence, in this section, we propose a modified
approximate algorithm to color each subgraph with m colors.
To accomplish this goal, we adapt a modified greedy coloring
algorithm. As our base greedy coloring algorithm, we use the

Algorithm 4: m-Coloring Algorithm
Data: G = {V, E}, m
Result: m− colored graph
Sort all nodes Vis in non-increasing order or their degrees;
for i← 1 to m do

/* All nodes are colored */
if ∀Vi is colored then

return;
end
/* If at last processor, there exists

some connected nodes */
if (i == m) and (∃Ei) then

forall Connected subgraph do
Vnew ← {connected_nodes};
Vnew.uLO

i ← {connected_nodes}.uLO
i ;

Vnew.δi ← {connected_nodes}.δi;
end

else
Color the nodes following LF [20] Algorithm;

end
end

Fig. 1. Graph coloring with m = 2.

Welsh Powell Algorithm [20] [also known as largest-first (LF)
coloring algorithm].

In LF coloring, node with the highest degree9 will be col-
ored first, and then the adjacent nodes will be colored and
corresponding edges are deleted. By doing this, we remove
the dependencies of other nodes with the colored nodes. At
any step, if the sum of the utilizations exceeds one, we stop
coloring for that particular color and leave that node for the
next coloring iteration. However, when we already use m− 1
colors and only one color is left to use, we need to contract
(merge) the remaining failure-dependent tasks. When at the
last processor, there are still some nodes which are connected
(failure dependent), we contract those nodes in a single node
and use uLO

i and δi of the node as the sum of the correspond-
ing values of all the connected nodes. The steps of the coloring
technique are shown in Algorithm 4 and further demonstrated
in Example 3.

Example 3: In Fig. 1, the tasks of one island is shown.
Here, we need to allocate the tasks on two processors, i.e., we
have to color the graph with two colors. To do this, we first
take the node with the highest degree (τ4 with degree 4) and
color it with green. Then, we color the nonadjacent nodes of
τ4 (i.e., τ1, τ2, and τ8) with green and remove the edges of
those nodes. We can no longer use green in this graph. Now,
we have one processor (color) left but there are still two tasks
τ6 and τ7, which are failure dependent to each other. So we
merge these two tasks and all the nodes become independent.
Finally, we color all the nodes with blue (τ3, τ5, and τ6+7).

9Degree of a node is the number of edges connected to the node.

Algorithm 5: Task Allocation Algorithm With Covariance

Data: FS, {fi}nHI
i=1, {uLO

i }ni=1 {δi}ni=1, covariance matrix
Result: Task allocation result
Run DFS on covariance matrix and get islands {Ij}lj=1;
Color the nodes of each island using Algorithm 4;
Sort ∀τi ∈ ∀Ij in descending order w.r.to δi;
Sort ∀Ii based on max(δi) ∈ Ii;
K = {κ1, κ2, . . . , κK};
forall multi-task islands Ii do

allocated = φ;
forall ∀τj ∈ Ii do

allocate τj into κk ∈ {K− allocated} following WF and
update �k;

allocated = allocated ∪ κk
end

end
if all LO tasks are allocated using WF then

return strongly− allocated;
end
return weakly− allocated;

D. Task Allocation and Scheduling

Given a task set, we first run depth-first-search (DFS) over
the covariance matrix and convert them to different number
of islands. Then, we use Algorithm 4 to color the nodes
of each island with at most m number of distinct colors.
Then, the nodes in each island are sorted in descending order
with respect to their δi values and the islands themselves
are then sorted in descending order based on max(δi) values.
HI-criticality tasks are allocated by the following rules.

1) Assign tasks of each color of each island to a distinct
processor with the WF heuristics on processor capacity.

2) While assigning a task to a processor, we create a cluster
following the LFF-Clustering algorithm. First, we keep
adding the same colored tasks in an island to the existing
task/s assigned to that processor. If we cannot assign
the new task to an existing cluster, we create a new
cluster. Once all nodes of the same color are allocated,
we allocate the next color tasks to a different processor.

