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Abstract 

 The extraction of cooccurrences between two events, A and B, is a central 

learning mechanism shared by all species capable of associative learning. Formally, 

the cooccurrence of events A and B appearing in a sequence is measured by the 

transitional probability (TP) between these events, and it corresponds to the probability 

of the second stimulus given the first (i.e., p(B|A)). In the present study, nonhuman 

primates (Guinea baboons, Papio papio) were exposed to a serial version of the XOR 

(i.e., exclusive-OR), in which they had to process sequences of three stimuli: A, B, and 

C. In this manipulation, first-order TPs (i.e., AB and BC) were uninformative due to 

their transitional probabilities being equal to .5 (i.e., p(B|A) = p(C|B) = .5), while second-

order TPs were fully predictive of the upcoming stimulus (i.e., p(C|AB) = 1). In 

Experiment 1, we found that baboons were able to learn second-order TPs, while no 

learning occurred on first-order TPs. In Experiment 2, this pattern of results was 

replicated, and a final test ruled out an alternative interpretation in terms of proximity 

to the reward. These results indicate that a non-human primate species can learn a 

nonlinearly separable problem such as the XOR. They also provide fine-grained 

empirical data to test models of statistical learning on the interaction between the 

learning of different orders of TPs. Recent bioinspired models of associative learning 

are also introduced as promising alternatives to the modeling of statistical learning 

mechanisms.  

 

Keywords: Associative learning, predictive coding, transitional probabilities, XOR 
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Introduction 

  The prediction of future stimuli requires the learning of statistical relations 

between stimuli in sequences (Erickson & Desimone, 1999; Rey et al., 2019). The 

prediction of a stimulus B based on a preceding stimulus A requires knowledge of the 

transitional probability (TP) of the second given the first (p(B|A)), which can be learned 

as an associative strength between the two stimuli. Such paired learning is thought to 

occur at the synaptic level by standard Hebbian learning mechanisms between two 

populations of neurons, with each coding for one stimulus (Mongillo et al., 2003).  

  The prediction of a stimulus can also depend on several preceding stimuli in a 

temporal sequence and on higher-order TPs (Gureckis & Love, 2010). Higher-order 

TPs are characterized by one stimulus depending on more than one previous element 

in a context. The order of a relationship is defined as the number of previous elements 

upon which the prediction depends. For instance, a pattern of input stimuli such as A 

⇒ B is a first-order statistical relationship, while AB ⇒ C is a second-order relationship 

(here, A, B and C are considered events or stimuli). Although many studies have 

focused on first-order TPs, notably in the field of implicit statistical learning 

(Christiansen, 2019), less is known about higher-order TPs and the related brain 

mechanisms supporting such fundamental predictive abilities.  

  A paradigmatic case regarding the relation between first- and second-order TPs 

is the serial version of the exclusive disjunction (also called, exclusive-OR, or more 

commonly XOR; see Elman, 1990; Minsky & Papert, 1969). In this specific case 

involving a sequence of three stimuli, A, B, and C, first-order TPs do not predict the 

occurrence of the next item given the previous item (i.e., p(B|A) = p(C|B) = .5), while 

second-order TPs are deterministic (i.e., p(C|AB) = 1) and fully predict the occurrence 
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of the third stimulus given the previous two stimuli. To more concretely illustrate the 

serial XOR, suppose six distinct stimuli (A, B, C, D, E, and F) are displayed throughout 

four sequences composed of specific serial combinations of these stimuli: ABC, ADE, 

FBE, and FDC. In this example, the TP between the first stimulus (i.e., A or F) and the 

second stimulus (i.e., B or D) is equal to .5 (indeed, A is either followed by B in the first 

sequence ABC or by D in the second sequence ADE). Similarly, the TP between the 

second stimulus (i.e., B or D) and the third stimulus (i.e., E or C) is also equal to .5. In 

a serial version of the XOR, each combination of the first and second stimuli (i.e., AB, 

AD, FB, and FD) fully predicts the occurrence of the next stimulus (i.e., C, E, E, and C, 

respectively), with probabilities of p(C|AB)=1, p(E|AD)=1, p(E|FB)=1, and p(E|FD)=1. 

