

Notes on means, medians and Gaussian tails J.-R Chazottes

▶ To cite this version:

J.-R Chazottes. Notes on means, medians and Gaussian tails. 2022. hal-03636138v2

HAL Id: hal-03636138 https://hal.science/hal-03636138v2

Preprint submitted on 18 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Notes on means, medians and Gaussian tails

J.-R. Chazottes *1

¹CPHT, CNRS, Institut Polytechnique de Paris, France

Dated: April 18, 2022

Abstract

In the course of thinking about Gaussian concentration bounds for $X - \mathbb{E}(X)$, we arrived at the basic question of replacing $\mathbb{E}(X)$ by a median of X. Not surprinsingly, having a Gaussian concentration bound for X about its mean is equivalent to having it for any of its median. The question is: Can we find simple relations between the involved constants? This is indeed what is asked in exercise 2.14 p. 53 in [4], not exactly for Gaussian concentration bounds but for Gaussian tail bounds, which is equivalent (see below). We also solve an exercise from [1]. (This note is not intended to be published and we acknowledge F. Redig for email exchanges on that matters.)

1 Median versus expectation

Here we solve exercise 2.14 p. 53 in [4].

Given a scalar random variable X, suppose that there are positive constants c_1, c_2 such that

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le c_1 e^{-c_2 t^2}, \ t \ge 0.$$
(1)

Observe that we must have $c_1 \ge 1$ since we can let $t \downarrow 0$: the rhs tends to c_1 while the lhs is a priori ≤ 1 . One says that X has "Gaussian tails around its mean".

A basic consequence of (1) is that

$$\operatorname{Var}(X) \le \frac{c_1}{c_2}.$$
(2)

Indeed we have

$$\operatorname{Var}(X) = \int_0^\infty 2t \,\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \,\mathrm{d}t \le c_1 \int_0^\infty 2t \,\mathrm{e}^{-c_2 t^2} \,\mathrm{d}t = \frac{c_1}{c_2} \cdot$$

^{*}Email: jeanrene@cpht.polytechnique.fr

Before proceeding, let us recall some basic facts about medians. A median m_X is any number such that $\mathbb{P}(X \ge m_X) \ge 1/2$ and $\mathbb{P}(X \le m_X) \ge 1/2$. In general it is *not unique*. The basic example illustrating this is when X takes the values 0 or 1 with probability 1/2. Then any 0 < m < 1 is a median.

If X has a cumulative distribution function which is continuous and whose support is an interval, then m_X is uniquely defined.

The Cauchy distribution is an example of a random variable without a first moment but with a unique median which is 0. (Hence medians always exist, contrarily to expected values.)

Before going on, we would like to recall the nice general bound

$$|\mathbb{E}(X) - m_X| \le \sqrt{\operatorname{Var}(X)} \tag{3}$$

which holds for any random variable such that $\mathbb{E}(X^2) < \infty$. The proof is based on the fact that a median minimizes the function $m \mapsto \mathbb{E}(|X - m|)$ on \mathbb{R} (note that in fact this charaterization works even for a non-integrable random variable if one writes the minimization problem in an appropriate way). Given this fact, we then have

$$|m_X - \mathbb{E}(X)| = |\mathbb{E}(m_X - X)| \le \mathbb{E}(|X - m_X|) \le \mathbb{E}(|X - \mathbb{E}(X)|)$$
$$\le \sqrt{\mathbb{E}[(X - \mathbb{E}(X))^2]} \le \sqrt{\operatorname{Var}(X)}.$$

(The first inequality is by Jensen's inequality for $x \mapsto |x|$, the second one comes from the characterization of a median given above, and the third is by Cauchy-Schwarz inequality.) So we proved (3).

1.1 Gaussian tails around the mean implies Gaussian tails around the median

THEOREM 1.1. Suppose that (1) holds. Then for any median m_X one has

$$\mathbb{P}(|X - m_X| \ge t) \le c_3 \,\mathrm{e}^{-c_4 t^2}, \ t \ge 0 \tag{4}$$

with $c_3 = 2c_1$ and $c_4 = c_2/4$.

Before giving the proof, observe that we must have $c_3 \ge 1$, since we can let $t \downarrow 0$ in (4). Note also that Wainwright asks to prove this result with $c_3 = 4c_1$ and $c_4 = c_2/8$, so we obtain slightly better constants.

PROOF. Put $\delta := |\mathbb{E}(X) - m_X|$. (Of course, we assume that $\delta > 0$, otherwise there is nothing to prove.)