3) Every time we add a new task to a processor, we update
the � value of the processor.

4) Once all islands with multiple tasks are assigned, we
assign the remaining single-task islands by following the
WF partitioning heuristic.

If all the tasks are allocated, the task set becomes strongly
allocated, while only the allocation of HI-criticality tasks
results in a weakly allocation. Similar to the multiproces-
sor case with no failure-dependent tasks, successful allocation
does not imply schedulability of the allocated task sets. If a
task set is not strongly allocated, then the task set cannot be
strongly schedulable, because of the lack of guarantees to the
LO-tasks. Upon successful allocation, either strong or weak,
we run the pMCMP algorithm to check the schedulability of
the task set. Algorithm 5 details the task allocation procedure.

VII. SCHEDULABILITY EXPERIMENTS

In this section, we present extensive experimental evalua-
tions to show the performance of our proposed algorithms.
We present our results in two different categories. First, we

Fig. 2. Schedulability ratio comparison of EDF-VD and pMC, where
HI utilization varies from 0.9 to 1 uniformly.

present the schedulability result for uniprocessor platforms to
show the efficiency of our algorithm. We performed simulation
for different constraints and also compared with other state-
of-the-art MC scheduler. For the next part, we present the
schedulability performance on multiprocessor platforms. We
have performed a number of experiments by varying different
important factors to observe the efficiency of our algorithm.

A. Results for Uniprocessor Platforms

We have conducted schedulability tests on randomly gen-
erated task systems, comparing our proposed method with
the existing one. The objective was to demonstrate the ben-
efits of our model: by adding a probability estimation fi to
each task, our algorithm may successfully schedule (return
probabilistically correct or partial probabilistically correct)
many task sets that are unschedulable according to existing
MC-scheduling algorithms, e.g., the EDF-VD algorithm [21].

Since this is the first work that combines pWCET and
schedulability with mixed-criticality, it is hard to find a fair
base line to compare with. The reason EDF-VD is selected
here since: 1) it is a widely accepted MC scheduling strat-
egy; 2) it is the most general algorithm in the whole VD
family; and 3) HI-criticality tasks are treated as a whole in
both algorithms—EDF-VD sets virtual deadline according to
a common factor, while we make use of an HI-criticality server.
We need to point out that EDF-VD assumes unknown fi for
each task (not simply 0 or 1), and thus our algorithm has
privilege naturally.

We use the algorithm UUniFast [22] to generate task
sets for various values of cumulative LO utilization
(u(LO) = ∑n

i=1 ci(LO)/Ti) and HI utilization (u(HI) =∑
i|χi=HI ci(HI)/Ti). The parameter u(LO) is ranged from 0

to 1, while u(HI) is ranged from 0 to 1.5, each with step 0.01.
Each task set contains 20 tasks, each of which is assigned

LO or HI criticality with equal probability. LO-criticality
utilizations are assigned according to UUniFast; given an
expected HI utilization u(HI), we inflate the LO-criticality uti-
lizations of the HI-criticality tasks using random factors chosen
to ensure that the cumulative HI utilization of the task set
equals the desired value with high probability.

Among the 626 200 valid task sets that we generated,
EDF-VD succeeds to schedule 306 299 (48.9%) of them, and
the proposed pMC reports probabilistic schedulable for a total
of 438 787 sets (70.1%), and only 121 426 sets (19.4%) are
reported unknown. Even when focused only upon systems for

Fig. 3. Comparison of additional utilization � calculated by LFF-clustering
normalized by the precise value.

which HI-criticality utilization is less than 1, EDF-VD fails to
schedule 18.0%, while pMC returns unknown for only 8.4%
of the sets.

