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Abstract

In first-passage percolation, one places nonnegative i.i.d. random variables (T (e)) on the edges of
Z

d. A geodesic is an optimal path for the passage times T (e). Consider a local property of the time
environment. We call it a pattern. We investigate the number of times a geodesic crosses a translate
of this pattern. Under mild conditions, we show that, apart from an event with exponentially small
probability, this number is linear in the distance between the extremities of the geodesic.
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1 Introduction and main result

1.1 Settings

Fix an integer d ≥ 2. In this article, we consider the model of first passage percolation on the hypercubic
lattice Z

d. We denote by 0 the origin of Zd and by E the set of edges in this lattice. The edges in E are
those connecting two vertices x and y such that ‖x−y‖1 = 1. A finite path π = (x0, . . . , xk) is a sequence
of adjacent vertices of Zd, i.e. for all i = 0, . . . , k − 1, ‖xi+1 − xi‖1 = 1. We say that π goes from x0 to
xk. Sometimes we identify a path with the sequence of the edges that it visits, writing π = (e1, ..., ek)
where for i = 1, . . . , k, ei = {xi−1, xi}. We say that k is the length of π and we denote |π| = k.

The basic random object consists of a family T = {T (e) : e ∈ E} of i.i.d. non-negative random
variables defined on a probability space (Ω, F ,P), where T (e) represents the passage time of the edge e.
Their common distribution is denoted by F . The passage time T (π) of a path π = (e1, . . . , ek) is the
sum of the variables T (ei) for i = 1, . . . , k.

For two vertices x and y, we define the geodesic time

t(x, y) = inf{T (π) : π is a path from x to y}. (1.1)

A self-avoiding path γ such that T (γ) = t(x, y) is called a geodesic between x and y.
For the following and for the existence of geodesics, we need some assumptions on F . Let tmin denote

the minimum of the support of F . We recall a definition introduced in [8]. A distribution F with support
in [0, ∞) is called useful if the following holds:

F (tmin) < pc when tmin = 0,

F (tmin) < −→pc when tmin > 0,

where pc denotes the critical probability for the Bernoulli bond percolation model on Z
d and −→pc the

critical probability for the oriented Bernoulli bond percolation.
In the whole article, we assume that F has support in [0, ∞), is useful, and that

Emin
[
T d

1 , . . . , T d
2d

]
< ∞, (1.2)

where T1, . . . , T2d are independent with distribution F .
As F is useful, F (0) < pc. By Proposition 4.4 in [2], we thus know that geodesics between any points

exist with probability one.

1.2 Patterns

For a set B of vertices, we denote by ∂B its boundary, this is the set of vertices which are in B and which
can be linked by an edge to a vertex which is not in B. We say that an edge e = {u, v} is contained in
a set of vertices if u and v are in this set.

Let L1, . . . , Ld be non-negative integers. To avoid trivialities we assume that at least one of them

is positive. We fix Λ =

d∏

i=1

{0, . . . , Li} and two distinct vertices uΛ and vΛ on the boundary of Λ.

These points uΛ and vΛ are called endpoints. Then we fix an event AΛ, with positive probability, only
depending on the passage time of the edges joining two vertices of Λ. We say that P = (Λ, uΛ, vΛ, AΛ)
is a pattern. Let x ∈ Z

d. Define:

• for y ∈ Z
d, θxy = y − x,

• for e = {u, v} an edge connecting two vertices u and v, θxe = {θxu, θxv}.

Similarly, if π = (x0, . . . , xk) is a path, we define θxπ = (θxx0, . . . , θxxk). Then θxT denotes the
environment T translated by −x, i.e. the family of random variables indexed by the edges of Zd defined
for all e ∈ E by

(θxT ) (e) = T (θ−xe) .

Let π be a self-avoiding path and x ∈ Z
d. We say that x satisfies the condition (π;P) if these two

conditions are satisfied:
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Figure 1: Example of a pattern which can not be taken by a geodesic. The passage times of the edges
in red are equal to 4 and those of the edges in green are equal to 1.

1. θxπ visits uΛ and vΛ, and the subpath of θxπ between uΛ and vΛ is entirely contained in Λ,

2. θxT ∈ AΛ.

Note that, if x satisfies the condition (π;P) when π is a geodesic, then (θxπ)uΛ,vΛ is one of the optimal

paths from uΛ to vΛ entirely contained in Λ in the environment θxT . When the pattern is given, we also
say "π takes the pattern in θ−xΛ" for "x satisfies the condition (π;P)". We denote:

NP(π) =
∑

x∈Zd

1{x satisfies the condition (π;P)}. (1.3)

Note that the number of terms in this sum is actually bounded from above by the number of vertices
in π. If NP(π) ≥ 1, we say that π takes the pattern. The aim of the article is to investigate, under
reasonable conditions on P, the behavior of NP(γ) for all geodesics γ from 0 to x with ‖x‖1 large. The
first step is to determine these reasonable conditions, that is why we define the notion of valid patterns.

Definition 1.1. Denote by {ε1, . . . , εd} the vectors of the canonical basis. An external normal unit
vector associated to a vertex z of the boundary of Λ is an element α of the set {±ε1, . . . , ±εd} such that
z + α does not belong to Λ.

Definition 1.2. We say that a pattern is valid if the following two conditions hold:

• AΛ has a positive probability,

• the support of F is unbounded or there exist two distinct external normal unit vectors, one associated
with uΛ and one associated with vΛ.

Remark 1.3. The existence of the two distinct vectors in the second condition of Definition 1.2 is
equivalent to the fact that the endpoints of the pattern belong to two different faces. Note that a real
obstruction can appear when this second condition is not satisfied. For example, take d = 2, F =
1
2 δ1 + 1

2 δ4, Λ = {0, 1} × {0, 1, 2, 3}, uΛ = (0, 2), vΛ = (0, 1), and AΛ the event on which for all edges

e ∈ Λ such that e is adjacent to uΛ or vΛ, T (e) = 4 and for all other edges e of Λ, T (e) = 1. This is
the pattern of Figure 1 and in what follows in this remark, we use the notations of this figure. The only
geodesic from uΛ to vΛ entirely contained in the pattern is (uΛ, vΛ). However, neither (a, uΛ, vΛ), nor
(b, uΛ, vΛ), nor (uΛ, vΛ, e), nor (uΛ, vΛ, d) is a geodesic. Hence, every geodesic taking the pattern would
contain the path (c, uΛ, vΛ, f) but this path is not a geodesic.

1.3 Main result

The main result of this paper is the following.

