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Abstract. Software testing plays an important role in building quality software and
improving maintainability. However, there are no research studies to analyze its
impact on energy efficiency. In this paper, we conduct a preliminary study on the
impact of unit tests and code coverage on the energy consumption of software.
Our empirical study analyzes the energy consumption of multiple JSON libraries
and the relation of their energy efficiency to test metrics. Although our study has
limitations in the size of the data set, we found that there are hints for a positive
correlation between line coverage and energy consumption.
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1. Introduction

Software energy consumption is a major concern for software developers, practition-
ers [8] and architects [2]. An important issue is the lack of tools to monitor software
energy, and limited knowledge in understanding the factors impacting the energy con-
sumption of software [10]. In particular, the authors of [10] note the lack of knowledge on
how to write, maintain, and evolve energy-efficient software. The authors also discussed
the state of the art of energy-aware software testing, and found that few studies propose
energy-aware software testing techniques. These techniques offer new approaches to re-
duce the energy consumption of test suites [7], including in Android [6], or detecting
energy bugs through software tests [1].

Current approaches allow software developers to monitor the energy consumption
of their devices’ architectures [3], their applications [4], and within the source code [9],
thus allowing to detect energy hotspots. With such tools and in-depth software energy
knowledge, developers can detect and improve their software. However, the technical
and psychological scalability of these approaches (such as resistance from developers
to adopt new energy-aware coding behaviors, and the pressure of project deadlines and
release) limits their effectiveness, as developers report a lack of proper tools and knowl-
edge as shown in [10]. We argue that leveraging existing, more accepted, and adopted ap-
proaches in software development, to guide developers in writing energy-aware software
is needed. In particular, we argue for leveraging software testing for energy efficiency.

1C0rresponding Author: Adel Noureddine, Universite de Pau et des Pays de 1’ Adour, E2S UPPA, LIUPPA,
Anglet, France; E-mail: adel.noureddine @univ-pau.fr
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Therefore, guiding software developers in writing better quality code, through software
testing, might help in achieving energy optimizations and gains in software with little
additional investment to practitioners and current development practices. The advantages
of software testing are well known in terms of improving software quality and maintain-
ability, and reducing bugs. However, the impact of tests quality on the energy efficiency
of software is not well understood or studied. In this experiment, we analyze if software
written with unit tests and having good code coverage (along with other test metrics) is
more energy-efficient than software with no unit tests or low code coverage.

In this paper, we focus on the energy consumption of applications from the same
domain, all capable of doing a same functionality: parsing JSON files. We measure the
energy consumption and capture test metrics from 14 Java JSON libraries studied by [5],
giving as input a set of well-formed JSON files. We execute the file parsing functionality
from all of them given as input the same data set of well-formed JSON files collected
by [5]. This allows us to fairly compare the measurement of the energy consumption
for executing that functionality. We focus on JSON libraries because JSON is one of the
most used data representation format. For instance, GSON, one of the 1ib analyzed, is
used by more than 331K projects hosted on Github. In the context of Android, energy
consumption of applications is an important problem (as mobile users care about energy
consumption and the battery life of their devices). Many applications use JSON format
for storage of data, and can also receive the result on API call in that format.

Our initial results show that applications having a good test suite, expressed in popu-
lar metrics such as coverage, does not equate in having optimal power consumption. The
remainder of the paper is as follows: we detail our empirical methodology in Section 2,
then outline our experimental results in Section 3. We analyze and discuss our findings
in Section 4. We present the limitations and threats to validity in Section 5. Finally, we
conclude in Section 6.

2. Hypothesis and Methodology

In this section, we detail our research questions and our experimental setup and empirical
methodology for software energy measurements and software testing.

2.1. Research Questions

The research question that guides our research is: Is there a correlation between energy
consumption of an application and the quality of its test suite?
To answer the research question, we set the following hypothesis:

e Null hypothesis HO: there is no correlation between a metric that represents test
quality and energy consumption of the application of the test.

* Alternative hypothesis H1: there is a correlation between a metric that represents
test quality and energy consumption.

2.2. Measuring the Energy Consumption of Applications

To address our research question, we first measure the energy consumption of executing
an application, and then collect the metrics related to the test cases. Finally, we correlate
energy consumption and those metrics.
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2.2.1. Requirements on the evaluation dataset

We study applications that implement a particular functionality F'. This allows us to fairly
compare the energy across different implementations of F', and to remove the potential
threats of comparing two different functionalities and/or applications with different en-
ergy requirements. Note that we measure energy consumption of each implementation
of F using the same input values /.