Although EDF-VD and pMC do not dominate each other,
pMC generally significantly outperforms EDF-VD, particu-
larly upon task sets with large HI-utilization. Due to space con-
straints, the detailed schedulability comparison with EDF-VD
algorithm is omitted in this article, but is available in the
conference version of this work [1].

To show the robustness of our algorithm with respect to dif-
ferent fi distributions, we focus on task sets with HI utilization
between 0.9 and 1. Fig. 2 reports the ratios of schedula-
ble (i.e., weakly probabilistic schedulable) sets over different
LO utilizations. With the additional probability information,
the schedulable ratio is significantly improved for heavy tasks
comparing to EDF-VD [21]. The introduced parameter fi is
assigned to tasks in different ways; i.e., all sharing the same
value, following uniform or log-uniform distribution (fi = 10x,
where x is uniformly chosen). Generally speaking, smaller
average f leads to higher ratio of acceptance, and there is no
significant difference between different distributions of fi with
the same average, which indicates that our algorithm is robust
to different combinations of output measurement probabilities
from PTA tools.

The boxplot in Fig. 3 shows the total additional utilization
resulting from LFF-Clustering normalized by the precise value
is calculated using exhaustive search. Due to high complexity
for calculating precise values, 100 task sets under each nHI
setting is considered. The mean (orange line) is close to 1
under each setting, meaning over 75% of the task sets were
precisely clustered. However, the outliers get closer to 1 as
nHI increases—LFF-Clustering is particularly beneficial when
there are large number of HI-tasks and calculating precise
clustering becomes prohibitively expensive.

B. Results for Multiprocessor Platforms

Workload Generation: To conduct the experiments, we have
generated MC tasks based on the following parameters.

1) m: The number of processor cores.
2) Ua: The average utilization for the task set. The aver-

age is calculated by averaging the LO and HI-criticality
utilization of the task set.

3) PHI=0.5: Probability of a task to be an HI-criticality one.
4) R = 4: Denotes the maximum ratio of uHI

i to uLO
i . uHI

i
is generated uniformly from [uLO

i , R× uLO
i].

Fig. 4. Acceptance ratio for pMCMP in a 4-core platform under different utilizations and different partition heuristics. (a) Varying Ua. (b) Varying ULO.
(c) Varying partition heuristics.

Fig. 5. Acceptance ratio for pMCMP upon a quad-core platform. (a) Varying number of processors (m). (b) Varying distribution assumptions on fi. (c) Varying
densities of covariance.

5) FS: The system-wide permitted failure probability,
default set as 10−6 for our experiments.

We performed the simulation for average utilization ranging
from 0.05 to 2 m with increasing at step size 0.05 m. For every
average utilization, we generate 100 task sets that consist of
20 tasks each. Note that for most of the experiments, we have
measured the performance with respect to average utilization
as we wanted to show the improved quality of service for
generated MC task sets.

First, for a specific average utilization, we use the UUniFast
algorithm [23] to generate a lognormal distribution of Ua for
all the tasks in a task set. The values of uLO

i are uniformly
generated from [(2× ua

i)/(R+ 1), ua
i] so that the value of uHI

i
is always in the range [uLO

i , R× uLO
i].

Evaluation Results: We execute a set of MC tasks under
our proposed algorithm by varying different parameters. The
simulation results for various scenarios are presented in
Figs. 4 and 5. We perform the following simulations.

The schedulability performance of pMCMP is shown in
Fig. 4. Fig. 4(a) shows the acceptance ratio (ratio of success-
fully scheduled task sets over total number of task sets) with
respect to average utilization Ua, while Fig. 4(b) shows the
acceptance ratio with respect to uLO

i . In both figures, we show
the acceptance ratio for both strongly schedulable and weakly
schedulable task sets. In Fig. 4(b), we can see that a good num-
ber of task sets is schedulable when the average utilization of
the task set is one or even higher as the average utilization
is calculated based on both uLO

i and uHI
i but pMCMP does

not need to allocate the full HI-WCET budget. To understand
the schedulability with respect to uLO

i , we further performed
the experiment presented in Fig. 4(b) where the uLO

i is gener-
ated following the lognormal distribution using the UUniFast
algorithm [23].