Theorem 1.4. Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern and assume that F is useful and satisfies
(1.2). Then there exist α > 0, β1 > 0 and β2 > 0 such that for all x ∈ Z

d,

P
(
∃ a geodesic γ from 0 to x such that NP(γ) < α‖x‖1

)
≤ β1e−β2‖x‖1 .
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Showing the existence of a constant c > 0 such that, for all large n,

E[NP(π(n))] ≥ cn (1.4)

where P is a properly designed pattern and where π(n) is the first geodesic from 0 to nε1 (geodesics
are ordered in an arbitrary way), has been a key intermediate result to show several properties in first-
passage percolation. The first result of this kind appears in an article by van den Berg and Kesten [8].
Let us recall their setting. Assume that F is a finite mean distribution on [0, +∞). Denote by µ(F ) the
time constant associated to F , that is

µ(F ) = lim
n→∞

E[t(0, nε1)]

n
.

Let F̃ be another finite mean distribution on [0, +∞). Assume F useful, F 6= F̃ and d ≥ 2. If F̃ is more
variable1 than F , then µ(F̃ ) < µ(F ). This is the main result of [8] and estimate (1.4) is the content of
their Proposition 5.22. The proof relies on a modification argument.

In [7], Nakajima proves a version of (1.4) to show that the number of geodesics between two vertices
has an exponential growth if the distribution has an atom. The result can be deduced from Theorem 1.4
as follows. Denote by κ an atom of the distribution. Consider the pattern P = (Λ, uΛ, vΛ, AΛ) where:

• Λ = {0, 1} × {0, 1} ×
d∏

i=3

{0},

• uΛ = (0, . . . , 0) and vΛ = (1, 1, 0, . . . , 0),

• AΛ the event on which the passage time of every edge of Λ is equal to κ.

The key fact about this pattern is the following: each time a geodesic takes the pattern, the geodesic
can chose any of the two optimal paths between the endpoints.

Then, one of the most recent result of this kind appears in an article by Krishnan, Rassoul-Agha
and Seppäläinen in [5] (see Theorem 5.4 and Theorem 6.2). They use (1.4) for some specific geodesics
in order to get results about the Euclidean length of geodesics and the strict concavity of the expected
passage times as a function of the weight shifts.

We explain in this section the differences between our result and the ones in [5], [7] and [8] but we
give more details about [5] below in Section 1.4 as we wish to strengthen some of their results to illustrate
the use of Theorem 1.4. Theorem 1.4 is stronger on three aspects that are commented below:

1. It deals with general patterns while the results in [5], [7] and [8] are stated for specific patterns.

2. In the case of non-uniqueness of geodesics, it gives the result for all geodesics and not only for a
specific one.

3. It provides an at least linear growth of the number of crossed patterns out of an event of exponentially
small probability.

Since the proof given by van den Berg and Kesten, it has been clear that (1.4) should be true for
any reasonable pattern. As explained above, (1.4) has indeed been proven for several specific patterns
in [5], [7] and [8]. In some part of the proof of (1.4), one needs to design a new environment in which
the geodesics have to cross the pattern. When the support of F is unbounded, the argument is relatively
straightforward. However, when the support of F is bounded, this is more involved. Actually, in [5],
[7] and [8], when the support of F is bounded, each of the proofs is technical and makes use of specific
properties of the considered pattern. The extension to any reasonable pattern, while naturally expected,
actually requires new arguments and is a significant difficulty in the proof of Theorem 1.4. Thanks to
Theorem 1.4, we can for example generalize Theorem 6.2 in [5]. See Theorem 1.8 below. Let us note
however that the strategy developed in the bounded case in Section 4.1 to remove the restriction in
Assumption 6.1 in [5] could be used in the proof of Theorem 6.2 in [5].

1One says that F̃ is more variable than F if there exists two random variables T – with distribution F – and T̃ – with
distribution F̃ – such that E[T̃ |T ] ≤ T . See Definition (2.1) and Theorem 2.6 in [8].

4



In [5], [7] and [8], (1.4) is proven only for a specific geodesic. This has no consequence on the main
results of [7] and [8]. However obtaining a result for all geodesics enables to strengthen one of the main
results of [5] in the bounded case. See Remark 1.10. Dealing with all geodesics is obtained thanks to a
new idea using concentric annuli to define and localize good boxes (see Section 2.1).

The last difference with the results of [5], [7] and [8] is that our result is stronger than a result in
expectation. However, notice that the result in expectation is sufficient for the applications in [7] and
[8]. We refer to Section 1.4 for comments on [5].

A result fulfilling items 2 and 3 above appears in an article by Andjel and Vares [1] for the number
of edges with large time crossed by a geodesic.

Theorem 1.5 (Theorem 2.3 in [1]). Let F be a useful distribution on [0, +∞) with unbounded support.
Then, for each M positive there exists ε = ε(M) > 0 and α = α(M) > 0 so that for all x, we have

P

(
∃ geodesic π from 0 to x such that

∑

e∈π

1T (e)≥M ≤ α‖x‖1

)
≤ e−ε‖x‖1 . (1.5)

Theorem 1.4 is a generalization of this theorem since, to get this result, we can take the pattern
(reduced to one edge) P = ({uΛ, vΛ}, uΛ, vΛ, AΛ) where uΛ = (0, . . . , 0), vΛ = (1, 0, . . . , 0) and AΛ is
the event on which the passage time of the only edge of the pattern is greater than M . The proof of
Theorem 1.4 is partly inspired by the proof of this theorem and by the proof of (1.4) in [8].

Even if it is stated for distributions with unbounded support, one can check that Theorem 2.3 in
[1] holds for F with bounded support with the same proof. As we need this extension in the proof of
Theorem 1.4 we state it below.

Theorem 1.6. Let F be a useful distribution on [0, +∞) with bounded support. Then, for each M
positive such that F ([M, +∞)) > 0, there exists ε = ε(M) > 0 and α = α(M) > 0 so that for all x, we
have (1.5).

1.4 Some applications

Several of the main results recently obtained in [5] are based on modification arguments leading to
results of the type (1.4). We take advantage of Theorem 1.4 to slightly improve some of these results.
The purpose of this section is primarily to illustrate the use of Theorem 1.4, the details of the proofs are
postponed to Section 4.

Euclidean length of geodesics

Consider the following two assumptions on the distribution F :

(H1) There exist strictly positive integers k and ℓ and atoms r′
1, . . . , r′

k+2ℓ, s′
1, . . . , s′

k (not necessarily
distinct) such that

k+2ℓ∑

i=1

r′
i =

k∑

j=1

s′
j. (1.6)

(H2) There exist strictly positive integers k and ℓ and atoms r < s such that (k + 2ℓ)r = ks, or F has
an atom in 0.