An interesting component of the XOR as a nonlinear separable case is that it proves 

to be challenging for learning because the second-order TP (e.g., p(C|AB)) cannot be 

computed from the first-order probabilities (i.e., p(B|A) and p(C|B)) and, thus, can be 

learned only by taking into account the combination of the first two stimuli (i.e., AB).   

 A recent study (Minier et al., 2016) reported that nonhuman primates (Guinea 

baboons, Papio papio) can use conjointly first- and second-order TPs in a serial 

response-time task (Nissen & Bullemer, 1987). Over repeated exposures to ABC 

sequences, it was found that response times for C decreased faster than those for B, 

indicating that C benefited from the richer context of both A and B (and therefore, from 

both first- and second-order TPs). In this previous study, however, contrary to the logic 

of the XOR, both first-order TPs (i.e., p(B|A) and p(C|B)) and the second-order TP (i.e., 

p(C|AB)) were equal to 1. In that case, C can be predicted on the sole basis of first-

order TPs, such as p(C|A) or p(C|B), leaving the question of whether C was predicted 

based on the combination of A and B unanswered.   
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 In the present study, we tested whether nonhuman primates can extract 

second-order TPs on the basis of a combination of two preceding stimuli when first-

order TPs are noninformative. Using the serial response-time task from Minier et al. 

(2016), baboons were trained to touch a red circle that would appear at nine possible 

locations on a touch screen (see Figure 1A). Each trial was composed of three 

presentations of the red circle and three touch responses by the baboons. A food 

reward was provided at the end of each completed trial.  

 Studying predictive (or regularity extraction) abilities in humans often raises the 

question of implicit versus explicit learning (e.g., Cleeremans, Destrebecqz, & Boyer, 

1998; Dienes & Perner, 1999). Disentangling these two sources of learning is indeed 

problematic in humans because of our verbal recoding and reasoning skills, allowing 

us to recode regularities into explicit rules or hypotheses about the statistical structure 

of the experimental material. One way to get around this bias is to test species that do 

not have linguistic recoding skills, such as the group of Guinea baboons (Papio papio) 

which is participating in the present experiments. We can be confident in this case that 

participants will not use language recoding skills to explicitly code the regularities and 

that their performance will mainly reflect the properties and the dynamics of their 

implicit and associative learning processes. 

Testing baboons with a serial response time task also provides an online measure 

of the extraction dynamics of statistical regularities. Used conjointly with offline 

measures (Batterink, Reber, Neville, & Paller, 2015), online measures can strongly 

constrain the elaboration of current computational models of statistical learning (e.g., 

Elman, 1990; Endress & Johnson, 2021; Frank, Goldwater, Griffiths, & 

Tenenbaum, 2010; French et al., 2011; Giroux & Rey, 2009; Perruchet & Vinter, 1998; 
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Pothos, 2007; Tovar, Westermann, & Torres, 2018). They indeed provide a more direct 

measure of the dynamics of implicit statistical learning processes. More specifically, by 

monitoring the online ability of a non-human primate species to learn second-order 

TPs when first-order TPs are not predictive, the present experiment will inform us about 

the ability of this non-human species to learn a nonlinearly separable situation such as 

the XOR problem. It should also help the first generation of statistical learning models 

(e.g., Elman, 1990; Perruchet & Vinter, 1998) and the new generation of connectionist 

models (e.g., Endress & Johnson, 2021; Tovar et al., 2018) to take a step towards 

more precise predictions on the interaction between the learning of different orders of 

TPs. 

