
HAL Id: hal-03637107
https://univ-rennes.hal.science/hal-03637107

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WideLeak: How Over-the-Top Platforms Fail in Android
Gwendal Patat, Mohamed Sabt, Pierre-Alain Fouque

To cite this version:
Gwendal Patat, Mohamed Sabt, Pierre-Alain Fouque. WideLeak: How Over-the-Top Platforms Fail
in Android. DSN 2022 - 52nd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, Jun 2022, Baltimore, MD, United States. �hal-03637107�

https://univ-rennes.hal.science/hal-03637107
https://hal.archives-ouvertes.fr

WideLeak: How Over-the-Top Platforms Fail in
Android

Gwendal Patat
Univ Rennes, CNRS, IRISA

gwendal.patat@irisa.fr

Mohamed Sabt
Univ Rennes, CNRS, IRISA

mohamed.sabt@irisa.fr

Pierre-Alain Fouque
Univ Rennes, CNRS, IRISA
pierre-alain.fouque@irisa.fr

Abstract—Nowadays, most content providers rely on DRM
(Digital Right Management) to protect media from illegal dis-
tribution. Becoming a major platform for streaming, Android
provides its own DRM framework that does not comply with ex-
isting DRM standards. Thus, OTT (over-the-top) platforms need
to adapt their apps to suit Android design, despite a fragmented
ecosystem and little public documentation. Unfortunately, the
security implications of how OTT apps leverage Widevine, the
most popular Android DRM, have not been studied yet.

In this paper, we report the first experimental study on the
state of Widevine use in the wild. Our study explores OTT
compliance with Widevine guidelines regarding asset protection
and legacy phone support. With the evaluation of premium OTT
apps, our experiments bring to light that most apps adopt weak
and potentially vulnerable practices. We illustrate our findings
by showing how to easily recover media content from many OTT
apps, including Netflix.

Index Terms—Android, Digital Right Management, Over-The-
Top, Widevine

I. INTRODUCTION

The world almost fully moved over earlier days of owning
media. Instead, many people watch videos on over-the-top
platforms (OTT), such as Netflix and Amazon Prime, that
distribute multimedia content over the Internet. Today, the
most prevalent model is subscription-based services, where
media can be played as often as the user wishes, but becomes
unavailable when a user stops paying for the service. The
large distribution of media in what can sometimes be hostile
environments, like untrusted devices, creates challenges for
content producers. The main challenge remains piracy; in
2020, the OTT market size was estimated at $13.9 billion and
expected to reach $139 billion by 2028 [1].

Thus, content providers rely on DRM (Digital Right Man-
agement), which is a technology that aims to protect media
from illegal distribution. Modern DRMs ship content in an
encrypted form, and then control their decryption through
authorized players on users’ devices. DRM systems are often
cried out because of their insecurity. However, the recent
surge of OTT platforms has led to ongoing adoption and
evolution of such systems. For instance, World Wide Web
Consortium (W3C) has published, despite being criticized [2],
the Encrypted Media Extensions (EME) [3], as the first official
Web standard for DRM. Android devices have become a
major platform for streaming content consumption. This has
drawn interests from OTT platforms to develop mobile apps
in order to reach a large number of audience in a thriving

business ecosystem. Android has anticipated such a trend,
and provided a DRM framework allowing the decryption of
protected media streams. This framework supports many DRM
systems; which DRM a device supports varies regarding the
device manufacturer. The most dominant one is Widevine [4],
which is also deployed on web browsers (eg., Chrome and
Firefox), and smart TVs among others.

The ecosystem of DRM in smartphones is quite peculiar.
First of all, starting from Android 7, Widevine takes advantage
of hardware-backed security, such as TrustZone-based Trusted
Execution Environment (TEE) [5]. In the past decade, much
work has been done to evaluate the security of software-
only DRM solutions based on obfuscation and cryptographic
whiteboxes [6], [7]. TEE-based Widevine arguably provides
stronger protection, despite some successful attacks in the
literature [8]–[11]. Second, the Android DRM API, is quite
different from the standardized EME specifications that are
defined for the Web. Therefore, apps developers need to
rewrite a large part of their code, which may lead to incon-
sistency in security practices. This is especially true given
that Widevine public documentations are sparse, which limits
community discussions and sharing. Third, any DRM system
has a long history of hacking and patching. Thus, they require
to be updated in a regular basis. Unfortunately, it is not
common that smartphones receive a long-term support from
their manufacturers. Even Google used to only guarantee a
three-year support for their Pixels [12], before Pixel 6.

In order to address such concerns, Widevine has issued
a set of guidelines and recommendations to follow by OTT
apps. However, little has been done to explore how these
apps actually implement Widevine recommendations to protect
their contents. In this paper, we focus on whether the security
features offered by Widevine are properly leveraged. For
instance, we empirically study if apps actually encrypt their
contents with Widevine keys. One might argue about the
relevance of such a question, especially that OTT developers
are well aware of piracy threats. However, our evaluation
shows that, for example, Netflix, which is the leader app with
more than one billion installations, does not even encrypt audio
tracks and just delivers them in clear. Our goal is to identify
missing conformance of OTT apps regarding three Widevine
security guidelines: content protection, usage of encryption
keys, and support of discontinued devices.