The main observation is that, by the very definition of a median, and using the assumption, we have

$$\frac{1}{2} \le \mathbb{P}(|X - \mathbb{E}(X)| \ge \delta) \le c_1 e^{-c_2 \delta^2}.$$

(Indeed, assume that $m_X < \mathbb{E}(X)$. Then the event $\{|X - \mathbb{E}(X)| \ge \delta\}$ contains the event $\{X \le m_X\}$ which has probability at least 1/2. The case $m_X > \mathbb{E}(X)$ is similar.) Hence

$$2c_1 \operatorname{e}^{-c_2 \delta^2} \ge 1.$$

Now, if we take any $t < 2\delta$ we have

$$1 \le 2c_1 \,\mathrm{e}^{-c_2 \delta^2} = 2c_1 \,\mathrm{e}^{-c_2 (2\delta)^2/4} \le 2c_1 \,\mathrm{e}^{-c_2 t^2/4}$$

Hence in this regime, (4) is (trivially) true with $c_3 = 2c_1$ and $c_4 = c_2/4$.¹ Now we consider $t \ge 2\delta$. Since

$$|X - \mathbb{E}(X)| \ge |X - m_X| - \delta \tag{5}$$

by the reverse triangle inequality $(|a-b| \geq ||a|-|b|| \geq |a|-|b|, a, b \in \mathbb{R}),$ we have

$$\mathbb{P}\left(|X - m_X| \ge t\right) = \mathbb{P}\left(|X - m_X| \ge \frac{t}{2} + \frac{t}{2}\right)$$

$$\leq \mathbb{P}\left(|X - m_X| \ge \frac{t}{2} + \delta\right) \quad \text{(since } \delta \le t/2\text{)}$$

$$\leq \mathbb{P}\left(|X - \mathbb{E}(X)| \ge \frac{t}{2}\right) \quad \text{(by (5))}$$

$$\leq c_1 e^{-c_2 t^2/4} \quad \text{(by (1))}.$$

Therefore we proved (4) with $c_3 = 2c_1$ and $c_4 = c_2/4$. \Box

1.2 Gaussian tails around the median implies Gaussian tails around the mean

THEOREM 1.2. Assume that (4) holds. Then (1) holds with $c_1 = 2c_3$ and $c_2 = c_4/16$.

Before giving the proof, we mention that Wainwright asks for $c_1 = 2c_3$ and $c_2 = c_4/4$.

PROOF. By Markov's inequality and the elementary inequality $e^{\lambda|x|} \le e^{\lambda x} + e^{-\lambda x}$, $x \in \mathbb{R}$, we have for all $t \ge 0$

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le \inf_{\lambda > 0} \frac{\mathbb{E}(e^{\lambda(X - \mathbb{E}(X))}) + \mathbb{E}(e^{-\lambda(X - \mathbb{E}(X))})}{e^{\lambda t}}.$$
 (6)

The trick is to introduce an independent copy Y of X, and thanks to Jensen's inequality to write

$$\mathbb{E}\left(e^{\lambda(X-\mathbb{E}(X))}\right) = \mathbb{E}_X\left(e^{\lambda(X-\mathbb{E}_Y(Y))}\right) \le \mathbb{E}_{X,Y}\left(e^{\lambda(X-Y)}\right)$$

 $^{^1\,}$ Of course, we can take $t<\tau\delta$ for some $\tau\geq 1$ to be fixed, but this doesn't seem to lead to better constants.

where the notation \mathbb{E}_X is to precise with respect to which probability distribution we integrate, and $\mathbb{E}_{X,Y}$ denotes integration with respect to the product of the probability distributions of X and Y. When no confusion can arise, we simply write \mathbb{E} for $\mathbb{E}_{X,Y}$, etc. Now we use that X - Y has all its odd moments which are equal to 0, hence

$$\mathbb{E}\left(e^{\lambda(X-Y)}\right) = 1 + \sum_{k=1}^{\infty} \frac{\lambda^{2k}}{(2k)!} \mathbb{E}\left[(X-Y)^{2k}\right].$$
(7)

(We assume momentarily that integrability holds; it will be an easy consequence of what follows.) We have

$$\mathbb{E}\left[(X-Y)^n\right] = \int_0^\infty \mathbb{P}\left(|X-Y|^n \ge u\right) du$$
$$= n \int_0^\infty v^{n-1} \mathbb{P}\left(|X-Y| \ge v\right) dv$$
$$\le 2n \int_0^\infty v^{n-1} \mathbb{P}\left(|X-m_X| \ge \frac{v}{2}\right) dv$$