Note that (H2) is strictly stronger than (H1). For x ∈ Z
d, we denote by L0,x (resp. L0,x) the minimal

(resp. maximal) Euclidean length of self-avoiding geodesics from 0 to x. In [5], Krishnan, Rassoul-Agha
and Seppäläinen prove the following theorem.

Theorem 1.7 (Theorem 6.2 in [5]). Assume that P(T (e) = tmin) < pc and Emin [T p
1 , . . . , T p

2d] < ∞ with
p > 1. Furthermore, assume one of the following two assumptions:

• the support of F is unbounded and (H1) is satisfied,

• the support of F is bounded and (H2) is satisfied.
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Then, there exist constants 0 < D, δ, M < ∞ such that

P
(
L0,x − L0,x ≥ D‖x‖1

)
≥ δ for ‖x‖1 ≥ M. (1.7)

We use Theorem 1.4 to prove the following result. It generalizes in a way Theorem 1.7 since in the
case of bounded support, we have a less restrictive assumption and since the lower bound in (1.8) is
exponentially close to one in the distance instead of the uniform lower bound in (1.7). However, the
assumption on the moment is less restrictive in Theorem 1.7.

Theorem 1.8. Assume that F is useful and Emin
[
T d

1 , . . . , T d
2d

]
< ∞. Furthermore, assume (H1). Then

there exist constants 0 < β1, β2, D < ∞ such that

P
(
L0,x − L0,x ≥ D‖x‖1

)
≥ 1 − β1e−β2‖x‖1 . (1.8)

The proof of this theorem is the aim of Section 4.1.

Strict concavity of the expected passage times as a function of the weight shifts

For b ∈ R, define the b-shifted weights by

T (b) = {T (b)(e) : e ∈ E} with T (b)(e) = T (e) + b for all e ∈ E .

Following the notations of [5] (see Section 2.2 in [5]), all the quantities associated with the passage times
T (b) acquire the superscript. For example, t(b)(x, y) is the geodesic time between x and y defined at (1.1),
where the infimum is only on self-avoiding paths. Theorem A.1 in [5] gives the existence of a constant
ε0 > 0 with which we have an extension of the Cox-Durett shape theorem for the shifted weights T (−b)

for b < tmin + ε0 (note that here the weights can be negative). Note that (ii) in Theorem A.1 in [5]
guarantees that E[t(−b)(0, x)] is finite if b ∈ (0, tmin + ε0).

Theorem 1.9. Assume F useful. Furthermore, assume that the support of F is bounded and that it
contains at least two strictly positive reals. Then, there exists a finite positive constant M and a function
D(b) > 0 of b > 0 such that the following bounds hold for all b ∈ (0, tmin + ε0) and all ‖x‖1 ≥ M :

E[t(−b)(0, x)] ≤ E[t(0, x)] − bE[L0,x] − D(b)b‖x‖1. (1.9)

Remark 1.10. In Theorem 1.9, we slightly strengthen Theorem 5.4 in [5] in the bounded case. Indeed,
E[L0,x] in [5] is replaced by E[L0,x] in (1.9). This strengthening is made possible by the fact that Theorem
1.4 gives a result for all geodesics and thus, in particular, for the geodesic of maximal Euclidean length.
We focus on the bounded case in Theorem 1.9 since Theorem 5.4 in [5] already contains (1.9) in the
unbounded case.

1.5 Sketch of the proof

In what follows, we give an informal sketch of proof of Theorem 1.4. Fix a pattern P and x ∈ Z
d with

‖x‖ large. Consider the event:

M = {there exists a geodesic from 0 to x which does not take the pattern}.

The aim is to prove that M has a probability small enough in ‖x‖. More precisely, we want to prove

P(M) ≪
1

‖x‖d−1
. (1.10)

From this result, by a standard re-normalization argument, we easily get that, out of a very low
probability event, every geodesic from 0 to x takes a number of patterns linear in ‖x‖ (see Proposition
1.11 in Section 1.6 for a formal statement of (1.10)).
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General idea. The idea is to define a suitable sequence of events M(ℓ) for 0 ≤ ℓ ≤ q such that, for
some positive constant c < 1,

1. q ≥ c‖x‖,

2. M ⊂ M(q) ∪ B where P(B) ≪
1

‖x‖d−1
,

3. for all ℓ ≥ 1,
P(M(ℓ)) ≤ cP(M(ℓ − 1)). (1.11)

If the above holds, we get P(M) ≤ cc‖x‖1 + P(B), which allows us to conclude. The event M(ℓ) is
approximately "there exists a geodesic from 0 to x which does not take the pattern until a distance
of order ℓ", where we have to precise the sense of "distance of order ℓ". The complementary event of
B is approximately "each geodesic crosses enough good boxes" and these good boxes are the boxes in
which the environment and the geodesics behave in a typical way. This enables us to try to modify the
environment to ensure that all geodesics from 0 to x take the pattern inside. We take a good definition
for the event M(ℓ) to have M(ℓ) ⊂ M(ℓ − 1) and thus (1.11) is equivalent to the existence of a constant
η > 0 (by taking η = 1

c
− 1) such that

P(M(ℓ − 1) \ M(ℓ)) ≥ ηP(M(ℓ)). (1.12)

To get (1.12), we would like to make a modification in an environment where M(ℓ) occurs to get a new
environment in which the event M(ℓ − 1) \ M(ℓ) occurs. This requires some stability in the definition
of the events M(· · · ) under the modification. This will be made clearer later.

Associated geodesics. We need the notion of associated paths. For the remaining of the sketch of
the proof, "geodesic" means "geodesic from 0 to x". Let B be a set of vertices (it is intended to be the
"selected box", i.e. the box where me make the modification). Two paths π1 and π2 from 0 to x are
B-associated if there exists a, b ∈ B such that :

1. π1 and π2 visit successively a and b.

2. π1
0,a = π2

0,a and π1
b,x = π2

b,x.

3. π1
a,b and π2

a,b are entirely contained in B.