We performed our evaluation on premium OTT apps. One

might expect that Android has defined their DRM API, while
taking into account Widevine guidelines, since both is owned
by Google. A surprising result of our work is to uncover that
there is some gap between actual implementation practices
and what Widevine wants. By switching to TEE-based by
default, the hope was that content piracy becomes old news.
Nevertheless, we show that OTT apps might introduce new
attack vectors rendering Widevine protection ineffective. We
demonstrate the practical impact of our dire observations by
obtaining DRM-free contents from six popular OTT apps,
including Netflix, Hulu and Showtime. We insist that we do
not look to introduce yet-another attack against DRM systems,
but to better frame the misunderstood pitfalls of the rapidly
growing Android DRM. We assess their prevalence, showing
a rather concerning scenario.
Our contributions can be summarized as follows:

1) New findings and understandings. We conducted the first
empirical study on how OTT apps leverage Widevine
in Android. Notably, we automate apps monitoring by
intercepting all calls to the Widevine process related to
the DRM API. Our study reveals that almost no OTT
app follows the Widevine recommendations in terms of
cryptographic operations and revocation policy.

2) Real-world impact. To confirm the potential threats of
our findings, we shed light on how certain practices
allow an easy long-term compromise. We show that old
still supported Widevine can be easily broken by recov-
ering their software-only root of trust. Then, we reverse-
engineered the proprietary cryptographic operations of
Widevine to automatically obtain the decryption keys of
any media. Our work results in CVE-2021-0639.

3) Our automated monitoring tool and Proof-of-Concept
source code are available online1 for reproducibility
purpose and to assist future work on this topic.

Roadmap. The rest of the paper is organized as follows:
section II presents the background information for our study.
In section III, we present the research questions that we ex-
plore and that are related to Widevine security guidelines. Our
findings and their practical impacts can be found in section IV.
Section V details the limitations and future directions of this
work. Section VI surveys the prior related research.

II. BACKGROUND

A. DRM Systems

Modern DRM systems allow content providers to encrypt
their media, and control who can decrypt them. The related
architecture involves three parties: a Content Delivery Network
(CDN) supplying encrypted content, a License Server provid-
ing the necessary keys to decrypt such a content, and a DRM
module on the user device to retrieve these keys. For flexibility
purposes, the part performing sensitive operations, such as
decryption and license request, is implemented separately and
called CDM or Content Decryption Module. Obviously, CDMs
are required to protect the keys while using them. To this

1https://github.com/Avalonswanderer/widevinel3 Android PoC

end, they mostly rely on closed-source proprietary protection
mechanisms. Thus, every DRM system provides its custom
CDM with its own interface.

B. Android DRM API

In order to cope with this fragmented ecosystem, An-
droid offers a unified API in Java/Kotlin for DRM systems.
Starting from API level 18, this is implemented by some
HAL (Hardware Abstraction Layer) module called Media
DRM Server that abstracts the actual running DRM from the
programming interface used by OTT apps. The Android DRM
API mainly consists of two modules: Media DRM and Media
Crypto. The Media DRM is used to communicate with License
Servers and to manage keys for a given media. As for Media
Crypto, it is used to perform decryption. The DRM APIs
support the ISO/IEC 23002-7: Common Encryption standard
(CENC) [13], but implement other encryption schemes.

Playing encrypted content when leveraging DASH (Dy-
namic Adaptive Streaming over HTTP) is summarized in
Figure 1 and works as follows. First, the app constructs a
Media DRM object and opens a new session. A Media Crypto
object is then constructed and bound to the opened session.
Next, Media DRM retrieves keys (aka licenses) from the
License Server. The obtained keys are only accessible through
Media Crypto. Indeed, the encrypted content is decrypted by
a Media Codec instance to which the Media Crypto object
was registered. Thus, MovieStealer as defined in [6] does not
work anymore, since the app has never access to the decrypted
buffer. In addition to the DASH mode, the DRM APIs provide
the ability to establish a secure session to protect arbitrary data.

C. Google Widevine

Widevine is a DRM solution acquired by Google in 2010.
Its earlier version (supported up to Android 5.1) worked only
with the proprietary format .wmv. The current version, called
Widevine Modular, implements various standards, including
MPEG-DASH and CENC. Widevine Modular, or henceforth
simply Widevine, is supported on several platforms: Android
(4.4+), Android TVs, Smart TVs, and Web Browsers (e.g.,
Chrome, Firefox and Edge). Widevine defines three security
levels: L1, L2 and L3, where L1 is considered for playing HD
videos. At L1, all operations take place inside a TEE. L2 and
L3 are used when the TEE is not available. Android Widevine
does not propose. For L3, the CDM is processed outside the
TEE. Being less secure, L3 can only play sub-HD content.

In Android, Widevine comes as a dynamically loadable
HAL plugin. Widevine is not open-source; only provided as
binary code. In a top down architecture, Widevine-backed
Android DRM works as follows. All calls to the DRM
API go through some Java Native Interface (JNI) layer
via the libmedia_jni.so library. Instantiated by the
mediadrmserver process, the Media DRM Server receives
these calls, and accordingly, reaches Widevine using HAL.
Any communication with Widevine first goes to its specific
library such as libwvdrmengine.so or libwvhidl.so.
In L3, no further component is involved. As for L1, whenever

2

https://github.com/Avalonswanderer/widevinel3_Android_PoC

License
Server

CDN

Application Media DRM
Server

M
ed

ia
D

R
M

M
ed

ia
C

ry
pt

o

CDM

MediaDRM(UUID)
Initialize()

openSession()

Get License

openSession()

License
provideKeyResponse()

provideKeyResponse

Get Media

Media
queueSecureInputBuffer()

Decrypt()

getKeyRequest()
getKeyRequest()

opaque request

Fig. 1. Encrypted Content Playback in Android

CDM is required, this library calls liboemcrypto.so that
sends the related requests to the Widevine TEE trustlet.