Fig. 4(c) presents the acceptance ratio for all three heuristics
(FF, BF, and WF) discussed in Section V. The results match
the discussion that all RAD algorithms share the same uti-
lization bound while task partitioning. We use only strongly
schedulable task set to calculate the acceptance ratio from this
experiment as only the strongly schedulable task sets provide
the graceful degradation to LO-criticality tasks.

Fig. 5 first presents the percentage of successful strongly
schedulable task set under different numbers of processors
[Fig. 5(a)] and different numbers of fi values [Fig. 4(b)]. As
expected, the performance of schedulability decreases with the
increase of the number of the processors by following the
performance of the partition heuristics. On the other hand,
with the lower fi values, we get better acceptance ratio as the
algorithm can create more clusters and thus needs to allocate
a smaller �. We also evaluated the effect of the density of the
covariance matrix on the acceptance ratio, calculated as the
density of the undirected graph interpreted from the covari-
ance matrix. The number of edges of the covariance graph (1
in the covariance matrix) is randomly generated based on the
density of edge. The simulation result is presented in Fig. 5(c).
Under lower densities, our algorithms performed surprisingly
well. With the increase of density, the possibility of merging
also increases and the acceptance ratio decreases.

VIII. RELATED WORKS

There is a gap between the current conservative deter-
ministic analysis and the richer models, which include the
probabilistic information about the WCET estimates. Besides
the resource underutilization issue due to over-pessimism,
LO-critical tasks do not receive guarantees in HI-critical modes.
Graceful degradation techniques and imprecise computation
have been proposed to provide guarantees to the LO-critical tasks

as well. Specifically, reduced utilization budget [24] to scale
budgets in HI-mode as well as precise computation techniques,
such as providing asymptotic rate guarantees [25], guaran-
teed completion rate [26], and QoS guarantees for LO-critical
tasks [27]. While these approaches address the underprovi-
sion of resources to LO-critical tasks, they do not leverage the
information from the WCET estimates.

Real-Time Models With Probabilities: In order to for-
mally describe the uncertainty of the WCET estimations and
overcome the overpessimism, many attempts in introducing
probability to real-time system model and analysis have been
made. Edgar and Burns [28] made a major step forward in
introducing the concept of probabilistic confidence to the task
and the system model. Their work targets the estimation of
pWCETs from test data for individual tasks, while provid-
ing a suitable lower bound for the overall confidence level
of a system. Since then, on the one hand, much work has
been done to provide better WCET estimations and a predicted
probability of any execution exceeding such estimation along-
side the usage of extreme value theory (EVT), e.g., [6], [7],
and [29]. In static PTA, random replacement caches are applied
to compute exact pWCETs, and pWCET estimations with pre-
emptions [30]. More recently, researchers have initiated some
pWCET estimation studies [31], [32] in the presence of perma-
nent faults and disabling of hardware elements. On the other
hand, there is only one piece of work that proposes prob-
abilistic execution time (pET) estimation [33]-based upon a
tree-based technique. The pET of a task describes the prob-
ability that the execution time of the job is equal to a given
value, while the pWCET of a task describes the probability
that WCET of that task does not exceed a given value.

