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Notes on means, medians and Gaussian tails

J.-R. Chazottes *1

1CPHT, CNRS, Institut Polytechnique de Paris, France

Dated: April 18, 2022

Abstract

In the course of thinking about Gaussian concentration bounds for
X − E(X), we arrived at the basic question of replacing E(X) by a
median ofX . Not surprinsingly, having a Gaussian concentration bound
forX about its mean is equivalent to having it for any of its median. The
question is: Can we find simple relations between the involved constants?
This is indeed what is asked in exercise 2.14 p. 53 in [4], not exactly for
Gaussian concentration bounds but for Gaussian tail bounds, which is
equivalent (see below). We also solve an exercise from [1]. (This note
is not intended to be published and we acknowledge F. Redig for email
exchanges on that matters.)

1 Median versus expectation

Here we solve exercise 2.14 p. 53 in [4].
Given a scalar random variable X, suppose that there are positive con-

stants c1, c2 such that

P(|X − E(X)| ≥ t) ≤ c1 e−c2t
2
, t ≥ 0. (1)

Observe that we must have c1 ≥ 1 since we can let t ↓ 0: the rhs tends to c1
while the lhs is a priori ≤ 1. One says that X has “Gaussian tails around its
mean”.

A basic consequence of (1) is that

Var(X) ≤ c1
c2
· (2)

Indeed we have

Var(X) =

∫ ∞
0

2tP(|X − E(X)| ≥ t) dt ≤ c1
∫ ∞
0

2t e−c2t
2

dt =
c1
c2
·
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Before proceeding, let us recall some basic facts about medians. A median
mX is any number such that P(X ≥ mX) ≥ 1/2 and P(X ≤ mX) ≥ 1/2. In
general it is not unique. The basic example illustrating this is when X takes
the values 0 or 1 with probability 1/2. Then any 0 < m < 1 is a median.
If X has a cumulative distribution function which is continuous and whose
support is an interval, then mX is uniquely defined.
The Cauchy distribution is an example of a random variable without a first
moment but with a unique median which is 0. (Hence medians always exist,
contrarily to expected values.)
Before going on, we would like to recall the nice general bound

|E(X)−mX | ≤
√

Var(X) (3)

which holds for any random variable such that E(X2) < ∞. The proof is
based on the fact that a median minimizes the function m 7→ E(|X − m|)
on R (note that in fact this charaterization works even for a non-integrable
random variable if one writes the minimization problem in an appropriate
way). Given this fact, we then have

|mX − E(X)| = |E(mX −X)| ≤ E(|X −mX |) ≤ E(|X − E(X)|)

≤
√
E[(X − E(X))2] ≤

√
Var(X).

(The first inequality is by Jensen’s inequality for x 7→ |x|, the second one
comes from the characterization of a median given above, and the third is by
Cauchy-Schwarz inequality.) So we proved (3).

1.1 Gaussian tails around themean implies Gaussian tails around
the median

THEOREM 1.1. Suppose that (1) holds. Then for any median mX one has

P(|X −mX | ≥ t) ≤ c3 e−c4t
2
, t ≥ 0 (4)

with c3 = 2c1 and c4 = c2/4.

Before giving the proof, observe that we must have c3 ≥ 1, since we can let
t ↓ 0 in (4). Note also that Wainwright asks to prove this result with c3 = 4c1
and c4 = c2/8, so we obtain slightly better constants.
PROOF. Put δ := |E(X)−mX |. (Of course, we assume that δ > 0, otherwise
there is nothing to prove.)
The main observation is that, by the very definition of a median, and using
the assumption, we have

1

2
≤ P(|X − E(X)| ≥ δ ) ≤ c1 e−c2δ

2
.
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(Indeed, assume thatmX < E(X). Then the event {|X−E(X)| ≥ δ} contains
the event {X ≤ mX} which has probability at least 1/2. The casemX > E(X)
is similar.) Hence

2c1 e−c2δ
2 ≥ 1.

Now, if we take any t < 2δ we have

1 ≤ 2c1 e−c2δ
2

= 2c1 e−c2(2δ)
2/4 ≤ 2c1 e−c2t

2/4 .