III. RESEARCH QUESTION

Despite the recent surge of streaming on Android devices,
little has been done to understand how Android most popular
DRM, namely Widevine, is used in practice within the Android
DRM framework. Our paper takes the first step in this direc-
tion and explores the implementation choices of OTT apps
regarding Widevine security guidelines. To better frame the
scope of our study, we also quantify the usage of Widevine
in the wild. Our goal is to gain insights into how do OTT
apps follow Widevine recommendations to protect content? By
addressing this question, we show OTT apps would introduce
new attacks vectors that render DRM protection ineffective
while leveraging Widevine. Accordingly, we aim to answer
the following four questions:
Q1: How often do OTT apps rely on Widevine? The main
benefit of the unified Android DRM API is that developers
can effortlessly rely on Widevine, or any Android integrated
DRM, to protect content. The first question we intend to
answer is how effective this API is for Widevine adoption.
In particular, we intend to quantify the OTT apps leveraging
Widevine or custom DRM implementation like in Indian music
industry [14]. Because most apps do not disclose whether
Widevine is supported (an official list can be found in [4]),
we need to fill this gap by conducting several experiments for
both L1 and L3. The support for L1 is an important security
trait, since it resists most attacks against software-based DRM.
Q2: Do OTT apps encrypt their media contents using
Widevine? In any DRM ecosystem, CDN servers deliver
media contents to OTT apps. In a standard work flow, these
contents are encrypted, and DRM modules in users’ devices
(aka CDM) require to decrypt them first. Nevertheless, the
prevailing way of media consumption makes this operation

less straightforward. Indeed, in most OTT apps, users are
allowed to change the language (i.e., audio and subtitles) at any
moment without negatively impacting users’ experience. Thus,
video tracks are obtained only once, while subtitles or audio
are downloaded again for each language selection. In practice,
these parts are sent separately, and thus might be differently
protected depending on the OTT app that might choose for
instance to only protect the video and not the audio. Moreover,
the Android documentation of DRM API does not clearly
explain this common scenario, which might inadvertently lead
to unprotected contents. Our work investigates whether all
media assets are DRM-protected for OTT apps: video, audio
and subtitle tracks.

Q3: Do OTT apps use multiple keys for content en-
cryption? Widevine has issued a set of recommendations
concerning DRM cryptographic key usage [15] (similar ones
are defined by W3C DRM standard EME [16] adopted by
Widevine [17]). These recommendations state that video with
different quality settings should be encrypted using a different
key, and that audio files should be protected by an additional
key. Obviously, such guidelines are defined to minimize the
impact of a content key recovery, and therefore should be
enforced. However, the use of multiple keys might make the
code to manage more complex if no external media playback
library is used, such as ExoPlayer [18]. Consequently, there
might be some tension between Widevine recommendations
about using multiple keys and apps implementations. In this
paper, we intend to quantify the DRM keys received for each
media. If an app does not encrypt audio tracks, or does not
use distinct keys, we note such a practice as minimal.

Q4: Do OTT apps still support L3 outdated devices?
Widevine regularly updates their software. For instance, the
release cadence for Android CDM is annual (per Android
release). In order to keep away some vulnerable implemen-
tations, Widevine may revoke devices due to non-compliance

3

with their security rules, e.g. no longer receiving security
update. Nevertheless, OTT apps can ignore such revocation
and deliver content keys to users [15]. This practice is not
recommended, since old Widevine implementations could be
broken at some point without any security patch. The problem
of outdated devices is not straightforward, because following
revocation rules restricts the number of OTT potential clients.
Here, we identify to which extent OTT apps still support po-
tentially vulnerable Android devices to underline the delicate
trade-off between availability and security. We emphasize that
this problem is quite different from the fact that Widevine, by
design, supports L3 that is inherently bypassable [19]. Indeed,
breaking into legacy L3 should be easier than the latest L3
version. In addition, it should have longer impact, because no
vulnerability will be patched.

IV. EXPERIMENTAL EVALUATION

As stated previously, our goal is to analyze the implemen-
tation choices of OTT apps while leveraging Widevine. In
this section, we first describe our experiment setup to address
our research questions, and review the methodology that we
used to perform our evaluation. Then, we present our findings.
Finally, we show how some of the existing practices can be
abused to bypass DRM by targeting its weakest link.

A. Evaluated Apps

In our work, we evaluate the following Android OTT apps
(with their number of installation in millions at the time
of writing): Netflix (1,000M+), Disney+ (100M+), Amazon
Prime Video (100M+), Hulu (50M+), HBO Max (10M+),
Starz (10M+), myCANAL (10M+), Showtime (5M+), OCS
(1M+), and Salto (1M+).

The selection was based on the list of Widevine clients [4]
as well as their popularity on the Google Play Store. Unfor-
tunately, we could not extend our study to more apps because
of platforms restricting their client to register with a bank
account in a particular country. However, our code can be
easily applied for other apps.