Schedulability With Probabilities: Based upon the estimated
pWCET and pET parameters (often as distributions with
multiple values and associated probabilities), studies aim to
provide estimations that the probability of missing a deadline
of the given system is small enough for safety requirements;
e.g., of the same order of magnitude as other dependabil-
ity estimations. Tia et al. [34] focused on unbalanced heavy
loaded system (with maximum utilization larger than 1 and
much smaller average utilization) and provided two meth-
ods for probabilistic schedulability guarantees. Lehoczky [35]
proposed the first schedulability analysis of task systems with
pETs. This work is further extended to specific schedulers,
such as earliest deadline first (EDF, [36]) in [37] and under
fixed-priority policy in [38]. Díaz et al. [13] provided a very
general analysis for probabilistic systems with pWCET esti-
mations for tasks. In addition to WCET estimations, statistical
guarantees are performed upon the minimum interarrival time
(MIT) estimation as well [14], [39]. Schedulability analysis
based on pETs (instead of pWCETs) is also done in [40]
for limited priority-level case (quantized EDF), and in [41],
an associated schedulability analysis on multiprocessors is
presented. Statistical response-time analysis, e.g., [42], can be
further done to real-time systems based upon those probabilis-
tic schedulability analysis. Unfortunately, to the best of our
knowledge, most existing studies have only shown probabilis-
tic schedulability analysis (e.g., estimating the likelihood for
a system to miss any deadline) or probabilistic response time
analysis to existing algorithms, such as EDF and fixed-priority

scheduling, instead of incorporating probabilistic information
into the scheduling strategy. In other words, current research
has not addressed the possibility of making smarter schedul-
ing decisions with probabilistic models from existing powerful
PTA tools (e.g., [43]) that provide WCET bounds and specified
confidences.10

Mixed-Criticality Probabilistic Scheduling: Few recent
works have applied probabilistic models to mixed-criticality
scheduling. In [46], the probabilistic models are applied to
LO-criticality modes and a scheduling algorithm is developed
to leverage probabilities into schedulability analysis. In partic-
ular, it is quantified how LO-criticality jobs behave whenever
HI-criticality jobs overrun their optimistic LO-criticality reserva-
tion. In [47] and [48], the probabilistic models are applied into
classical mixed-critical scheduling policies for fixed-priority
task scheduling. These works have proven the advantages in
resource utilization from the use of flexible probabilistic worst
case representations. Draskovic et al. [49] introduced a new
probabilistic model for mixed-criticality systems; safety metrics
are defined, and an analysis is developed to quantify safety levels
according to the considered criticality level. Santinelli and Guo
[50] discussed the accuracy and the flexibility of probabilistic
models as advantages for mixed-criticality schedulability anal-
ysis in efficient resource usage. Davis and Cucu-Grosjean [51]
depicted a survey of recent probabilistic scheduling approaches,
withadedicatedsectionof theabove introducedmixed-criticality
scheduling approaches.

IX. CONCLUSION

This article presented some efforts into scheduling MC
systems that account for probabilistic information. The exist-
ing MC task models are generalized with an additional
parameter specifying the distribution information of WCET.
We require that it is a priori determined how likely jobs
may exceed their LO-WCETs. We proposed a novel EDF-
based scheduling algorithm, which exploits the probabilistic
information to make mode-switching and LO-task-dropping
decisions. Given a system failure probability threshold, the
goal is to derive more precise schedulability analysis, which
may deem a system that is infeasible under the traditional
MC model as feasible, and will not drop any task unless it is
probabilistically necessary. The experimental results show the
advantages of the model and the proposed scheduling schemes.

The provided solution requires a server with period of 1—
applying the idea of adaptive servers (with dynamic periods
or budgets) may avoid many preemptions. So far we only
considered systems with two criticality levels. Probabilistic
correctness for multiple probability thresholds per task needs
to be defined, and the scheduling problem is worth studying.

REFERENCES

[1] Z. Guo, L. Santinelli, and K. Yang, “EDF schedulability analysis on
mixed-criticality systems with permitted failure probability,” in Proc.
IEEE 21st Int. Conf. Embedded Real Time Comput. Syst Appl. (RTCSA),
2015, pp. 187–196.

10To our best knowledge, there is only one paper presenting scheduling
algorithms for pWCETs of tasks described by random variables [44], which
extends the optimality of Audsley’s approach [45] in fixed-priority scheduling
to the case WCETs are described by distribution functions.