In particular the two paths coincide outside B. With this definition, we can clearly enumerate the
properties we want after the modification. Imagine we have a geodesic γ "selected" in a certain way and
a "good" box B (where we want to make the modification) such that γ crosses B. The aim is to modify
the environment in B such that:

1. Every geodesic in the new environment takes the pattern in B.

2. Every geodesic in the new environment is B-associated with a geodesic in the original environment.

3. The geodesic γ is B-associated with at least one geodesic in the new environment.

If we identify two geodesics B-associated, the last two properties can be rephrased as follows: we have
not won new geodesics, we have not lost the geodesic γ. It is one of the keys of the stability. Getting
these properties in the unbounded case is elementary but it is a significant difficulty in the bounded case
(see Section 3.4.1 where we give the main ideas of the modification).

Definition of the sequence M(ℓ). We would like to get a result on every geodesic (in the case where
there is no uniqueness, which is a case we do not want to eliminate). A definition of the type:

M(ℓ) ≈ {the first geodesic (in the lexicographical order) does not take the pattern in its first ℓ good boxes}

does not provide a result for all geodesics. However, it is possible to get a result for the first geodesic in
the lexicographical order with this definition.
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If every box crossed were a good box, we could define a sequence of large concentric annuli centered
in the origin and use a definition of the type:

M(ℓ) ≈ {there exists a geodesic which does not take the pattern in the ℓ first annuli}.

Thus, we could choose one of these geodesics (let us denote it by γ) and choose a box crossed by γ in
the ℓ-th annulus (let us denote it by B.) By making a modification giving the three properties stated
above in the paragraph about the associated geodesics in the box B, in the new environment, the event
M(ℓ−1)\M(ℓ) would occur. Indeed, M(ℓ) would not occur since every geodesic in the new environment
would take the pattern in B and thus in the ℓ-th annulus. However, M(ℓ−1) would occur: this crucially
uses the fact that γ is B-associated with a geodesic in the new environment (and the fact that the
environment outside B, and thus outside the ℓ-annulus, is not modified).

We could use the above definition if every geodesic crossed a good box in every annulus. Since it is
not the case, we have to use a definition of the type:

M(ℓ) ≈ {there exists a geodesic γ which does not take the pattern in the union of the first aℓ(γ) annuli}

where aℓ(γ) is the index of the ℓ-th annulus in which γ crosses a good box (see Section 2.1 and Section
3.2).

Modification. Fix a positive integer ℓ. Now, the aim is to define a general plan to prove (1.12). Here
we do not discuss the modification itself (see Section 3.4.1 in the bounded case). Recall that we define
the sequence M(ℓ) to have

M(ℓ) ⊂ M(ℓ − 1). (1.13)

We denote by T the environment (i.e. the family of passage times on the edges) and by T ′ an independent
copy of T . The basic idea consists in creating a modified environment T ∗ = ϕ(T, T ′) where T ∗(e) = T (e)
for some edges (whose passage times do not change) and T ∗(e) = T ′(e) for the other edges (whose
passage times are re-sampled). In other words, we define a random set of edges R(T ) (the edges we want
to re-sample) and we set T ∗ = ϕ(T, T ′) = ϕR(T )(T, T ′) where, for every set of edges r, ϕr(T, T ′)(e) is
equal to T ′(e) if e ∈ r and to T (e) else.

In a utopian situation, imagine that we could define a new environment T ∗ = ϕ(T, T ′) and an event
A (ensuring the success of the modification) such that:

• T ∗ and T have the same distribution,

• η := P(T ′ ∈ A) > 0,

• and {T ∈ M(ℓ) and T ′ ∈ A} ⊂ {T ∗ ∈ M(ℓ − 1) \ M(ℓ)}.

Then we would have

P(T ∈ M(ℓ − 1) \ M(ℓ)) = P(T ∗ ∈ M(ℓ − 1) \ M(ℓ)) ≥ P(T ∈ M(ℓ) ∩ T ′ ∈ A) = ηP(T ∈ M(ℓ)),

which is (1.12).
However, this situation is unrealistic since the set of re-sampled edges R(T ) depends on T , and thus

the distribution of T ∗ is different from the distribution of T . But when r is fixed, ϕr(T, T ′) and T
have the same distribution. It is possible to rely on this fact as soon as, observing only the modified
environment, we can guess approximately in which box we performed the modification (see the use of
the S1-variables and S2-variables in Lemma 2.3 and Lemma 3.3).

In the case where the passage times are bounded, we use two independent copies of T and we make a
two-steps modification. The way we actually perform the modification in the bounded case is sketched
in Section 3.4.1. The ideas described in this paragraph can be adapted to this two-steps modification
without difficulties.
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Comparison with the plan of the proof of Proposition 5.22 in [8]. Let us compare the above
strategy with the plan used in [8] to prove Proposition 5.22. Fix x in Z

d. In [8], van den Berg and
Kesten also start by associating with some specific geodesic γ some sequence of q = C‖x‖1 good boxes.
By simple geometric arguments, they then get some family B of boxes such that

E[number of boxes of B which are good and crossed by γ] ≥ c‖x‖1

where c is a positive constant. Fix some box B ∈ B. Then they also define a new environment T ∗ by
resampling the times of the edges in B. It is then sufficient (this is the technical part of the proof in the
bounded case) to prove

P(every geodesic in T ∗ crosses the pattern in B|in the environment T , γ crosses B and B is good) ≥ η

for some positive constant η > 0. In particular, and contrary to what happens in our framework, it is
not necessary in this setting to control what happens to geodesic(s) outside the considered box when we
resample the times of the edges in the box. This is not a problem if the geodesic in the new environment
completely changes.

Comparison with the plan of the proof of Theorem 2.3 in [1]. In [1], the main difference with
the strategy described above is the use of penalized geodesics. Indeed, Andjel and Vares only consider
geodesics which do not take edges whose passage time is greater than M and it allows them to get a
result on all geodesics from 0 to x thanks to the modification argument. However, it seems difficult to use
penalized geodesics with the patterns, that is why we use the strategy of concentric annuli developped
in Section 2.1.

1.6 Reduction

One can check that, using a standard re-normalization argument, Theorem 1.4 is a simple consequence
of the following proposition (see for example the proof of Theorem 2.3 in [1]).

Proposition 1.11. Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern and assume that F is useful and satisfies
(1.2). Then there exist C > 0 and D > 0 such that for all n ≥ 0, for all x such that ‖x‖1 = n,

P
(
∃ a geodesic γ from 0 to x such that NP(γ) = 0

)
≤ De−Cn

1
d . (1.14)

Thus, the aim of the paper is now to prove Proposition 1.11. Although they share some similarities,
the proofs of Proposition 1.11 differ according to whether the support of F is bounded or unbounded.
As the proof is easier in the unbounded case, we decide to first give the proof in the unbounded case in
Section 2 and then give the proof in the bounded case in Section 3.