B. Methodology

We could have answered all our research questions by look-
ing directly into OTT apps. However, we did not consider such
an option for two main reasons. First, they are closed-source,
and their design and implementation differ considerably. This
would have required substantial amount of reverse engineering
that is specific for each app. Second, most evaluated OTT apps
apply anti-debugging techniques such as time checking [20],
or rely on SafetyNet [21] to hinder any dynamic analysis.
Therefore, we preferred to focus on the Widevine HAL plugin.
In particular, we precisely identify the work flow for each
app regarding Figure 1, by monitoring all Widevine activities
involved in the DRM API. This approach presents multiples
advantages. Indeed, it bypasses all protection mechanisms
implemented by apps to block dynamic analysis. Moreover,
it can be easily automated. Nevertheless, in order to address

some of our questions, we will still need to note OTT-
specific information. Accordingly, we design our methodology
considering a human in the loop, which also implies to
limit the number of evaluated apps. Furthermore, the lack
of documentation on Widevine made the manual analysis
necessary before implementing our monitoring tool.
DRM API Monitoring. Here, we take a two-pronged method-
ology. First, we decompile the Java classes of the evalu-
ated OTT apps to identify some of the included Android
classes. More specifically, we scan all calls to MediaDrm and
MediaCrypto methods that are required within a Widevine
session. However, we are aware that some apps might include
some dead code. Thus, in order to err on the side of soundness
(i.e., low false positives), we monitored Widevine component
functions linked to the Android Media DRM framework
while playing protected content. Indeed, for both L1 and L3
security levels, we intercept and note any function called
within the CDM process linked to the Widevine protocol
(namely _oeccXX functions), loaded in mediadrmserver
starting from Android 7 and mediaserver otherwise.
To this end, we leverage Frida [22] to hook CDM calls.
The use of L1 is confirmed whenever the control flow
reaches liboemcrypto.so, since L3 is characterized by
the fact that all calls stay within libwvdrmengine.so (the
Widevine library name can differ between devices). In our
Github2, we provide a Frida script that automates OTT app
monitoring. Moreover, to allow more in-depth analysis, we
dumped input and output buffers related to various functions,
including non DASH mode (e.g., generic encrypt and decrypt).
Content Protection. By protection, we mean cryptographic
encryption by Widevine. When an OTT app asks for some
media, the related CDN server does not deliver it directly.
Instead, it sends several URI links that are used by apps
to download all required video, audio and subtitle tracks.
Contents might come encrypted or clear. Our approach mainly
consists of obtaining these URI links for each OTT app, to
determine whether the downloaded contents are protected or
not. For this purpose, we just rely on video or audio players to
read the downloaded files. As for subtitles, we check whether
they contain ascii characters for English ones.

The main challenge in our approach is that apps also protect
these URI links, and thus we have to find them. First, we
keep monitoring all function calls to the CDM process, and
more particularly non DASH mode, as it might be used as
a secure channel to protect arbitrary data. In addition, we
intercept the received network packets when selecting and
displaying protected content to recover media URI and Media
Presentation Description (MPD) files. Because of the use of
TLS, we require to implement SSL repinning technique using
Burp [23] and Frida. Moreover, we note the used key IDs for
each content by parsing the MPD files and their related OTT-
specific metadata. Finally, we perform our experiments for L1
and L3 to assess that it does not depend on security level.

2https://github.com/Avalonswanderer/widevinel3 Android PoC

4

https://github.com/Avalonswanderer/widevinel3_Android_PoC

TABLE I
WIDEVINE USAGE AND ASSET PROTECTIONS BY OTTS

OTT Widevine used
(Q1)

Content Protection (Q2) Widevine
Key Usage (Q3)

Playback on L3
discontinued phones

(Q4)
Video Audio Subtitles

Netflix Encrypted Clear Clear Minimum
Disney+ Encrypted Encrypted Clear Minimum G#
Amazon Prime Video † Encrypted Encrypted Clear Recommended †

Hulu Encrypted Encrypted - -
HBO Max Encrypted Encrypted Clear - G#
Starz Encrypted Encrypted - Minimum G#
myCanal Encrypted Clear Clear Minimum
Showtime Encrypted Encrypted Clear Minimum
OCS Encrypted Encrypted Clear Minimum
Salto Encrypted Clear Clear Minimum
G# Widevine fails during provisioning phase.
† using custom DRM if only Widevine L3 is available.

Minimum: Audio in clear or using the same encryption key as the video.
Recommended: Audio and Video are encrypted with different keys.

Outdated Device. Our approach is straightforward: we use
Nexus 5 phone to display content. Released in 2013, it did
not receive an official Android 7.0 in 2016, and thus Android
6.0.1 becomes its last update. It runs Widevine in L3 mode
with CDM version 3.1.0. This is quite old, as the current
CDM version is 15.0 in 2021. In our experiments, we attempt
to display some media content on Nexus 5. We also keep
monitoring all calls to Widevine. We distinguish two cases:
(1) the app can display Widevine protected content, and (2)
the app uses Widevine, but no content can be displayed.