Experiment 1 

 In Experiment 1, the serial XOR was implemented by randomly presenting to 

each baboon one triplet of positions out of four possible triplets. For example, one set 

of four triplets could be: 1-2-4, 7-2-9, 1-8-9 and 7-8-4 (see Figure 1B). In this case, the 

first possible positions (1 and 7) can be followed by two possible second positions (2 

and 8). Similarly, second positions (2 and 8) can be followed by two possible third 

positions (4 and 9). Therefore, first-order TPs (i.e., between Positions 1 and 2, or 

between Positions 2 and 3) are equal to .5. However, the third stimulus is fully 

predictable based on the combination of the first and second stimuli (i.e., second-order 

TPs = 1). To test whether monkeys were able learn second-order TPs, we compared 

the evolution of the first transition time (i.e., TT1, from the first to the second position) 

to the second transition time (i.e., TT2, from the second to the third position). 

Theoretically, no learning can occur on TT1 (i.e., we predict no decrease in response 

time over time) given that the second position cannot be predicted from the first. 
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Conversely, if monkeys can extract the second-order TP, then we should observe a 

progressive decrease in response time on TT2.  

< insert Figure 1 here > 

Method 

Participants 

 Fourteen adult females and six males (age range 2.4-20.7 years) participated 

in Experiments 1. The monkeys were members of a social group of 25 individuals living 

in a 700-m2 outdoor enclosure containing climbing structures connected to two indoor 

experimental areas containing the test equipment (see below). Water was provided ad 

libitum during the test, and the monkeys received their normal food ration of fruits every 

day at 5 PM.  

Apparatus 

 This experiment was conducted using a computer-learning device based on the 

voluntary participation of baboons (Fagot & Bonté, 2010). The baboons were implanted 

with RFID microchips and had free access to 10 automatic operant conditioning 

learning devices. Whenever a monkey entered a test chamber, it was identified by its 

microchip, and the system was prompted to resume the trial list at the place at which 

the subject left it at its previous visit. The experiment was controlled by a software 

testing program written by JF using E-prime (Version 2.0 professional, Psychology 

Software Tools, Pittsburgh, PA, USA). 

Procedure 

 The general procedure was identical to that used by Minier et al. (2016). The 

screen was divided into nine equidistant positions represented by white crosses on a 

black background. A trial began with the presentation of a yellow fixation cross at the 



HIGHER-ORDER TPS 
 

8 
 

bottom of the screen. After the baboon touched it, the fixation cross disappeared, and 

the nine crosses were displayed, with one of them being replaced by the target, 

namely, a red circle. When the first target circle was touched, it disappeared and was 

immediately replaced by the cross. The next position in the sequence was then 

replaced by the second red target circle until the end of the sequence was reached. A 

reward (a drop of dry wheat) was provided at the end of a sequence of three touch 

responses. To learn the task, the baboons initially received 1-item trials that were 

rewarded after one touch, after which the number of touches in a trial was progressively 

increased to three. If the baboon touched an inappropriate location (incorrect trial) or 

failed to touch the screen within 5 seconds after the red circle appeared (aborted trial), 

a green screen was displayed for 3 seconds as a marker of failure. Aborted trials were 

not counted as trials and were therefore presented again, while incorrect trials were 

not. The elapsed time between the appearance of the red circle and the amount of time 

before the baboon responded by touching the circle was recorded as the transition 

time between the first and second positions of the circles (i.e., TT1) and between the 

second and third positions of the circles in the sequence (i.e., TT2).  

 To control and match the motor difficulty of TT1 and TT2, each baboon was first 

tested on 1000 random triplets. On the basis of these random trials, a baseline 

measure for all possible transitions from one position to another was computed by 

calculating the mean TT for each transition (e.g., from Position 1 to 9) and for each 

monkey, yielding a 9 × 9 matrix of mean TT (calculated over the entire group of 

monkeys, see Appendix 1). 

 After these random trials, each monkey was exposed to 4000 trials, each 

involving one of the four possible regular sequences. These four 3-item regular 
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sequences were carefully constructed so that the mean TTs of their first and second 

transitions would not be statistically different compared with the baseline 

measurements obtained for these transitions during the random trials. Because we 

were interested in the evolution of TTs for the first and second transitions in the triplets 

within the regular sequences, a computer program was developed to find the smallest 

TT differences between these transitions within the random trials. Following these 

constraints, each monkey received a different set of four sequences (see Appendix 2).  