[2] J. Souyris, E. Pavec, G. Himbert, V. Jegu, and G. Borios, “Computing
the worst case execution time of an avionics program by abstract
interpretation,” in Proc. 5th Int. Workshop Worst-Case Execution Time
Anal. (WCET), 2005, pp. 1–4.

[3] R. Wilhelm et al., “The worst-case execution-time problem—Overview
of methods and survey of tools,” ACM Trans. Embedded Comput. Syst.,
vol. 7, no. 3, pp. 1–53, 2008.

[4] A. Burns and R. Davis. (2018). Mixed-Criticality Systems: A Review.
[Online]. Available: http://www-users.cs.york.ac.uk/ burns/review.pdf

[5] F. Cazorla et al., “PROARTIS: Probabilistically analysable real-time
systems,” ACM Trans. Embedded Comput. Syst., vol. 12, no. 2, p. 94,
2013.

[6] J. Hansen, S. Hissam, and G. Moreno, “Statistical-based WCET estima-
tion and validation,” in Proc. 9th Int. Workshop Worst-Case Execution
Time Anal. (WCET), 2009, pp. 1–11.

[7] L. Cucu-Grosjean et al., “Measurement-based probabilistic timing anal-
ysis for multi-path programs,” in Proc. 24th Euromicro Conf. Real-Time
Syst. (ECRTS), 2012, pp. 91–101.

[8] RFS, Software Considerations in Airborne Systems and Equipment
Certification, RTCA Document DO-178C, RTCA, Washington, DC,
USA, 1992.

[9] L. Cucu-Grosjean, “Independence—A misunderstood property of
and for probabilistic real-time systems,” in Real-Time Systems:
The Past, the Present and the Future, N. Audsley and S. Baruah,
Eds. 2013. [Online]. Available: https://scholar.google.com/scholar?
cluster=4922492882824036056&hl=en&as_sdt=40005&sciodt=0,10#d=
gs_cit&u=%2Fscholar%3Fq%3Dinfo%3A2H4dSjI1UEQJ%3Ascholar.
google.com%2F%26output%3Dcite%26scirp%3D0%26scfhb%3D1%
26hl%3Den

[10] S. Vestal, “Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance,” in Proc. 28th IEEE Real-Time
Syst. Symp. (RTSS), 2007, pp. 239–243.

[11] L. Santinelli, J. Morio, G. Dufour, and D. Jacquemart, “On the sus-
tainability of the extreme value theory for WCET estimation,” in
Proc. 14th Int. Workshop Worst-Case Execution Time Anal. (WCET),
2014, pp. 21–30.

[12] A. Melani, E. Noulard, and L. Santinelli, “Learning from probabilities:
Dependences within real-time systems,” in Proc. 8th IEEE Int. Conf.
Emerg. Technol. Factory Autom. (ETFA), 2013, pp. 1–8.

[13] J. Díaz, D. Garcia, C. Lee, L. Bello, J. López, and O. Mirabella,
“Stochastic analysis of periodic real-time systems,” in Proc. 23rd IEEE
Real-Time Syst. Symp. (RTSS), 2002, pp. 289–300.

[14] D. Maxim and L. Cucu-Grosjean, “Response time analysis for fixed-
priority tasks with multiple probabilistic parameters,” in Proc. 34th IEEE
Real-Time Syst. Symp. (RTSS), 2013, pp. 224–235.

[15] B. Korte and J. Vygen, “Bin-packing,” in Kombinatorische
Optimierung. Berlin, Germany: Springer, 2012, pp. 471–488. [Online].
sAvailable: https://doi.org/10.1007/978-3-642-24488-9_18

[16] J. M. López, J. L. Díaz, and D. F. García, “Utilization bounds for
EDF scheduling on real-time multiprocessor systems,” Real-Time Syst.,
vol. 28, no. 1, pp. 39–68, 2004.