C. Results
Our results are summarized in Table I.

Q1. All the evaluated apps depend on Widevine for content
playback, and not on some custom app-specific DRM solution.
One exception is Amazon Prime Video using an embedded
Widevine library when just the L3 software-only mode is
available. We also find that the L1 TEE-based mode is popular,
unlike what was predicted in [7]. This is an important trend,
since TEE becomes mandatory starting from Android 7.
Q2. Based on our findings about Widevine usage, we check
whether OTT apps protect their contents. We first look for
URI links related to content assets: video, audio and subtitles.
First, using public Frida resources, we succeeded in bypassing
SSL repinning on all OTT apps, which shows how ineffective
such a security mechanism is. Then, we analyzed the network
packets for each app. Once we found the URI links for a
given media, we downloaded the associated assets and checked
their protection status. A notable exception is Netflix that
creates a secure channel between Widevine and the CDN
to protect URIs through the non DASH Widevine API. This
protection does not prevent us from recovering Netflix links by
intercepting the output of some Widevine functions. Overall,
we obtained all URI links for all OTT apps, except the subtitles
URI for Hulu and Starz. Our investigation finds that video
tracks are always encrypted, contrary to subtitles that are
always in clear (we could not confirm this for Hulu and Starz).
The case of audio tracks is more peculiar. Most OTT apps
encrypt their audio, except for Netflix, myCanal and Salto.

In fact, for these apps, audio in any language can be played
anywhere without any OTT account.
Q3. As noted in Q2, most OTT apps protect their video
and audio. Here, we explore whether they are encrypted with
different keys. Of course, we cannot tell by just looking into
the encrypted files. Thus, as explained previously, we analyzed
some metadata indicating the identifier for every decryption
keys. Our observations show that all evaluated OTT apps
properly encrypt their videos with different keys depending
on the resolution. This implies that we cannot trivially recover
HD resolution, while breaking L3 mode. However, given the
same resolution and the same content, many OTT apps are
confirmed to use the same key for both video and audio, which
is not recommended for DRM solutions by Widevine or EME.
As for apps that do not protect audio, namely Netflix, myCanal
and Salto, Widevine also considers this practice as a minimal
recommendation setting. Only Amazon Prime Video strictly
follows Widevine recommendation by always using distinct
keys. For Hulu and HBO Max, we were unfortunately not able
to conclude our analyses due to some regional restrictions.
Q4. On our Nexus 5 with its Android 6, the installation
process succeeds for all OTT apps. Connected to a valid OTT
account, we attempted to display some media. We notice that
Disney+, HBO Max and Starz reject to provision Widevine
with valid licenses, implying that Nexus 5 is actually revoked.
Thus, media contents and their decryption keys were not even
delivered to our Nexus 5. However, the remaining seven apps
do provision Nexus 5 as a valid device, and therefore display
the required media. One restriction was on the video quality,
since Nexus 5 only supports L3, hence no HD video.
Insights and Learned Lessons. Our evaluation highlights
the large adoption of Widevine by OTT apps on Android
devices. More importantly, we find that TEE-backed Widevine
is widely leveraged thanks to the unified Android DRM API.
This shows that OTT apps are aware of piracy threats, and
therefore look to rely on modern security technologies, such
as TEE. However, we also find that this does not prevent
developers from opting for bad security practices. Indeed, OTT

5

apps do not protect subtitles. There might be two reasons for
this. First, OTT frameworks do not consider subtitles as a
valuable asset to protect. Second, there is no API to deal
with encrypted subtitles in the Android DRM API. This might
also uncover the rational behind why most apps do not follow
Widevine recommendation to use distinct keys for video and
audio. The case of subtitles is more special though. Indeed,
we notice that many apps call DRM API through ExoPlayer
as recommended by Widevine [17]. This playback library
proposes some API allowing developers to provide encrypted
audio and video, but not subtitles. However, this API is not yet
widely used with different keys. We highlight an unexpected
result in our study: Netflix does not protect audio tracks.
During our responsible disclosure, we discovered that Netflix
was not even aware of that, because they believed that non-
Dash mode was sufficient. App developers should not take all
the blame, since the Android API does not make it easy to
implement Widevine guidelines. However, we think that our
results are surprising, since Widevine recommends ExoPlayer
providing a demo app with best practices [18].

Finally, we shed light into the problem of license dis-
tribution. We notice that many OTT apps care more about
reaching more clients than applying the revocation rules of
Widevine: they allow the playback of protected content on
devices no longer receiving security update. Note that most
Android devices have short security update support period with
for instance three years for Google Pixels [12] and five only
for the latest model. This might seem anecdotal, but we will
show in subsection IV-D how an attacker might exploit a weak
Widevine implementation to recover media contents.

D. Practical Impact

We argue that discontinued phones constitute one of the
weakest link in the DRM ecosystem. Indeed, the threat model
of DRM includes attackers that have full control on their
devices. This is due to the fact that the same media, with
different resolution, is played everywhere, and the only incen-
tive of an attacker is to recover that media, regardless of the
targeted device. We demonstrate the practical impact of our
results by obtaining DRM-free contents from all OTT apps
still supporting old devices (except Amazon). To do so, we
first analyzed Widevine internal key ladder from its root of
trust to content decryption key. By reverse engineering, we
found three main keys:

• Keybox: 128-byte structure including a magic number
and a 128-bit AES Device Key. This key is installed by
the manufacturer, and constitutes the root of trust (RoT).

• Device RSA Key: 2048-bit private RSA key. This key
is installed when needed by the Provisioning Server. The
installation process is protected by the keybox. This RSA
key protects the Content Key sent by the License Server.