Results 

 We analyzed the evolution of TT1 and TT2 by dividing the 4000 trials into 10 

successive blocks of 400 trials (one trial being composed of three screen touches). 

Trials for which one of the three responses was incorrect were discarded. Inspection 

of the response times distribution revealed that a majority of responses were produced 

around 500ms. A smaller group of RTs appeared around 1,000 ms and was likely due 

to situations in which baboon’s response was not recorded by the computer, because 

their hands were dirty. In this situation, they had to touch the screen again, and longer 

RTs were recorded (that are on average twice as long compared to the first responses). 

This is why we have adopted the following two-steps trimming procedure. We first 

excluded RTs higher than 800 ms. Second, a recursive trimming procedure excluded 

response times greater than 2.5 SDs in either direction of the participant’s mean for 

each of the three possible positions in a trial. Mean TTs for TT1 and TT2 were then 

computed per block and per monkey, and the results are reported in Figure 2.  

< insert Figure 2 here > 

 The RT analysis for Experiment 1 (see Table 1) revealed no main effect of Block 

(ß = -0.56, t = -1.07, 95% CI [-1.6, .49]), a main effect of Transition, with TT2 being 
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faster than TT1 (ß = -6.27, t = -10.7, 95% CI [-7.4, -5.11]), and an interaction effect 

between Block and Transition (ß = -1.59, t = -16.8, 95% CI [-1.77, -1.4]) revealing that 

the difference between TT1 and TT2 increased across Blocks. We used R (R Core 

Team, 2012) and lme4 (Bates et al., 2012) to perform a linear mixed effects analysis 

of the relationship between Block and Transition. As fixed effects, we entered the 

interaction between Block and Transition into the model. As random effects, we 

modeled the by-subject random slopes for the effect of Block. Visual inspection of 

residual plots did not reveal any obvious deviations from homoscedasticity or 

normality. 

< insert Table 1 here > 

Discussion 

 In Experiment 1, baboons could not predict the second position on the basis of 

the first because the transitional probability of the first transition was equal to .5. 

Although the third position could not be predicted on the basis of the second position 

(because the TP was also .5), baboons could improve their performance on the third 

position by taking into account both Position 1 and 2, i.e., by learning the second-order 

TP. Results clearly showed that they indeed managed to produce faster RTs on the 

third position compared to the second, and that this difference increased across blocks.  

 However, one possible limitation of Experiment 1 is the proximity between the 

last element of the sequence (i.e., C in ABC) and the reward provided to the monkey 

at the end of a series of correct touches. The decrease in RTs could indeed be due to 

the monkey accelerating its response to get the reward faster and not to the learning 

of the statistical structure of the triplet. Another possibility is that animals learn to better 

time their responses in the task, improving across trials, and that this timing is 
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facilitated by the two preceding responses more than just one. We tested these 

alternative interpretations in the next experiment.   

Experiment 2 

 Experiment 2 had two objectives. First, to test the robustness of the results 

obtained in Experiment 1, we replicated the same design with a different set of XOR 

sequences for each monkey. Second, to test the alternative interpretations of the 

acceleration of TT2 in terms of proximity to the reward or of a quicker timing of their 

responses, we added a final block of 400 trials in which we switched the final element 

of each sequence. Baboons were then trained during 10 blocks on the four XOR 

sequences (ABC, ADE, FBE, and FDC) and the last element of each sequence was 

switched during the 11th block (i.e., ABE, ADC, FBC, and FDE). The switch did not 

change the value of first-order TPs (i.e., p=.5) but changed the value of second-order 

TPs (i.e., from p=1 to p=0). Because we simply switched the two possible final 

elements of the four initial sequences, if monkeys responded faster to TT2 due to its 

proximity to the reward or to a quicker timing of their response, the switch should not 

produce any difference in RTs. Conversely, if baboons had learned the second-order 

TPs (e.g., p(C/AB) = 1), they should be in trouble with the switch and longer RTs on 

TT2 should be observed in Block 11.  