[17] I. E. Commission et al., Fault Tree Analysis (FTA), IEC Standard 61025,
2006.

[18] IT Committee, Analysis Techniques for System Reliability-Procedure
for Failure Mode and Effects Analysis (FMEA), IEC Standard 60812,
2006.

[19] R. W. Irving, “NP-completeness of a family of graph-colouring prob-
lems,” Discr. Appl. Math., vol. 5, no. 1, pp. 111–117, 1983.

[20] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic num-
ber of a graph and its application to timetabling problems,” Comput. J.,
vol. 10, no. 1, pp. 85–86, 1967.

[21] S. Baruah et al., “The preemptive uniprocessor scheduling of
mixed-criticality implicit-deadline sporadic task systems,” in
Proc. 24th Euromicro Conf. Real-Time Syst. (ECRTS), 2012,
pp. 145–154.

[22] E. Bini and G. Buttazzo, “Measuring the performance of schedulability
tests,” Real-Time Syst., vol. 30, nos. 1–2, pp. 129–154, 2005.

[23] M. Bolado et al., “Platform based on open-source cores for industrial
applications,” in Proc. IEEE DATE, vol. 2, 2004, pp. 1014–1019.

[24] D. Liu et al., “EDF-VD scheduling of mixed-criticality systems with
degraded quality guarantees,” in Proc. 37th Real-Time Syst. Symp.
(RTSS), 2016, pp. 35–46.

[25] M. S. Branicky, S. M. Phillips, and W. Zhang, “Scheduling and feedback
co-design for networked control systems,” in Proc. 41st IEEE Conf.
Decis. Control, vol. 2, 2002, pp. 1211–1217.

[26] Z. Guo, K. Yang, S. Vaidhun, S. Arefin, S. K. Das, and H. Xiong,
“Uniprocessor mixed-criticality scheduling with graceful degradation by
completion rate,” in Proc. IEEE Real-Time Syst. Symp. (RTSS), 2018,
pp. 373–383.

[27] D. Matschulat, C. A. Marcon, and F. Hessel, “ER-EDF: A QoS scheduler
for real-time embedded systems,” in Proc. 18th IEEE/IFIP Int. Workshop
Rapid Syst. Prototyping (RSP), 2007, pp. 181–188.

[28] S. Edgar and A. Burns, “Statistical analysis of WCET for scheduling,”
in Proc. 22nd IEEE Real-Time Syst. Symp. (RTSS), 2001, pp. 215–224.

[29] D. Griffin and A. Burns, “Realism in statistical analysis of worst case
execution times,” in Proc. 10th Int. Workshop Worst-Case Execution
Time Anal. (WCET), 2010, pp. 44–53.

[30] R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean,
“Analysis of probabilistic cache related pre-emption delays,” Proc. 25th
IEEE Euromicro Conf. Real-Time Syst. (ECRTS), 2013, pp. 168–179.

[31] M. Slijepcevic, L. Kosmidis, J. Abella, E. Q. Nones, and F. J. Cazorla,
“DTM: Degraded test mode for fault-aware probabilistic timing anal-
ysis,” in Proc. 25th Euromicro Conf. Real-Time Syst. (ECRTS), 2013,
pp. 237–248.

[32] D. Hardy and I. Puaut, “Static probabilistic worst case execution time
estimation for architectures with faulty instruction caches,” in Proc. 21st
Int. Conf. Real-Time Netw. Syst. (RTNS), 2013, pp. 35–44.

[33] L. David and I. Puaut, “Static determination of probabilistic execution
times,” in Proc. 16th Euromicro Conf. Real-Time Syst. (ECRTS), 2004,
pp. 223–230.

[34] T. Tia, Z. Deng, M. Storch, J. Sun, L. Wu, and J. Liu, “Probabilistic
performance guarantee for real-time tasks with varying computation
times,” in Proc. IEEE Real-Time Embedded Technol. Appl. Symp.
(RTAS), 1995, pp. 164–173.