• Content Key: 128-bit AES key for media decryption.
During our reverse engineering. we find that the keybox

is used to initiate the key ladder. By dynamically monitoring
memory regions that are used during obfuscated cryptographic
operations within libwvdrmengine.so, we searched for

specific keybox structure (e.g., magic number). Thus, we
succeeded in recovering the L3 keybox on our deprecated
Nexus 5 due to an insecure storage of sensitive information
(CWE-922), that lead to our CVE-2021-0639.3

Once we recovered the keybox, we were able to obtain the
provisioned Device RSA Key. Then, we mimic the rest of the
key ladder by intercepting Widevine function arguments to
recover derivation buffers and encrypted keys. We implement
this key ladder to automatically recover the media-related Con-
tent Key. During our experiments, we found out that OTT apps
use the same keys for all their subscribers for a given media.
Finally, we use MPEG-CENC [13] to decrypt all protected
contents. With some processing, we reconstruct the pirated
media and play it on another device (i.e., personal computer)
without any OTT account. Since keys depend on the required
quality and all media in our experiments was requested from
Widevine L3, the best quality that we get is unsurprisingly
960x540, which is qHD (quarter high definition).

Our PoC (proof of concept) of the key ladder can be
found in our GitHub4. Following our ethical approach, we
only provide the implementation of the key ladder without
the associated Device RSA Key, nor keybox. Thus, nobody
can use it to actually pirate OTT contents. Note that our PoC
works for both L1 and L3. However, we only applied it on
Widevine L3. Our purpose is not to define yet another attack
against DRM systems, but to show that some outdated L3
security protection can lead to a simple long-term compromise
because of discontinued devices. We stress the fact that there is
currently no clear solutions to the upgradeability of deprecated
phones, even if the situation might be improved in the future.
For this reason, we believe that OTT apps must strictly abide
to Widevide revocation rules to avoid piracy.

V. DISCUSSION

A. Responsible Disclosure

Our findings have been timely reported to all concerned
parties following their responsible disclosure process. Netflix
was quite responsive and we got rewarded via their bug
bounty program. Regarding Google Widevine, our security
report was assigned with the highest priority within the Google
Vulnerability Reward Program (VRP). The Widevine security
team investigated our findings and issued a patch to mitigate
our identified flaws. Google assigned the CVE ID ’CVE-2021-
0639’ for us, and acknowledged us in the Google Hall of Fame
and the Android Security Acknowledgments. Our goal is to
improve the state-of-the-art knowledge of DRM internals and
not to provide copyright infringement tools.

B. Not Just Another Attack

We insist that our work does not present a new attack
against DRM solutions. Instead, we show that bad imple-
mentation practices imply new attack vectors that can be
abused to recover DRM-free contents in Android smartphones.

3https://www.cve.org/CVERecord?id=CVE-2021-0639
4https://github.com/Avalonswanderer/widevinel3 Android PoC

6

https://www.cve.org/CVERecord?id=CVE-2021-0639
https://github.com/Avalonswanderer/widevinel3_Android_PoC

In particular, we show that OTT apps do not use Widevine
protection to the fullest, and this might be due to lack of public
documentation (therefore community discussion) and complex
proprietary design. Moreover, we show that DRM protection
is quite brittle if we include all the supported, yet outdated,
versions. We successfully demonstrate that deprecated phones
create more risks than benefits. Note that no SafetyNet or anti-
screen recording techniques can be of any use, since attackers
only need to monitor Widevine that runs in a different process.

C. Limitation & Future Work

As any study, our work is not exempt from limitations. Our
paper focuses on the most popular DRM solution on Android
smartphones, namely Widevine. However, Huawei’s devices
offer their custom DRM solution, called WisePlay. Moreover,
outside the smartphone ecosystem, Widevine is present on
Android TVs, web browsers on different operating systems,
and small devices (e.g., Chromecast). Studying similarities and
differences among these different implementations constitutes
the main future direction of this work. We hope that our
tools will encourage more work on these topics to reach other
platforms and CDMs with fully automated approches.

Another limitation is that our PoC can only recover video
with sub-HD quality. It is not clear how Widevine enforces
the control on video transmission regarding the security level.
On PCs, the Github project netflix-1080p [24] explains
how to get HD quality on L3 by just modifying the profiles
to be sent to the CDN. This implies that there is no strong
verification for web browsers. An interesting future work is to
adapt this exploit to Android in order to get the license keys
of HD contents without breaking into the Widevine L1.

VI. RELATED WORK

A. DRM Researches and DMCA

Despite the widespread of Widevine, surprisingly, no much
attention has been given to the security of its underlying pro-
tocol. The main reason behind such a lack of public security
analysis is the DMCA’s 1201 clause that makes it illegal to
circumvent controls preventing access to copyrighted material.
Consequently, researchers cannot investigate and discover se-
curity vulnerabilities if doing so requires reverse engineering
or circumventing controls such as obfuscated code. This law
has already been used against security researchers to censor
their work, as shown by Hewlett-Packard against Snosoft in
2002 [25]. Unfortunately, over fifty court-cases have been
launched against security research as of 2016 [26].

Nevertheless, restrictions have been partially lifted recently.
Indeed, in October 2018, the American Library of Congress
and the Copyright Office have expanded the exemptions to
DMCA. Therefore, in theory, researchers can now freely
investigate and publish security flaws on DRM solutions.

B. Bypassing DRM & Widevine Keys Recovery

In the past decades, multiple techniques have been devel-
oped to circumvent now outdated DRM solutions without
having to break the underling scheme, like MovieStealer [6]

targeting content decryption to recover decrypted buffers
within the decoder when no TEE is available. Analog loophole
was also used to capture analog signals of the protected content
by screen-recording or through connectors.