Let us explain how to obtain the inequality. We use two basic facts:

$$|X - Y| = |X - m_X - (Y - m_X)| \le |X - m_X| + |Y - m_X|$$

and

$$\mathbb{P}(|X - Y| < t) \ge \mathbb{P}(|X - m_X| < \frac{t}{2}) \mathbb{P}(|Y - m_X| < \frac{t}{2})$$

where we use independence. Passing to the complement, we thus obtain

$$\mathbb{P}(|X - Y| \ge t) \le 2 \mathbb{P}(|X - m_X| \ge \frac{t}{2}) - \left(\mathbb{P}(|X - m_X| \ge \frac{t}{2})\right)^2$$
$$\le 2 \mathbb{P}(|X - m_X| \ge \frac{t}{2}).$$

We now use (4) to obtain

$$\mathbb{E}\left[(X - Y)^n \right] \le 2 n c_3 \int_0^\infty v^{n-1} e^{-\frac{c_4 v^2}{4}} \frac{\sqrt{2\pi \times \frac{2}{c_4}}}{\sqrt{2\pi \times \frac{2}{c_4}}} dv$$
$$= 2 n c_3 \sqrt{\frac{\pi}{c_4}} \int_{-\infty}^{+\infty} |v|^{n-1} \frac{e^{-\frac{c_4 v^2}{4}}}{\sqrt{2\pi \times \frac{2}{c_4}}} dv$$
$$= c_3 n \left(\frac{2}{\sqrt{c_4}}\right)^n \Gamma\left(\frac{n}{2}\right)$$

where we used that if Z is Gaussian random variable with mean 0 and variance $2/c_4$ then

$$\mathbb{E}\left(|Z|^{n-1}\right) = \left(\frac{2}{c_4}\right)^{\frac{n-1}{2}} \frac{2^{\frac{n-1}{2}}\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi}}$$

where Γ is the Gamma function. Hence we get from (7)

$$\mathbb{E}\left(e^{\lambda(X-Y)}\right) \leq 1 + c_3 \sum_{k=1}^{\infty} \left(\frac{2\lambda}{\sqrt{c_4}}\right)^{2k} \frac{\Gamma(k)}{\Gamma(2k)}$$
$$\leq 1 + c_3 \sum_{k=1}^{\infty} \left(\frac{4\lambda^2}{c_4}\right)^k \frac{1}{k!}$$
$$\leq c_3 e^{\frac{4\lambda^2}{c_4}}$$

where in the first inequality we used the identity $\Gamma(2k) = (2k - 1)!$, in the second one once again this identity, and the bound $1/((2k - 1) \cdots k) \le 1/k!$, and in the last one we used that $c_3 \ge 1$. The same argument works for $\mathbb{E}\left[e^{-\lambda(X-\mathbb{E}(X))}\right]$, therefore we obtain from (6)

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le 2 c_3 \inf_{\lambda > 0} e^{\frac{4\lambda^2}{c_4} - \lambda t} = c_1 e^{-c_2 t^2}$$

where $c_1 = 2c_3$ and $c_2 = c_4/16$. (Wainwright asks to show that $c_2 = c_4/4$.)

REMARK 1.1. We didn't use the fact that we started from concentration around a median. If one assumes that (4) holds for some constant a instead of m_X , the proof is exactly the same. On the contrary, when we proved how to go from Gaussian tails around the mean to Gaussian tails around a median, we did use a property of medians.

REMARK 1.2. Using (2), which results from (1), and (3) we get

$$|\mathbb{E}(X) - m_X| \le \sqrt{\frac{c_1}{c_2}} \cdot$$

But we can use directly (1) to deduce that $|\mathbb{E}(X) - m_X| \leq t_0$, where t_0 is such that $c_1 e^{-c_2 t_0^2} = 1/2$, which is $t_0 = \sqrt{\log(2c_1)/c_2}$. Not surprisingly, $t_0 < \sqrt{\frac{c_1}{c_2}}$.

REMARK 1.3. In Proposition 1.8 p. 10 in [2], there is a result saying that if you have Gaussian tails around some real number a_X (which of course can be $\mathbb{E}(X)$) then you have Gaussian tails around any median of X, and vice-versa. It doesn't seem that the method used therein gives precise relations between the involved constants (but this is not the goal). Besides that, he doesn't only deal with Gaussian tails.