Method 

Participants 

 Thirteen adult females and four males (age range 2.75-24.8 years) participated 

in Experiments 2. The monkeys were members of the same social group of baboons. 

Apparatus 
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 This experiment was conducted with the same computer-learning device as the 

one used in Experiment 1. 

Procedure 

 The general procedure was identical to the one used in Experiment 1. Each 

monkey was exposed to 4000 trials, each involving one of the four possible regular 

sequences. These four 3-item regular sequences had the same properties as the ones 

used in Experiment 1. Each monkey simply received a different set of four sequences 

(see Appendix 3). In addition, after Block 10, monkeys had to perform a final block of 

400 trials in which the last element of each sequence (e.g., C) was switched with the 

other possible last element (i.e., E).  

Results 

 We analyzed the evolution of TT1 and TT2 as we did in Experiment 1. Mean 

TTs for TT1 and TT2 were then computed per block and per monkey, and the results 

are reported in Figure 3.  

< insert Figure 3 here > 

 The RT analysis for Experiment 2 (see Table 2) revealed a main effect of Block 

(ß = -1.03, t = -2.97, 95% CI [-1.73, -.34]), indicating that RTs decreased from Block 1 

to 10, a main effect of Transition, with TT2 being faster than TT1 (ß = -8.37, t = -11.4, 

95% CI [-9.8, -6.9]), and an interaction effect between Block and Transition (ß = -

1.82, t = -15.4, 95% CI [-2.05, -1.59]), revealing that the difference between TT1 and 

TT2 increased from Blocks 1 to 10. Critically, mean RTs in Block 11 were significantly 

slower than in Block 10 (t(16)= -2.58, p= .02), indicating that the switch in the final 

position of the sequences had an effect on RTs.  

< insert Table 2 here > 
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Discussion 

 Experiment 2 replicated the main results of Experiment 1 and demonstrated that 

baboons are able to learn second-order TPs. Thanks to the switch conducted in Block 

11 on the last element of the sequences, we found that the baboons’ decrease in RTs 

for TT2 was not due to the proximity with the reward or to a quicker timing of their 

response but can be attributed to their learning of the second-order TPs.  

 

General discussion 

 The results of Experiment 1 showed that the difference between TT1 and TT2 

increased from Block 1 to 10, indicating that nonhuman primates were able to learn 

fully predictive second-order TPs (p = 1) when first-order TPs were not fully predictive 

(p = .5), a situation corresponding to a serial version of the XOR. The same pattern of 

results was replicated in Experiment 2 and an additional control allowed us to rule out 

an alternative interpretation in terms of proximity with the reward or to a quicker timing 

of their response. These findings suggest that monkeys were capable of learning 

second-order TPs by taking into account a combination of the first and second stimuli 

to predict the third. More crucially, they show that a nonhuman primate species can 

learn a nonlinearly separable situation such as the XOR problem.  

 These data are consistent with previous findings obtained on humans 

suggesting that statistical learning processes can operate beyond first-order 

transitional probabilities (Perruchet & Poulin-Charronnat, 2012). Indeed, as mentioned 

by Perruchet and Poulin-Charronnat (2012, p. 808), statistical learning is often 

conceptually reduced to cases where first-order transitional probabilities seem to 

prevail (Aslin et al., 1998). While the present findings do not underestimate the 
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prominence of first-order TPs for statistical learning, they clearly indicate that learning 

can occur at higher orders and independently of first-order TPs.  