In 2019, David Buchanan claimed to have broken Widevine
L3 DRM on Linux Chrome browsers. In a tweet [27], which
is the only available information about this attack, Buchanan
mentioned that Widevine L3 relies on AES-128 Whitebox
to protect the keybox. This attack gets a large number of
articles on the web, all of which relied merely on the tweet
of Buchanan who has never provided any further detail.

In October 2020, Tomer Hadad released widevine-l3-
decryptor in Github. This project is a Chrome extension on
Windows that contains a hard-coded value of an RSA key pair
used by Widevine L3 unique for all Windows devices. Hadad
mentioned that he extracted the RSA private key “by applying
some mathematical tricks to Arxan’s whitebox algorithm”. In
November 2020, Google issued a DMCA takedown request
against widevine-l3-decryptor and all its forks [19]. This
proves that Google still views L3 security as a serious matter.

In May 2021, Zhao [8] broke into the Widevine L1 trusted
app to recover the Widevine keybox of a Pixel 4. However, he
did not show how a recovered keybox can be used to decrypt
protected contents. In our work, we took this further step and
implemented the cryptographic mechanisms of Widevine.

C. Closed Source API Analysis

Our work inspects the misusage of the Widevine API by
OTT apps. Similarly, other works have been made to analyze
closed source proprietary API on Android. For instance,
Bianchi et al. [28] have inspected the fingerprint API and
its misuage by app developers, leading to multiple attacks
ranging from confused deputy problem to full fingerprint
bypass. In their work, Ibrahim et al. [29] looked at the
SafetyNet Attestation API used to detect if an app is running
in a non compromised Android environment. Their findings
point out that more than half of analyzed apps were using
trivially bypassable checks while none were correctly using
the SafetyNet API.

VII. CONCLUSION

In this paper, we report on an empirical evaluation of
the protection mechanisms used by content providers within
Android to protect their media assets. Our study shows that
OTT apps relies on Widevine using TEE protection when
available but do not comply with Widevine recommendations
in encrypting video and audio with distinct keys or regarding
revocation of old devices. We investigate the OTT apps support
of Android legacy devices running the software-only Widevine
DRM no longer receiving security updates. We expose that by
choosing large content distribution over security, OTT apps
have extended the device attack surface. We show that such
vector can be trivially exploited to recover DRM-free movies
from six OTT apps including Netflix, Hulu and Showtime. We
hope that this paper will push research forward in this domain
and encourage furture works.

7

REFERENCES

[1] Fortune Business Insights, “Over The Top services market to reach USD
139.00 billion in 2028; emergence of Smart TVs by various companies
to bolster growth.” https://www.globenewswire.com/news-release/
2021/08/17/2281647/0/en/Over-The-Top-Services-Market-to-Reach-
USD-139-00-Billion-in-2028-Emergence-of-Smart-TVs-by-Various-
Companies-to-Bolster-Growth-states-Fortune-Business-Insights.html,
2021.

[2] H. Halpin, “The crisis of standardizing DRM: the case of W3C encrypted
media extensions,” in SPACE, vol. 10662 of Lecture Notes in Computer
Science, pp. 10–29, Springer, 2017.

[3] D. Dorwin, J. Smith, M. Watson, and A. Bateman, “Encrypted media
extensions.” https://www.w3.org/TR/encrypted-media/, 2019.

[4] Google Widevine, “Widevine.” https://widevine.com/.
[5] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution envi-

ronment: What it is, and what it is not,” in TrustCom/BigDataSE/ISPA
(1), pp. 57–64, IEEE, 2015.

[6] R. Wang, Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Steal this
movie: Automatically bypassing DRM protection in streaming media
services,” in 22nd USENIX Security Symposium (USENIX Security 13),
(Washington, D.C.), pp. 687–702, USENIX Association, Aug. 2013.

[7] S. Y. Chau, B. Wang, J. Wang, O. Chowdhury, A. Kate, and N. Li, “Why
johnny can’t make money with his contents: Pitfalls of designing and
implementing content delivery apps,” in Proceedings of the 34th Annual
Computer Security Applications Conference, ACSAC ’18, (New York,
NY, USA), p. 236–251, Association for Computing Machinery, 2018.

[8] Q. Zhao, “Wideshears: Investigating and breaking widevine on QTEE,”
BlackHat Asia, 2021.

[9] G. Beniamini, “QSEE privilege escalation vulnerability and ex-
ploit (CVE-2015-6639).” https://bits-please.blogspot.com/2016/05/qsee-
privilege-escalation-vulnerability.html, 2016.

[10] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “Sok: Understanding
the prevailing security vulnerabilities in trustzone-assisted TEE sys-
tems,” in IEEE Symposium on Security and Privacy, pp. 1416–1432,
IEEE, 2020.

[11] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,
A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “BOOMERANG:
exploiting the semantic gap in trusted execution environments,” in 24th
Annual Network and Distributed System Security Symposium, NDSS
2017, San Diego, California, USA, February 26 - March 1, 2017, The
Internet Society, 2017.

[12] Google, “Learn when you’ll get software updates on Google Pixel
phones.” https://support.google.com/pixelphone/answer/4457705, 2021.

[13] ISO/IEC, “Common encryption in ISO base media file format files -
2nd edition,” 2015.

[14] A. Dabholkar, S. Kakarla, and D. Saha, “Looney tunes: Exposing the
lack of DRM protection in indian music streaming services,” CoRR,
vol. abs/2103.16360, 2021.