2.2.2. Measuring Energy Consumption

We call test workload to the execution of F from an application A given I as input. We
measure the energy consumption of the workloads using the power tool called Power-
Joular 2, which uses Linux kernel’s Intel RAPL through the powercap interface 3. In or-
der to minimize the impact of any noise during the measurement of energy of F', (caused
by e.g., system states or background services), we run each test workload in a loop for
200 times and measure its energy consumption. We report the energy consumption per
loop by dividing the total energy by the number of loops.

2.2.3. Collecting Test metrics

We use SonarQube* and JaCoCo’ to collect test and coverage metrics for the applica-
tions under evaluation. We collected the following metrics: branch coverage, SonarQube
coverage6, line coverage, lines to cover, uncovered conditions, uncovered lines, and the
number of tests.

2.2.4. Computing Correlation

We correlate the energy results with the test metrics using the Pearson correlation
method. We also compute the p-value, which allows us to reject or accept our Null hy-
pothesis.

2.2.5. Experiment Infrastructure

We run our experiments on a Dell Precision 5520 laptop with an Intel Core i7-7820HQ
processor, running Fedora 34 with Linux kernel 5.11. We compile and run the Java li-
braries using openJDK 11.

2.3. Evaluation Dataset

In this paper, we focus on a single functionality F: parsing a JSON file for disk for
creating a representation of it in RAM. We focus on applications written in Java as it is
one of the most used languages in open-source development .

For our experiments, we use a set of 14 Java JSON libraries that implement this
functionality. Those libraries, listed in Table 1, were previously studied by [5]. That work

Zhttps://gitlab.com/joular/powerjoular

3https://www.kernel.org/doc/html/latest/power/powercap/powercap.html

4SonarQube: https://www.sonarqube . org/

3JaCoCo: https://www.eclemma.org/jacoco/

The SonarQube coverage is a mix of Line coverage and Condition coverage: https: //docs . sonarqube .
org/latest/user-guide/metric-definitions/.

7Stats of popularity of programming languages: https://githut.info/
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considers 20 libraries, however, we could not analyze 6 of them for different reasons,
including: a) Unavailable source code, which is required by our experiment to compute
the metrics from the tests ( [S] only uses their binary JARs). ») Build failing due to
unavailable dependencies. ¢) Failure on the computation of test metrics using JaCoCo
tool.

As input data I, we use the publicly available dataset of JSON files provided by [5],
conformed by 152 well-formed JSON files. Given this data, our experiment measures the
energy that each JSON library requires to parse all those JSON files. This allows us to
fairly compare the energy consumption of the 14 libraries by doing a single functionality
(JSON file parsing) on the same input data (152 files).

3. Experimental Results

In this section, we present the results of our experimental study and the correlation anal-
ysis between energy consumption and testing metrics.

3.1. Energy Consumption

Table 1 outlines the energy consumption of each JSON library, along with the execution
time, and the average power consumption of the CPU.

Table 1. Energy consumption for each JSON library workload

Library Avg Power (Watts)  Energy (Joules) Time (sec) Standard deviation
for Power
json-lib 46.87 225.43 4.81 5.29
s0jo 51.76 76.34 1.475 8.87
flex-json 55.58 37.24 0.67 5.01
corn 53.02 36.32 0.685 4.66
mjson 52.64 26.32 0.5 8.54
jsonij 54.05 25.4 0.47 5.66
jsonutils 38.79 23.27 0.6 4.02
genson 54.88 17.29 0.315 5.39
fastjson 52.11 16.94 0.325 8.48
json-simple 34.79 14.44 0.415 4.17
json 34.08 13.8 0.405 6.41
gson 30.54 10.38 0.34 3.78
jackson-databind 29.35 10.13 0.345 3.72
cookjson 25.77 7.73 0.3 1.71

Our first observation is that energy consumption does not follow execution time.
For instance, genson library consumed 17.29 joules on average per workload execution
and took 315 milliseconds. In comparison, JSON library took more time (405 ms) and
consumed 13.8 joules for processing the same JSON files. Observing the average power
consumption during the experiment for each library sheds a light over their CPU usage
and power consumption, as the average power can vary from 25.77 watts to 55.58 watts,
a 30 watts difference on a laptop computer. Overall, the energy consumption of the mea-
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Table 2. Metrics extracted from test cases and the energy consumption from each application.

Library Branch coverage Coverage Line coverage Uncovered lines
json-simple 50.5 55.7 58 336
mjson 61.9 67.2 71 314
corn 52.1 60.3 64.7 556
flex-json 69.7 72.6 74 445
80jo 95.5 96.7 97.2 82
jsonutils 61.5 67.6 71 879
json-lib 71.3 74.1 75.8 1181
genson 67.3 73.2 76.3 1234
jsonij 55.4 40.4 359 4090
cookjson 87.2 55.5 47.8 3406
json 84.4 34.7 252 6356
gson 79.1 349 273 10257
fastjson 78.4 83.9 87.6 3469
jackson-databind 70.3 75.4 78.2 7108

sured 14 libraries shows a big difference with energy varying from just 7.72 joules for
cookJSON to 225.43 joules for JSON-lib, more than 2820% increase.