 Accounting for the learnability of first-order and higher-order TPs is certainly an 

important challenge for models of statistical learning. Let us considerer, for example, 

two of the most influential models in this field, the Parser model (Perruchet & Vinter, 

1998) and the Simple Recurrent Network model (hereafter: SRN; Elman, 1990). A 

critical feature of Parser is the assumption that repeated sequential patterns will 

progressively become chunks of information. In the present situation, each of the four 

triplets in the XOR situation may therefore be coded as chunks according to Parser. 

However, if the triplets become chunks, Parser would certainly predict that RTs on the 

third position of a triplet should become faster with practice but also RTs on the second 

position, which does not fit with the present data. On the other side, SRN is typically 

designed for predicting first-order TPs but the presence of context units may also allow 

the model to take into account higher-order TPs. Context units are supposed to receive 

a copy of the activation hidden units had one time-step before. Although one might 

question the plausibility of this computational trick, it certainly implements a general 

feature of the brain that can keep activated just-processed information in order to 

combine it with currently-processed information. This way, the SRN model could 

certainly account for the baboons learning a XOR situation.    

New generations of computational models based on the assumptions that each 

item in a sequence is coded by a specific population of neurons and that learning 

between these populations is following Hebbian learning principles, may provide 

promising and more plausible descriptions of these statistical learning mechanisms 

(e.g., Endress & Johnson, 2021; Tovar et al., 2018). These models may use the 
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present set of results to test if they can predict that second-order TPs can be learnt 

when first-order TPs are unpredictable.   

Similarly, bioinspired models have also addressed the question of associative 

learning of second-order TPs in cortical network models (Bourjailly & Miller, 2011; 

Lavigne et al., 2014; Rigotti et al., 2010). These types of bioinspired models also 

assume that each element of an ABC sequence is coded by a specific population of 

neurons. Learning between these neural populations occurs at the level of mixed-

coding neurons (Bourjaily & Miller, 2010; Rigotti et al., 2010) and dendrites (Lavigne 

et al., 2014). They provide a simple and biologically grounded framework accounting 

for the learning of first- and second-order statistical relationships in terms of synaptic 

learning (see also Lavigne et al., 2016). Learning second-order TPs is possible in an 

initially unstructured network that does not require specific assumptions about the 

coding of stimuli in various prewired hierarchical layers of neurons. Using a 

generalization of the classical Hebbian learning rule, the efficacy of single synapses is 

influenced not only by the two neural populations coding for the two stimuli (as in 

standard Hebbian learning) but also by other neural populations coding for the whole 

sequence of three stimuli (Lavigne et al., 2014).  

 In these models, during the online presentation of stimulus sequences, long-

term potentiation (LTP) and long-term depression (LTD) determine the efficacy values 

between populations of neurons coding for the different stimuli. The synaptic matrix 

generated by learning encodes the probabilistic relations between stimuli (i.e., first-, 

second-, and probably higher-order TPs). After learning, the presentation of a stimulus 

activates the neuronal population coding for that stimulus (i.e., retrospective activity). 

The activated population, in turn, activates associated populations (i.e., prospective 
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activity) according to the learned synaptic matrix. The level of activation of a given 

population can be used as a predictor of the transition time from one stimulus to the 

next. Therefore, the present framework provides theoretical tools for understanding the 

extraction of statistical regularities during the processing of sequences and according 

to the various TPs between groups of stimuli (Baker et al., 2002; Wallis et al., 2001; 

Wallis & Miller, 2003). 

 Compared to connectionist models of statistical learning, such as the SRN 

model (Elman, 1990), this type of generalized Hebbian learning provides a simple 

alternative account of the data without making prior assumptions regarding the 

structure of the network in layers or the coding of stimuli in input/output layers. 

Assumptions regarding the learning mechanisms are also compatible with our current 

neurobiological knowledge of synaptic learning mechanisms (Govindarajan et al., 

2011) and the mixed selectivity of neurons (Rigotti et al., 2013). Finally, it has an 

explicit computational format that allows for precise simulations and predictions. Future 

empirical work using longer repeated sequences (for example, with four successively 

repeated elements, such as ABCD) will be critical for testing if learning can occur 

between more than three populations of activated neurons, revealing a possible 

limitation in the range of neuronal populations that could be associated through 

generalized Hebbian learning mechanisms.  
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Table 1: Mixed model regression results for response times in Experiments 1. 