1.7 Some tools and notations

In this subsection, we recall some results and fix some notations. First, we denote by N the set of all
non-negative integers, by N

∗ the set N \ {0}, and by R+ the set of all x ∈ R such that x ≥ 0.
For a self-avoiding2 path π = (x0, ..., xk) going from x0 to xk, we say that xi is visited by π before

xj if i < j; we say that an edge {xi, xi+1} is visited before an edge {xj , xj+1} if i < j. A subpath of π
going from xi to xj (where i, j ∈ {0, . . . , k} and i < j) is the path (xi, . . . , xj) and is denoted by πxi,xj

.
For a set B of vertices, we denote by ∂B its boundary, this is the set of vertices of B which can

be linked by an edge to a vertex which is not in B. Note that when we define a set of vertices of Zd,
sometimes we also want to say that an edge is contained in this set. So, we say that an edge e = {u, v}
is contained in a set of vertices if u and v are in this set. Since now a subset B of Zd can be seen as a set
of vertices or as a set of edges, we denote by |B|v the number of vertices of B and by |B|e its number of
edges.

2The definition can be extended to not necessarily self-avoiding paths by saying that a vertex x is visited by π before y

if there exists i0 ∈ {0, . . . , k} such that xi0 = x and for all j ∈ {0, . . . , k}, xj = y implies that j > i0.
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Then, we define different balls in Z
d or R

d. For all c ∈ Z
d and r ∈ R+, we denote

B∞(c, r) = {u ∈ Z
d : ‖u − c‖∞ ≤ r},

B1(c, r) = {u ∈ Z
d : ‖u − c‖1 ≤ r},

and for n ∈ N
∗, we denote by Γn the boundary of B1(0, n), i.e.

Γn = {u ∈ Z
d : ‖u‖1 = n}. (1.15)

Also for c ∈ Z
d and r ∈ R+, we denote by B(c, r) the random ball

B(c, r) = {u ∈ Z
d : t(c, u) ≤ r}.

Then, for x and y in R
d, we define t(x, y) as t(x′, y′) where x′ is the unique vertex in Z

d such that
x ∈ x′ + [0, 1)d (similarly for y′). For c ∈ Z

d and r ∈ R+, we denote by B̃(c, r) the random ball

B̃(c, r) = {y ∈ R
d : t(c, y) ≤ r}.

Let x in R
d. Thanks to (1.2), we can define

µ(x) = lim
n→∞

t(0, nx)

n
a.s. (1.16)

Thanks to the hypothesis (1.2) and since F (0) < pc(Zd), for all x ∈ R
d \ {0}, we have µ(x) ∈ (0, ∞).

Furthermore, µ is a norm on R
d and describes the first order of approximation of B̃(0, r) when r goes to

infinity. For c ∈ Z
d and r ∈ R+, we denote

Bµ(c, r) = {y ∈ R
d : µ(c − y) ≤ r}.

Fix B = Bµ(0, 1), then the Cox-Durett shape theorem (Theorem 2.16 in [2]) guarantees that for each
ε > 0,

P

(
(1 − ε)B ⊂

B̃(0, t)

t
⊂ (1 + ε)B for all large t

)
= 1. (1.17)

One can easily prove that the result (1.17) is equivalent to

lim
µ(x)→∞

t(0, x) − µ(x)

µ(x)
= 0 a.s. (1.18)

Since µ is a norm, we can fix two constants cµ > 0 and Cµ > 0 such that for all y in R
d,

cµ‖y‖1 ≤ µ(y) ≤ Cµ‖y‖1.

Finally, since F is useful, by Lemma 5.5 in [8], there exist δ = δ(F ) > 0 and D0 = D0(F ) fixed for the
remaining of the article such that for all u, v ∈ Z

d,

P(t(u, v) ≤ (tmin + δ)‖u − v‖1) ≤ e−D0‖u−v‖1 . (1.19)

Notice that, using the Borel-Cantelli lemma with this result, we get that for all u ∈ Z
d different from 0,

µ(u) ≥ (tmin + δ)‖u‖1. (1.20)

2 Unbounded case

2.1 Proof of Proposition 1.11 in the unbounded case

Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern. It is convenient to reduce to the case where there exists
an integer ℓΛ > 0, fixed for the remaining of the proof, such that3 Λ = B∞(0, ℓΛ). There is no loss of
generality (see Lemma A.1 in Appendix A.1). Let us begin with the definitions of a typical box and of
a successful box. To this end, we have to fix some constants.

3We make a very slight abuse of notation: we also consider patterns where 0 is in the center of Λ.
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Boxes and constants. Recall that tmin, and δ have been fixed in the introduction. The minimum of
the support of F is denoted by tmin and δ comes from (1.19). Since

lim
M→∞

P
(
AΛ is realized and for all edges e ∈ Λ, T (e) ≤ M

)
= P(AΛ) > 0,

there exists a positive constant MΛ fixed for the rest of the proof such that

P
(
AΛ is realized and for all edges e ∈ Λ, T (e) ≤ MΛ

)
> 0.

Even if it means replacing AΛ by AΛ ∩ {∀e ∈ Λ, T (e) ≤ MΛ}, we can assume that

AΛ ⊂ {∀e ∈ Λ, T (e) ≤ MΛ}. (2.1)

We fix
τΛ = MΛ‖uΛ − vΛ‖1, (2.2)

which is an upper bound for the travel time of an optimal path (for the passage time) going from uΛ to
vΛ and entirely contained in Λ on the event AΛ.

For i ∈ {1, 2, 3}, Bi,s,N is the ball in Z
d of radius riN for the norm ‖.‖1 centered at the point sN

where the constants ri are defined as follows. We fix r1 = d. Denote by K the number of edges in
B∞(0, ℓΛ + 3). Then, fix r2 an integer such that

r2δ − r1(tmin + δ) − Ktmin − τΛ > 0. (2.3)

Let r2,3 be a positive real such that

B2,0,1 ⊂ Bµ

(
0,

r2,3

2

)
∩ Z

d,

then we fix r3 an integer such that

Bµ(0, 9r2,3) ∩ Z
d ⊂ B3,0,1.

We use the word "box" to talk about B3,s,N . Recall that we denote by ∂Bi,s,N the boundary of
Bi,s,N , that is the set of points z ∈ Z

d such that ‖z − sN‖1 = riN . For u and v two vertices contained
in B3,s,N , we denote by t3,s,N (u, v) the minimum of the times of all paths entirely contained in B3,s,N

and going from u to v.