2 Exercise 2.2 p. 46 in [1]

The assumption is (4). The question is: Prove that

$$|\mathbb{E}(X) - m_X| \le \min\left(\frac{\sqrt{\pi}c_3}{2\sqrt{c_4}}, \sqrt{\frac{c_3}{c_4}}\right).$$
(8)

(Remember that $c_3 \ge 1$.) As above when we discussed the distance between the mean and the median for a square-integrable random variable (without involving concentration), we start with

$$|m_X - \mathbb{E}(X)| = |\mathbb{E}(m_X - X)| \le \mathbb{E}(|X - m_X|).$$

Then using (4) we have

$$\mathbb{E}(|X - m_X|) = \int_0^\infty \mathbb{P}(|X - m_X| \ge t) \, \mathrm{d}t \le c_3 \int_0^\infty \mathrm{e}^{-c_4 t^2} \, \mathrm{d}t$$
$$= \frac{c_3}{\sqrt{2c_4}} \int_0^\infty \mathrm{e}^{-u^2/2} \, \mathrm{d}u = \frac{c_3}{\sqrt{2c_4}} \frac{\sqrt{2\pi}}{2} \cdot$$

For the other bound, we want to use (3), so we have to prove that $Var(X) \le c_3/c_4$. We have

$$\mathbb{E}(|X - m_X|^2) = \int_0^\infty \mathbb{P}(|X - m_X|^2 \ge t) \, \mathrm{d}t = \int_0^\infty \mathbb{P}(|X - m_X| \ge \sqrt{t}) \, \mathrm{d}t$$
$$\leq \int_0^\infty c_3 \, \mathrm{e}^{-c_4 t} \, \mathrm{d}t = \frac{c_3}{c_4} \cdot$$

This proves that X is square integrable, and we conclude by observing that $\operatorname{Var}(X) = \operatorname{Var}(X - m_X) \leq \mathbb{E}(|X - m_X|^2)$. Hence $|m_X - \mathbb{E}(X)| \leq \sqrt{c_3/c_4}$. Gathering the two bounds we thus proved (8).

3 Gaussian concentration bound and Gaussian tail bound

Usually one proves (1) by proving the following bound that we call the Gaussian concentration bound:

$$\mathbb{E}\left(e^{\lambda(X-\mathbb{E}(X))}\right) \le e^{c\lambda^2}, \ \forall \lambda \in \mathbb{R}$$
(9)

where c > 0 is independent of λ . Let us derive (1) from (9) for completeness. For any $\lambda > 0$ we have by Markov's inequality

$$\mathbb{P}(X - \mathbb{E}(X) \ge t) = \mathbb{P}(\exp(\lambda(X - \mathbb{E}(X)) \ge \exp(\lambda t)) \le e^{-\lambda t} \mathbb{E}(e^{\lambda(X - \mathbb{E}(X))}) \le e^{-\lambda t + c\lambda^2} \quad \text{(by (1))}.$$

Now we can minimize the bound over $\lambda > 0$ and find out

$$\mathbb{P}(X - \mathbb{E}(X) \ge t) \le e^{-\frac{t^2}{4c}}$$

We can repeat these estimates with -X in place of X to find

$$\mathbb{P}(-X - \mathbb{E}(-X) \ge t) \le e^{-\frac{t^2}{4c}}$$

hence by a union bound we finally get

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge t) \le 2 e^{-\frac{t^2}{4c}}, \ \forall t \ge 0.$$

Therefore we obtain (1) with $c_1 = 2$ and $c_2 = 1/(4c)$.

Going from (1) to (9) can be done as in [1, Theorem 2.1 p. 25].

References

- [1] S. Boucheron, G. Lugosi, P. Massart. *Concentration inequalities*. A nonasymptotic theory of independence. Oxford University Press, 2013.
- [2] M. Ledoux. *The concentration of measure phenomenon*. Mathematical Surandom variableeys and Monographs, 89. American Mathematical Society, Providence, RI, 2001.
- [3] R. Vershynin. *High-dimensional probability*. An introduction with applications in data science. Cambridge Series in Statistical and Probabilistic Mathematics, 47. Cambridge University Press, Cambridge, 2018.
- [4] M. Wainwright. *High-dimensional statistics*. A non-asymptotic viewpoint. Cambridge Series in Statistical and Probabilistic Mathematics, 48. Cambridge University Press, Cambridge, 2019.