3.2. Test Metrics

Table 2 shows the metrics extracted from the test suites of our JSON libraries. Branch
and line coverage varies greatly from as low as 50.5% and 25,2%, respectively, to as
much as 95,5% and 97.2% respectively. However, the relation with energy consumption
is not straightforward as the highest 2 libraries in branch coverage have the lowest and
the 2nd highest energy consumption. Lines covered and uncovered also range from a few
hundreds to around 28 thousand lines, and the number of tests varies from 3 tests to just
below 5000 tests.

In the next section, we further analyze the results, and study and discuss the corre-
lation of the test metrics with energy consumption.

4. Analysis and Discussions

We first plot the distribution of values of each test metric in Figure 1. We observe that a
few libraries have a higher variation of values and are beyond the average range of other
libraries. Instead of removing those outliers (as our dataset is limited in this preliminary
study), we decide to analyze our data using logarithmic values. This logarithmic trans-
formation allows to decrease the difference between the different values and limiting the
impact of outliers while still maintaining the order of values, and it often produces a
normal distribution of the studied metrics.

Using the logarithmic approach, we calculate, in Table 3, the Pearson’s correlation
coefficient between different metrics extracted from the test execution (e.g., coverage)
and the average power consumed by parsing functionality. We apply a logarithmic trans-
formation to the metrics’ value for two reasons: 1) it often produces a normal distribu-
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Figure 1. Distribution of values for each metric

Table 3. Pearson’s correlation coefficient between test metrics and average power consumption, using Pearson
algorithm on logarithmic values. Last column shows the p-values.

Metrics from tests Correlation coefficient ~ P-value
Branch coverage -0.27 0.342
SonaQube Coverage 0.42 0.133
Line coverage 0.46 0.095
Lines to cover -0.36 0.211
Uncovered conditions -0.018 0.95
Uncovered lines -0.53 0.049
Number of tests -0.044 0.881

tion, and 2) it allows us to decrease the difference between the values, limiting the impact
of outliers, and, consequently, avoiding the need of removing them.

We observe that two test metrics exhibit a moderate correlation value with an accept-
able P-value: line coverage with 0.46 correlation and a P-value of 0.095 (above the 0.05
range, but within the 0.1 range); and uncovered lines which has a negative correlation at
-0.53 and a good P-value at 0.049 (below the 0.5 significance range).

Figure 2 shows the correlation with Line coverage where we note that, if we exclude
the 3 out-of-range values, we might have better correlations. We also found the same
trend for the correlation of Uncovered line, which has 2 out-of-range values. A detailed
plot of both correlations (in Figure 2 and 3), shows that we might have better correlations
if not for 2 or 3 out-of-range values.

We finally plot a principal component analysis (PCA) graph in Figure 4, which al-
lows us to synthesize and understand the importance of each metric and to explain the
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Figure 2. Line coverage correlation plot with average power consumption. The straight line is the least squares
fitting, while the dashed line is the smoothing model on our datset.
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Figure 3. Uncovered lines

variability of the libraries. Each arrow represents a metric variable: if the arrows are close
to each other, then we conclude that a strong correlation exists, while opposite arrows
means a negative correlation, and orthogonal means no correlations. We observe that the
average power is drawn closer to line coverage, i.e., a possible correlation exists, while
the average power is in near-perfect opposite of uncovered lines, i.e., a possible strong
negative correlation exists.

Our statistical analysis, although on a small dataset, sheds the light on potential pos-
itive correlation between line coverage and power consumption, and potential negative
correlation between uncovered lines and power consumption. That is, the higher lines we
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cover in our test, the higher the average power consumption of the program might be. In
contrast, the higher the uncovered lines are, the lower the average power consumption.

Now, we proceed to accept or reject our hypothesis (see Section 2.1) using the p-
values from Table 3. Considering a significance level o = 0.05, all the p-values related
to test metrics are greater than o, which means that we are not able to reject the Null
hypothesis. On the contrary, the p-values from the correlation between the metric Un-
covered lines is smaller than o = 0.05, which means we can reject the Null hypothesis
for that metric.

PCA Graph of Variables

Dim 2 (33.00%)

log_.Average.Powe

0.0

log_Uncovered.lines®

-05

Dim 1 (47.09%)

Figure 4. Principal component analysis (PCA) of our dataset, using logarithmic values

Response to the RQ: Is there a correlation between energy consumption of an
application and the quality of its test suite?