 

Fixed effects Coefficient SE t 95% CI p 

Intercept 424.9 6.23 68.1 412 437 < 2e-16 
Block (1-10) -0.56 0.52 -1.07 -1.6 0.48 0.299 
Transition (TT1/TT2) -6.27 0.59 -11.9 -7.4 -5.11 < 2e-16 
Block*Transition -1.59 0.09 -16.8 -1.8 -1.4 < 2e-16 
       
Random effects Variance      
Participant intercept 774.7      
Block | participant 5.34      
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Table 2: Mixed model regression results for response times in Experiments 2. 

 

Fixed effects Coefficient SE t 95% CI p 

Intercept 447.8 8.4 53.5 431 464.7 < 2e-16 
Block (1-10) -1.03 0.35 -2.98 -1.73 -.34 .008 
Transition (TT1/TT2) -8.37 .74 -11.4 -9.8 -6.9 < 2e-16 
Block*Transition -1.82 0.12 -15.4 -2.05 -1.59 < 2e-16 
       
Random effects Variance      
Participant intercept 1187.6      
Block | participant 1.92      
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Figure captions 

Figure 1: The serial response-time task and the serial XOR. A: Representation of the 

nine possible positions on the touch screen, Position 6 being replaced by the target 

red circle. B: Representation of four triplets implementing the XOR.  

Figure 2: Mean response times as a function of transition type and block number in 

Experiment 1. Each block corresponds to 400 successive trials (100 for each 

sequence). Error bars represent confidence intervals.  

Figure 3: Mean response times as a function of transition type and block number in 

Experiment 2. Each block corresponds to 400 successive trials (100 for each 

sequence). Error bars represent confidence intervals.  
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Appendix 1 

Mean response times for each of the 72 possible transitions calculated from the 1000 

random trials, over the entire group of baboons. These data were collected just before 

Experiment 1.  

1st Element in 

Transition 

2nd Element in Transition 

1 2 3 4 5 6 7 8 9 

1 - 426 421 438 365 360 447 359 371 

2 506 - 457 411 377 393 391 365 393 

3 502 435 - 443 368 353 439 372 365 

4 486 423 448 - 366 374 434 339 358 

5 485 408 378 444 - 345 449 392 380 

6 477 383 379 426 344 - 448 384 418 

7 472 424 435 423 370 381 - 374 371 

8 445 388 401 396 342 367 443 - 396 

9 487 403 410 425 334 361 437 362 - 
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Appendix 2 

The four XOR triplets used for each monkey in Experiment 1. 

 
Baboon Triplet 

 1 2 3 4 
1 213 718 248 743 
2 218 713 243 748 
3 243 713 218 748 
4 718 213 248 743 
5 218 748 243 713 
6 743 718 248 213 
7 743 718 248 213 
8 568 364 328 524 
9 368 324 528 564 
10 328 364 524 568 
11 368 324 528 564 
12 324 368 564 528 
13 568 328 524 364 
14 564 368 528 324 
15 129 526 186 589 
16 129 589 186 526 
17 186 526 589 129 
18 529 586 189 126 
19 529 586 126 189 
20 189 586 126 529 
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Appendix 3 

The four XOR triplets used for each monkey in Experiment 2. 

 
Baboon Triplet 

 1 2 3 4 
1 748 713 218 243 
2 368 324 564 528 
3 364 524 328 568 
4 564 528 368 324 
5 189 586 126 529 
6 526 186 589 129 
7 589 186 129 526 
8 529 568 328 369 
9 568 529 328 369 
10 962 914 864 812 
11 964 814 912 862 
12 358 394 698 654 
13 354 398 658 694 
14 914 962 864 812 
15 814 862 912 964 
16 914 213 284 983 
17 214 913 984 283 

 
 