[15] Google Widevine, “Widevine News.” https://web.archive.org/web/
20210903150435/https://www.widevine.com/news, 2021.

[16] Can I Use, “Encrypted media extensions.” https://caniuse.com/eme,
2021.

[17] Google Widevine, “Widevine DRM Overview.” https:
//developers.google.com/widevine/drm/overview, 2021.

[18] Google, “Exoplayer.” https://github.com/google/ExoPlayer, 2021.
[19] Github, “DMCA.” https://github.com/github/dmca/blob/master/2020/11/

2020-11-09-Google.md, 2020.
[20] L. Xue, H. Zhou, X. Luo, Y. Zhou, Y. Shi, G. Gu, F. Zhang, and

M. H. Au, “Happer: Unpacking android apps via a hardware-assisted
approach,” in 42nd IEEE Symposium on Security and Privacy, SP 2021,
San Francisco, CA, USA, 24-27 May 2021, pp. 1641–1658, IEEE, 2021.

[21] Android, “Protect against security threats with SafetyNet.” https://
developer.android.com/training/safetynet, 2021.

[22] O. A. V. Ravnås, “Frida.” https://frida.re/.
[23] PortSwigger, “Burp suite.” https://portswigger.net/burp, 2021.
[24] truedread, “netflix-1080p.” https://github.com/truedread/netflix-1080p,

2021.
[25] D. McCullagh, “Security warning draws DMCA threat.” https://

www.cnet.com/news/security-warning-draws-dmca-threat/, 2002.
[26] Electronic Frontier Foundation, “Reported case list.” https:

//www.eff.org/files/2016/03/17/1201 reported case list revised.xls,
2017.

[27] David Buchanan, “Breaking Widevine L3 on Linux Chrome browser.”
https://twitter.com/david3141593/status/1080606827384131590, 2019.

[28] A. Bianchi, Y. Fratantonio, A. Machiry, C. Kruegel, G. Vigna, S. P. H.
Chung, and W. Lee, “Broken fingers: On the usage of the fingerprint API
in android,” in 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21,
2018, The Internet Society, 2018.

[29] M. Ibrahim, A. Imran, and A. Bianchi, “Safetynot: on the usage of the
safetynet attestation API in android,” in MobiSys ’21: The 19th Annual
International Conference on Mobile Systems, Applications, and Services,
Virtual Event, Wisconsin, USA, 24 June - 2 July, 2021 (S. Banerjee,
L. Mottola, and X. Zhou, eds.), pp. 150–162, ACM, 2021.

8

https://www.globenewswire.com/news-release/2021/08/17/2281647/0/en/Over-The-Top-Services-Market-to-Reach-USD-139-00-Billion-in-2028-Emergence-of-Smart-TVs-by-Various-Companies-to-Bolster-Growth-states-Fortune-Business-Insights.html
https://www.globenewswire.com/news-release/2021/08/17/2281647/0/en/Over-The-Top-Services-Market-to-Reach-USD-139-00-Billion-in-2028-Emergence-of-Smart-TVs-by-Various-Companies-to-Bolster-Growth-states-Fortune-Business-Insights.html
https://www.globenewswire.com/news-release/2021/08/17/2281647/0/en/Over-The-Top-Services-Market-to-Reach-USD-139-00-Billion-in-2028-Emergence-of-Smart-TVs-by-Various-Companies-to-Bolster-Growth-states-Fortune-Business-Insights.html
https://www.globenewswire.com/news-release/2021/08/17/2281647/0/en/Over-The-Top-Services-Market-to-Reach-USD-139-00-Billion-in-2028-Emergence-of-Smart-TVs-by-Various-Companies-to-Bolster-Growth-states-Fortune-Business-Insights.html
https://www.w3.org/TR/encrypted-media/
https://widevine.com/
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://bits-please.blogspot.com/2016/05/qsee-privilege-escalation-vulnerability.html
https://support.google.com/pixelphone/answer/4457705
https://web.archive.org/web/20210903150435/https://www.widevine.com/news
https://web.archive.org/web/20210903150435/https://www.widevine.com/news
https://caniuse.com/eme
https://developers.google.com/widevine/drm/overview
https://developers.google.com/widevine/drm/overview
https://github.com/google/ExoPlayer
https://github.com/github/dmca/blob/master/2020/11/2020-11-09-Google.md
https://github.com/github/dmca/blob/master/2020/11/2020-11-09-Google.md
https://developer.android.com/training/safetynet
https://developer.android.com/training/safetynet
https://frida.re/
https://portswigger.net/burp
https://github.com/truedread/netflix-1080p
https://www.cnet.com/news/security-warning-draws-dmca-threat/
https://www.cnet.com/news/security-warning-draws-dmca-threat/
https://www.eff.org/files/2016/03/17/1201_reported_case_list_revised.xls
https://www.eff.org/files/2016/03/17/1201_reported_case_list_revised.xls
https://twitter.com/david3141593/status/1080606827384131590

	Introduction
	Background
	DRM Systems
	Android DRM API
	Google Widevine

	Research Question
	Experimental Evaluation
	Evaluated Apps
	Methodology
	Results
	Practical Impact

	Discussion
	Responsible Disclosure
	Not Just Another Attack
	Limitation & Future Work

	Related Work
	DRM Researches and DMCA
	Bypassing DRM & Widevine Keys Recovery
	Closed Source API Analysis

	Conclusion
	References