Our experiment shows that there is a moderate positive correlation between Line cov-
erage and power consumption of the parsing functionality of JSON libraries. However,
we do not have enough evidence at the level o = 0.05 to conclude that there is a lin-
ear relationship in the population of Java JSON libraries between coverage and power
consumption.

The main takeaway of this research is that applications having a good test suite, ex-
pressed in popular metrics such as coverage, do not necessarily exhibit optimal power
consumption. Test metrics give users confidence about the software of the application.
However, energy consumption metrics are still hidden for most developers and con-
sumers of open-source software, such as the JSON libraries evaluated in this experiment.
This means that an application could be, for instance, well tested in terms of having high
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coverage but, at the same time, it could not be efficient in terms of energy consumption.
The results of this experiment do call to expose non-functional factors such as energy
consumption in open-source software.

5. Limitations and Threats to Validity

As our paper presents a preliminary study, our experiment and analysis exhibit a few
limitations and threats to its validity:

* All our analyzed libraries are part of a single application domain: JSON processing
libraries. This task involves the CPU and memory access and is not representative
of the entire scope of desktop and server applications.

Our study is limited by the number of studied libraries (14 JSON libraries using
152 files, collected by [5]), and therefore a limited number of data points to per-
form statistical analysis and correlations. We also focus on a single functional-
ity (parse JSON files) from 14 libraries. However, the energy consumption from
other functionalities also from those libraries (e.g., store a JSON file on disk) could
follow other trends than those we present.

* We execute all our experiments in the same environment (a GNU/Linux laptop).
Even though we limited the impact of system background services, our experiment
was not conducted in a complete and fully controlled isolated environment. For
instance, we did not factor variation of room temperature or CPU heating. To min-
imize that risk, we execute the experiment for each library 200 times, and report
in this paper the average energy consumption.

6. Conclusion

In this paper, we performed a preliminary study of the impact of code coverage and test
metrics on software energy. We compared the energy impact of the same workload on 14
Java JSON libraries, and analyzed the statistical correlation with testing metrics. Our ini-
tial results show that a positive correlation between line coverage and power consumption
exists, and a negative one between uncovered lines and power consumption. However,
the limitations of our study do not allow us to provide a definitive conclusion. In future
work, we aim to further expand the application domains and the tested software in order
to collect additional data to confirm or dispute our hypothesis and research questions.

References

[1] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik Roychoudhury. Detecting energy
bugs and hotspots in mobile apps. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 588-598, 2014.

[2] Rabih Bashroush, Eoin Woods, and Adel Noureddine. Data Center Energy Demand: What Got Us Here
Won’t Get Us There. {IEEE} Software, 33(2):18-21, 2016.

[3] Maxime Colmant, Romain Rouvoy, Mascha Kurpicz, Anita Sobe, Pascal Felber, and Lionel Seinturier.
The next 700 cpu power models. Journal of Systems and Software, 144:382-396, 2018.



June 2022

(4]

[3]

(6]

(71

(8]

[9]

[10]

Dario Di Nucci, Fabio Palomba, Antonio Prota, Annibale Panichella, Andy Zaidman, and Andrea De Lu-
cia. Software-based energy profiling of android apps: Simple, efficient and reliable? In 2017 IEEE 24th
international conference on software analysis, evolution and reengineering (SANER), pages 103—114.
IEEE, 2017.

Nicolas Harrand, Thomas Durieux, David Broman, and B. Baudry. The behavioral diversity of java json
libraries. ArXiv, abs/2104.14323, 2021.

Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek. Energy-aware test-suite mini-
mization for android apps. In Proceedings of the 25th International Symposium on Software Testing and
Analysis, pages 425436, 2016.

Ding Li, Yuchen Jin, Cagri Sahin, James Clause, and William GJ Halfond. Integrated energy-directed
test suite optimization. In Proceedings of the 2014 International Symposium on Software Testing and
Analysis, pages 339-350, 2014.

Irene Manotas, Christian Bird, Rui Zhang, David Shepherd, Ciera Jaspan, Caitlin Sadowski, Lori Pol-
lock, and James Clause. An empirical study of practitioners’ perspectives on green software engineer-
ing. In Proceedings of the 38th International Conference on Software Engineering, ICSE ’16, page
237-248, New York, NY, USA, 2016. Association for Computing Machinery.

Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Monitoring energy hotspots in software.
Automated Software Engineering, 22(3):291-332, 2015.

Gustavo Pinto and Fernando Castor. Energy efficiency: A new concern for application software devel-
opers. Commun. ACM, 60(12):68-75, November 2017.