Crossed boxes and weakly crossed boxes. We say that a path

• crosses a box B3,s,N if it visits a vertex in B1,s,N ,

• weakly crosses a box B3,s,N if it visits a vertex in B2,s,N .

Paths associated in a box. We say that two paths γ and γ′ from 0 to the same vertex x are associated
in a box B3,s,N if there exist two distinct vertices s1 and s2 such that the following conditions hold:

• γ and γ′ visit s1 and s2,

• γ0,s1 = γ′
0,s1

,

• γs1,s2 and γ′
s1,s2

are entirely contained in B3,s,N ,

• γs2,x = γ′
s2,x.

In particular, these two paths coincide outside B3,s,N .
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Typical boxes. We define a sequence (ν(N))N∈N∗ such that for all N ∈ N
∗, ν(N) > MΛ and

lim
N→∞

P


 ∑

e∈B2,0,N

T (e) ≥ ν(N)


 = 0. (2.4)

Note that F ((ν(N), +∞)) > 0 for all N ∈ N
∗ since the support of F is unbounded.

We can now define typical boxes. A box B3,s,N is typical if it verifies the following properties:

(i) T (s; N) is realized, where T (s; N) is the following event:

{
sup

z∈B2,s,N

t3,s,N (Ns, z) ≤ r2,3N

}
∩

{
inf

z∈∂B3,s,N

t3,s,N (Ns, z) ≥ 4r2,3N

}
,

(ii) every path π entirely contained in B3,s,N from uπ to vπ with ‖uπ −vπ‖1 ≥ (r2 −r1)N has a passage
time verifying:

t(π) ≥ (tmin + δ) ‖uπ − vπ‖1, (2.5)

(iii)
∑

e∈B2,0,N

T (e) < ν(N).

Lemma 2.1. We have these three properties about typical boxes.

1. Let s ∈ Z
d and N ∈ N

∗. If B3,s,N is a typical box, for all points u0 and v0 in B2,s,N , every geodesic
from u0 to v0 is entirely contained in B3,s,N .

2. Let s ∈ Z
d and N ∈ N

∗. The typical box property only depends on the passage times of the edges
in B3,s,N .

3. We have
lim

N→∞
P(B3,0,N is a typical box) = 1.

This lemma guarantees that the properties of a typical box are indeed typical ones and that they are
also local ones. Its proof is in Section 2.2. Let us now introduce some further definitions.

Successful boxes. For a fixed x ∈ Z
d, a box B3,s,N is successful if every geodesic from 0 to x takes a

pattern which is entirely contained in B2,s,N , i.e. if for every geodesic γ going from 0 to x, there exists
xγ ∈ Z

d satisfying the condition (γ;P) and such that B∞(xγ , ℓΛ) is contained in B2,s,N . Note that the
notion of successful box depends on some fixed x ∈ Z

d.

Annuli. Now, we define the annuli mentioned in Section 1.5. Fix

r = 2(r1 + r3 + 1), (2.6)

and for all integers i ≥ 1, let us define

Ai,N =
{

y ∈ Z
d : ‖y‖1 ∈ [(i − 1)rN, irN)

}
.

For any annulus Ai,N , we call {y ∈ Z
d : ‖y‖1 = (i − 1)rN} its inner sphere and {y ∈ Z

d : ‖y‖1 = irN}
its outer sphere. Then, we give two definitions about these annuli which are useful in the proof of Lemma
2.3.

• For i > 1, we say that a path from 0 to a vertex of Zd crosses (resp. weakly crosses) a box B3,s,N

in the annulus Ai,N if the two following conditions are satisfied:

– it crosses (resp. weakly crosses) this box before it visits for the first time the outer sphere of
Ai,N ,

– B3,s,N is entirely contained in the annulus, i.e. every vertex of B3,s,N is in Ai,N .
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• We also say that a path takes a pattern in the annulus Ai,N if it takes a pattern which is entirely
contained in Ai,N , i.e. if every vertex of this pattern is in Ai,N . Here, we do not require that the
path takes a pattern before it visits the outer sphere of Ai,N for the first time.

Note that the choice of r guarantees that every path passing through an annulus has to cross a box in
this annulus.

For all integer p ≥ 2 and all N ∈ N
∗, we denote by Gp(N) the event on which for all x in the outer

sphere of the p-th annulus, every geodesic from 0 to x crosses a typical box in at least
⌊

p
2

⌋
annuli. The

following lemma, whose proof is given in Section 2.2, gives us an exponential decrease of the probability
of the complement of Gp(N).

Lemma 2.2. There exist two positive constants C1 and D1, and an integer N0 ≥ 1 such that for all
p ≥ 1 and N ≥ N0,

P (Gp(N)c) ≤ D1e−C1p
1
d .

Setup for the proof of Proposition 1.11. For the rest of the proof, we fix C1, D1 and N0 given by
Lemma 2.2. Recall that K is the number of edges in B∞(0, ℓΛ + 3). Then we fix δ′ > 0 such that

r2(δ − δ′) − r1(tmin + δ) − K(tmin + δ′) − τΛ > 0. (2.7)

Note that it is possible since we have taken r2 large enough (see (2.3)). Then, fix

N ≥ max(N0, ℓΛ + 3), n ≥ 2rN and x ∈ Γn, (2.8)

(where Γn is defined at (1.15)). Fix p =
⌊ n

rN

⌋
and q =

⌊p

2

⌋
. Note that x belongs to the (p + 1)-th

annulus.

M-sequences. Let us now define some random sets and variables which are useful for stability questions
for the modification argument. Unless otherwise specified, in the remaining of this section, we write
geodesic as a shorthand for geodesic from 0 to x.

First, let us associate a sequence of 0 to p − 1 typical boxes to every geodesic from 0 to x. For a
geodesic γ, the deterministic construction is what follows.

Initialize the sequence as an empty sequence. For j from 1 to p − 1, do:

• let aj(γ) be the index of the first annulus such that γ crosses a typical box in this annulus and such
that aj(γ) > aj−1(γ) (where a0(γ) = 1). If there is no such annulus, then we stop the algorithm.

• Add the first typical box crossed4 by γ in the annulus Aaj (γ),N to the sequence. Note that, since
this typical box is crossed before γ leaves Aaj(γ),N by the outer sphere for the first time, the j-th
box of the sequence is crossed by γ after the (j − 1)-th one.