Hence in this regime, (4) is (trivially) true with c3 = 2c1 and c4 = c2/4.1 Now
we consider t ≥ 2δ. Since

|X − E(X)| ≥ |X −mX | − δ (5)

by the reverse triangle inequality (|a− b| ≥ ||a| − |b|| ≥ |a| − |b|, a, b ∈ R), we
have

P (|X −mX | ≥ t) = P
(
|X −mX | ≥

t

2
+
t

2

)
≤ P

(
|X −mX | ≥

t

2
+ δ

)
(since δ ≤ t/2)

≤ P
(
|X − E(X)| ≥ t

2

)
(by (5))

≤ c1 e−c2t
2/4 (by (1)).

Therefore we proved (4) with c3 = 2c1 and c4 = c2/4.

1.2 Gaussian tails around themedian implies Gaussian tails around
the mean

THEOREM 1.2. Assume that (4) holds. Then (1) holds with c1 = 2c3 and c2 =
c4/16.

Before giving the proof, we mention that Wainwright asks for c1 = 2c3 and
c2 = c4/4.
PROOF. ByMarkov’s inequality and the elementary inequality eλ|x| ≤ eλx + e−λx,
x ∈ R, we have for all t ≥ 0

P
(
|X − E(X)| ≥ t) ≤ inf

λ>0

E
(

eλ(X−E(X))
)

+ E
(

e−λ(X−E(X))
)

eλt
. (6)

The trick is to introduce an independent copy Y of X, and thanks to Jensen’s
inequality to write

E
(

eλ(X−E(X))
)

= EX
(

eλ(X−EY (Y ))
)
≤ EX,Y

(
eλ(X−Y )

)
1 Of course, we can take t < τδ for some τ ≥ 1 to be fixed, but this doesn’t seem to lead

to better constants.
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where the notation EX is to precise with respect to which probability distribu-
tion we integrate, and EX,Y denotes integration with respect to the product
of the probability distributions of X and Y . When no confusion can arise, we
simply write E for EX,Y , etc. Now we use that X−Y has all its odd moments
which are equal to 0, hence

E
(

eλ(X−Y )
)

= 1 +
∞∑
k=1

λ2k

(2k)!
E
[
(X − Y )2k

]
. (7)

(We assume momentarily that integrability holds; it will be an easy conse-
quence of what follows.) We have

E
[
(X − Y )n

]
=

∫ ∞
0

P
(
|X − Y |n ≥ u

)
du

= n

∫ ∞
0

vn−1P
(
|X − Y | ≥ v

)
dv

≤ 2n

∫ ∞
0

vn−1P
(
|X −mX | ≥

v

2

)
dv.

Let us explain how to obtain the inequality. We use two basic facts:

|X − Y | = |X −mX − (Y −mX)| ≤ |X −mX |+ |Y −mX |

and
P
(
|X − Y | < t

)
≥ P

(
|X −mX | <

t

2

)
P
(
|Y −mX | <

t

2

)
where we use independence. Passing to the complement, we thus obtain

P
(
|X − Y | ≥ t

)
≤ 2P

(
|X −mX | ≥

t

2

)
−
(
P
(
|X −mX | ≥

t

2

))2

≤ 2P
(
|X −mX | ≥

t

2

)
.

We now use (4) to obtain

E
[
(X − Y )n

]
≤ 2n c3

∫ ∞
0

vn−1 e−
c4v

2

4

√
2π × 2

c4√
2π × 2

c4

dv

= 2n c3

√
π

c4

∫ +∞

−∞
|v|n−1 e−

c4v
2

4√
2π × 2

c4

dv

= c3 n

(
2
√
c4

)n
Γ
(n

2

)
where we used that if Z is Gaussian random variable with mean 0 and variance
2/c4 then

E
(
|Z|n−1

)
=

(
2

c4

)n−1
2 2

n−1
2 Γ

(
n
2

)
√
π
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where Γ is the Gamma function. Hence we get from (7)

E
(

eλ(X−Y )
)
≤ 1 + c3

∞∑
k=1

(
2λ
√
c4

)2k Γ(k)

Γ(2k)

≤ 1 + c3

∞∑
k=1

(
4λ2

c4

)k
1

k!