[35] J. Lehoczky, “Real-time queueing theory,” in Proc. 17th IEEE Real-Time
Syst. Symp. (RTSS), 1996, pp. 186–195.

[36] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard real-time environment,” J. ACM, vol. 20, no. 1, pp. 46–61, 1973.

[37] H. Zhu, J. Hansen, J. Lehoczky, and R. Rajkumar, “Optimal partitioning
for quantized EDF scheduling,” in Proc. 23rd IEEE Real-Time Syst.
Symp. (RTSS), 2002, pp. 212–222.

[38] M. Gardner and J. Liu, “Analyzing stochastic fixed-priority real-time
systems,” in Proc. 5th Int. Conf. Tools Algorithms Construction Anal.
Syst. (TACAS), 1999, pp. 44–58.

[39] L. Abeni and G. Buttazzo, “QoS guarantee using probabilistic dead-
lines,” in Proc. 11th Euromicro Conf. Real-Time Syst. (ECRTS), 1999,
pp. 242–249.

[40] J. Hansen, H. Zhu, J. Lehoczky, H. Zhu, and R. Rajkumar, “Quantized
EDF scheduling in a stochastic environment,” in Proc. 10th Int.
Workshop Parallel Distrib. Real-Time Syst., Apr. 2002, pp. 1–7.

[41] S. Manolache, P. Eles, and Z. Peng, “Schedulability analysis of appli-
cations with stochastic task execution times,” ACM Trans. Embedded
Comput. Syst., vol. 3, no. 4, pp. 706–735, 2004.

[42] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A statistical response-
time analysis of real-time embedded systems,” in Proc. 33rd IEEE Real-
Time Syst. Symp. (RTSS), 2012, pp. 351–362.

[43] G. Bernat, A. Colin, and S. Petters, “pWCET: A tool for probabilistic
worst-case execution time analysis of real-time systems,” Dept. Comput.
Sci., Univ. York, York, 2003.

[44] D. Maxim, O. Buffet, L. Santinelli, L. Cucu-Grosjean, and R. Davis,
“Optimal priority assignment algorithms for probabilistic real-time
systems,” in Proc. 19th Int. Conf. Real-Time Netw. Syst. (RTNS), 2011,
pp. 129–138.

[45] N. Audsley, “On priority assignment in fixed priority scheduling,” Inf.
Process. Lett., vol. 79, no. 1, pp. 39–44, 2001.

[46] M. Kuttler, M. Roitzsch, C.-J. Hamann, and M. Volp, “Probabilistic
analysis of low-criticality execution,” in Proc. WMC RTSS, 2017,
pp. 168–179.

[47] Y. Abdeddaïm and D. Maxim, “Probabilistic schedulability analysis
for fixed priority mixed criticality real-time systems,” in Proc. Design
Autom. Test Europe Conf. Exhibit. (DATE), Mar. 2017, pp. 596–601.

[48] D. Maxim, R. I. Davis, L. Cucu-Grosjean, and A. Easwaran,
“Probabilistic analysis for mixed criticality systems using fixed prior-
ity preemptive scheduling,” in Proc. 25th Int. Conf. Real Time Netw.
Syst. (RTNS), Grenoble, France, Oct. 2017, pp. 237–246.

[49] S. Draskovic, P. Huang, and L. Thiele, “On the safety of mixed-criticality
scheduling,” Proc. Workshop Mixed Criticality (WMC) RTSS, 2016,
pp. 1–7.

[50] L. Santinelli and Z. Guo, “On the criticality of probabilistic worst-case
execution time models,” in Proc. Depend. Softw. Eng. Theories Tools
Appl. 3rd Int. Symp. (SETTA), Changsha, China, Oct. 2017, pp. 59–74.

[51] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic schedula-
bility analysis techniques for real-time systems,” LITES, vol. 6, no. 1,
pp. 1–4, 2019.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