So, we get a sequence of at most p − 1 boxes crossed by the geodesic. These boxes are all in different
annuli. Furthermore, every box of this sequence is crossed by γ before γ leaves the annulus containing it
for the first time by the outer sphere. If the event Gp(N) occurs, we know that all these sequences have
at least q elements. For j ∈ {1, . . . , p − 1}, we define a set of geodesics Γj . A geodesic γ from 0 to x
belongs to Γj if:

• the length of its sequences defined above is greater than or equal to j,

• γ does not take the pattern in any annuli Ak,N with k ≤ aj(γ).

We call the sequences defined above the M -sequences.

4If a path crosses two boxes B3,s1,N and B3,s2 ,N , we say that it crosses B3,s1,N before B3,s2,N if it visits a vertex of
B1,s1,N before one of B1,s2,N .
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Selected geodesic and S1-variables. Then, for j ∈ {1, . . . , p − 1}, if Γj is not empty, we define
the selected geodesic among the geodesics of Γj as the one which minimizes the index of the annulus
containing the j-th box of its sequence. If there are several such geodesics, the selected one is the first
in the lexicographical order. Then, the random variable S1

j is equal to the vertex s such that the box
B3,s,N is the j-th box in the M -sequence of the selected geodesic. When j is fixed, we say that the box
B3,S1

j
,N is the selected box. Finally, if Γj is empty, set S1

j = 0 and there is no selected geodesic.

S2-variables. After a modification in the box of the selected geodesic, we have to select a new box in
the new environment T ∗ defined below. Since we can not guarantee that the selected box in the initial
environment is still typical in the new environment, we have to select it in a different way. That is why we
introduce the S2-variables. Let j ∈ {1, . . . , p − 1}, we define S2

j as follows. For every geodesic γ ∈ Γj−1,

we define, if it is possible, S2
j (γ) as the vertex s corresponding to the box B3,s,N where B3,s,N is the first

successful box crossed by γ in an annulus (in the sense given with the definition of the annuli above). If
it is not possible, S2

j (γ) = 0. We denote by a′
j(γ) the index of the annulus containing B3,S2

j
(γ),N . Then,

S2
j is equal to the vertex S2

j (γ) where γ satisfies the three following conditions:

• a′
j(γ) > 1,

• for all geodesic γ ∈ Γj−1 such that a′
j(γ) 6= 1, we have a′

j(γ) ≥ a′
j(γ),

• γ is the first geodesic in the lexicographical order among the geodesics γ such that a′
j(γ) = a′

j(γ).

If it is not possible, S2
j = 0.

Modification argument. Finally, for j ∈ {1, ..., p − 1}, we define M(j) as the event on which every
geodesic from 0 to x has at least j typical boxes in its M -sequence and there exists one geodesic which
does not take the pattern in any annuli Ak,N with k ≤ aj(γ). We also define M(0) as the event on which
there exists a geodesic from 0 to x. Its probability is equal to 1 (see Section 1.1). Now, the aim is to
bound from above P(M(q)) independently of x since we have:

P
(
there exists a geodesic γ from 0 to x such that NP(γ) = 0

)
≤ P(T ∈ Gp(N)c)+P(T ∈ M(q)). (2.9)

In the sequel, we introduce an independent copy T ′ of the environment T , the two being defined on
the same probability space. It is thus convenient to refer to the considered environment when dealing
with the objects defined above. To this aim, we shall use the notation {T ∈ M(j)} to denote that the
event M(j) holds with respect to the environment T . In other words, M(j) is now seen as a subset
of (R+)E , where E is the set of all the edges. Similarly, for i ∈ {1, 2} we denote by Si

j(T ′) the random
variables defined above but in the environment T ′.

Fix ℓ ∈ {1, . . . , q}. On {T ∈ M(ℓ)}, Γℓ 6= ∅ and B3,S1
ℓ

(T ),N is a typical box crossed by the selected
geodesic. We get a new environment T ∗ defined for all edge e by:

T ∗(e) =

{
T (e) if e /∈ B2,S1

ℓ
(T ),N

T ′(e) else.

For y and z in Z
d, we denote by t∗(y, z) the geodesic time between y and z in the environment T ∗. Note

that T and T ∗ do not have the same distribution.

Lemma 2.3. There exists η = η(N) > 0 such that for all ℓ in {1, . . . , q}, there exist measurable functions
E∗

+ : R
E
+ 7→ P(E) and E∗

− : R
E
+ 7→ P(E) such that:

(i) E∗
+(T ) ∩ E∗

−(T ) = ∅ and E∗
+(T ) ∪ E∗

−(T ) ⊂ B2,S1
ℓ

(T ),N ,

(ii) on the event {T ∈ M(ℓ)}, we have P (T ′ ∈ B∗(T )|T ) ≥ η where {T ′ ∈ B∗(T )} is a shorthand for

{∀e ∈ E∗
+(T ), T ′(e) ≥ ν(N), ∀e ∈ E∗

−(T ), T ′(e) ≤ tmin + δ′, θNS1
ℓ

(T )T
′ ∈ AΛ},

(iii) {T ∈ M(ℓ)} ∩ {T ′ ∈ B∗(T )} ⊂ {T ∗ ∈ M(ℓ − 1) \ M(ℓ)} and ‖S2
ℓ (T ∗) − S1

ℓ (T )‖1 ≤ 2r3.
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Remark 2.4. We have E∗
+(T ) ∪ E∗

−(T ) ∪ (NS1
ℓ (T ) + Λ) = B2,S1

ℓ
(T ),N . Note that since r1 = d and

N ≥ ℓΛ + 3, we have that (NS1
ℓ (T ) + Λ) ⊂ B1,S1

ℓ
(T ),N .

Lemma 2.3 is a consequence of Lemma 2.5 below whose proof is given in Section 2.3. Recall the
definition of associated paths given page 11.

Lemma 2.5. There exists η = η(N) > 0 such that for all ℓ in {1, . . . , q}, there exist measurable functions
E∗

+ : R
E
+ 7→ P(E) and E∗

− : R
E
+ 7→ P(E) such that (i) and (ii) of Lemma 2.3 are satisfied and such that

if the event {T ∈ M(ℓ)} ∩ {T ′ ∈ B∗(T )} occurs, then we have the following properties:

(i) in the environment T ∗, every geodesic from 0 to x takes the pattern inside B2,S1
ℓ

(T ),N ,

(ii) for all geodesic γ∗ from 0 to x in the environment T ∗, there exists a geodesic γ from 0 to x in the
environment T such that γ and γ∗ are associated in B3,S1

ℓ
(T ),N ,

(iii) there exists a geodesic γ∗ in the environment T ∗ from 0 to x such that γ∗ and the selected geodesic
γ in the environment T are associated in B3,S1

ℓ
(T ),N .