≤ c3 e
4λ2

c4

where in the first inequality we used the identity Γ(2k) = (2k − 1)!, in the
second one once again this identity, and the bound 1/((2k − 1) · · · k) ≤ 1/k!,
and in the last one we used that c3 ≥ 1. The same argument works for
E
[

e−λ(X−E(X))
]
, therefore we obtain from (6)

P
(
|X − E(X)| ≥ t) ≤ 2 c3 inf

λ>0
e

4λ2

c4
−λt

= c1 e−c2t
2

where c1 = 2c3 and c2 = c4/16. (Wainwright asks to show that c2 = c4/4.)

REMARK 1.1. We didn’t use the fact that we started from concentration around a
median. If one assumes that (4) holds for some constant a instead of mX , the proof
is exactly the same. On the contrary, when we proved how to go from Gaussian tails
around the mean to Gaussian tails around a median, we did use a property of medians.

REMARK 1.2. Using (2), which results from (1), and (3) we get

|E(X)−mX | ≤
√
c1
c2
·

But we can use directly (1) to deduce that |E(X)−mX | ≤ t0, where t0 is such that
c1 e−c2t

2
0 = 1/2, which is t0 =

√
log(2c1)/c2. Not surprisingly, t0 <

√
c1
c2
.

REMARK 1.3. In Proposition 1.8 p. 10 in [2], there is a result saying that if you have
Gaussian tails around some real number aX (which of course can be E(X)) then you
have Gaussian tails around any median of X , and vice-versa. It doesn’t seem that the
method used therein gives precise relations between the involved constants (but this is
not the goal). Besides that, he doesn’t only deal with Gaussian tails.

2 Exercise 2.2 p. 46 in [1]

The assumption is (4). The question is: Prove that

|E(X)−mX | ≤ min

(√
πc3

2
√
c4
,

√
c3
c4

)
· (8)
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(Remember that c3 ≥ 1.) As above when we discussed the distance between
the mean and the median for a square-integrable random variable (without
involving concentration), we start with

|mX − E(X)| = |E(mX −X)| ≤ E(|X −mX |).

Then using (4) we have

E(|X −mX |) =

∫ ∞
0

P(|X −mX | ≥ t) dt ≤ c3
∫ ∞
0

e−c4t
2

dt

=
c3√
2c4

∫ ∞
0

e−u
2/2 du =

c3√
2c4

√
2π

2
·

For the other bound, we want to use (3), so we have to prove that Var(X) ≤
c3/c4. We have

E
(
|X −mX |2

)
=

∫ ∞
0

P
(
|X −mX |2 ≥ t

)
dt =

∫ ∞
0

P
(
|X −mX | ≥

√
t
)

dt

≤
∫ ∞
0

c3 e−c4t dt =
c3
c4
·

This proves that X is square integrable, and we conclude by observing that
Var(X) = Var(X −mX) ≤ E

(
|X −mX |2

)
. Hence |mX − E(X)| ≤

√
c3/c4.

Gathering the two bounds we thus proved (8).

3 Gaussian concentration bound and Gaussian tail
bound

Usually one proves (1) by proving the following bound that we call the Gaus-
sian concentration bound:

E
(

eλ(X−E(X))
)
≤ ecλ

2
, ∀λ ∈ R (9)

where c > 0 is independent of λ. Let us derive (1) from (9) for completeness.
For any λ > 0 we have by Markov’s inequality

P(X − E(X) ≥ t) = P(exp(λ(X − E(X)) ≥ exp(λt)) ≤ e−λtE
(

eλ(X−E(X))
)

≤ e−λt+cλ
2

(by (1)).

Now we can minimize the bound over λ > 0 and find out

P(X − E(X) ≥ t) ≤ e−
t2

4c .

We can repeat these estimates with −X in place of X to find

P(−X − E(−X) ≥ t) ≤ e−
t2

4c
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hence by a union bound we finally get

P(|X − E(X)| ≥ t) ≤ 2 e−
t2

4c , ∀t ≥ 0.

Therefore we obtain (1) with c1 = 2 and c2 = 1/(4c).
Going from (1) to (9) can be done as in [1, Theorem 2.1 p. 25].
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