Proof of Lemma 2.3. Let ℓ ∈ {1, ..., q}. Consider E∗
+ and E∗

− given by Lemma 2.5. Let s ∈ Z
d and

assume that the event {T ∈ M(ℓ)} ∩ {S1
ℓ (T ) = s} ∩ {T ′ ∈ B∗(T )} occurs. To prove that the event

{T ∗ ∈ M(ℓ − 1) \ M(ℓ)} occurs and that ‖S2
ℓ (T ∗) − s‖1 ≤ 2r3, it is sufficient to prove that we have the

four following points in the environment T ∗:

1. every geodesic from 0 to x has at least ℓ − 1 typical boxes in its M -sequence,

2. there exists a geodesic from 0 to x which does not take the pattern in the annuli until the one
containing its (ℓ − 1)-th box,

3. every geodesic from 0 to x whose M -sequence contains at least ℓ elements takes the pattern in an
annulus whose index is smaller than or equal to the one containing its ℓ-th box,

4. there exists s′ such that S2
ℓ (T ∗) = s′ and ‖s − s′‖1 ≤ 2r3.

Let us start with a few remarks. We denote by aℓ the index of the annulus which contains B3,S1
ℓ

(T ),N .

(a) The environments T and T ∗ coincides outside the box B2,S1
ℓ

(T ),N . As this box is included in the
annulus Aaℓ,N , the environments T and T ∗ are the same in all the other annuli. In particular, any
box contained in an annulus Ai,N for i 6= aℓ is typical in T if and only if it is typical in T ∗.

(b) Similarly, every path π takes a pattern which is outside the box B3,S1
ℓ

(T ),N in the environment T
if and only if it takes this pattern in the environment T ∗. In particular, for any i 6= aℓ, π takes the
pattern in the annulus Ai,N in the environment T if and only if it takes the pattern in the annulus
Ai,N in the environment T ∗.

(c) Let γ and γ∗ be as in item (ii) of Lemma 2.5. Then γ and γ∗ coincide except maybe for the part
between s1 and s2. To sum up:

γ0,s1
= γ∗

0,s1
and γs2,x = γ∗

s2,x and γs1,s2
⊂ B3,S1

ℓ
(T ),N ⊂ Aaℓ,N and γ∗

s1,s2
⊂ B3,S1

ℓ
(T ),N ⊂ Aaℓ,N .

(2.10)
Furthermore, by remark (b), we have that for any i 6= aℓ, γ takes the pattern in the annulus Ai,N

in the environment T if and only if γ∗ takes the pattern in the annulus Ai,N in the environment
T ∗. The same property holds for the selected geodesic γ and for the associated geodesic γ∗ (in the
environment T ∗) given by item (iii) of Lemma 2.5.

(d) Let again γ and γ∗ be as in item (ii) of Lemma 2.5. Let us compare the M -sequence of γ (which
is built in the environment T ) with the M -sequence of γ∗ (which is built in the environment T ∗).
By (a) and (2.10), we get that any box which belongs to the M -sequence of γ, with the possible
exception of a box contained in Aaℓ,N , also belongs to the M -sequence of γ∗. The same property
holds for the selected geodesic γ and for the associated geodesic γ∗ (in the environment T ∗) given
by item (iii) of Lemma 2.5. In particular the first ℓ − 1 elements of the M -sequence of γ (which
is built in the environment T ) are the same as the first ℓ − 1 elements of the M -sequence of γ∗

(which is built in the environment T ∗).
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Let us now proceed to the proof of item 1. We assume ℓ ≥ 2 otherwise there is nothing to prove.
Let γ∗ be a geodesic from 0 to x in the environment T ∗. Let γ be the associated geodesic in the
environment T given by item (ii) of Lemma 2.5. Since the event {T ∈ M(ℓ)} occurs, the M -sequence
(in the environment T ) of γ contains at least ℓ typical boxes. By remark (d) above, the M -sequence (in
the environment T ∗) of γ∗ contains at least ℓ − 1 typical boxes.

Let us consider item 2. We can again assume ℓ ≥ 2. Let γ∗ be the geodesic given by item (iii) of
Lemma 2.5. Recall that γ is the selected geodesic and that γ ∈ Γℓ. In particular, we have the following
properties: its M -sequence contains at least ℓ boxes; the ℓ-th box of its M -sequence belongs to Aaℓ,N ;
γ does not take the pattern in any annulus whose index is smaller than or equal to aℓ. Therefore, by
remark (d) above, the first ℓ−1 boxes of the M -sequence of γ and γ∗ are the same. By remark (c) above,
we conclude that γ∗ does not take the pattern (in the environment T ∗) in any annulus whose index is
smaller than the one containing its (ℓ − 1)-th box.

Let us prove item 3. Let γ∗ be such a geodesic. Assume that the ℓ-th box of the M -sequence of γ∗

is in an annulus whose index is strictly smaller than aℓ. Let γ be a geodesic in the environment T given
by item (ii) of Lemma 2.5. Assume, aiming at a contradiction, that γ∗ does not take the pattern in an
annulus until the one containing its ℓ-th box. By remark (d), the ℓ first boxes of the M -sequences of γ∗

and γ are the same. By remarks (b) and (c), γ does not take the pattern until the annulus containing its
ℓ-th box. This contradicts the definition of S1

ℓ , so it is impossible. Thus the ℓ-th box of the M -sequence
of γ∗ is in an annulus whose index is greater than or equal to aℓ. By item (i) of Lemma 2.5, γ∗ takes
the pattern in the annulus whose index is aℓ. Therefore it takes the pattern in an annulus whose index
is smaller than or equal to the one containing its ℓ-th box and the third point is satisfied.

Finally, let us prove item 4. Note that since B3,s,N is a successful box, S2
ℓ (T ∗) 6= 0. There are two

steps. First, we prove that NS2
ℓ (T ∗) is the center of a box contained in the annulus Aaℓ,N and then we

prove that B3,s,N ∩ B3,S2(T ∗),N 6= ∅, which gives the result. Assume that NS2
ℓ (T ∗) is not the center of a

box contained in Aaℓ,N . Let again γ∗ be the geodesic given by item (iii) of Lemma 2.5 and recall that
γ is the selected geodesic in the environment T . Since B3,s,N is successful, we have a′

ℓ(γ) ≤ aℓ and thus
the definition of S2

ℓ (T ∗) implies that NS2
ℓ (T ∗) is the center of a box contained in an annulus Ak,N such

that k < aℓ. So γ∗ takes the pattern in this annulus in the environment T ∗. By remark (c), γ takes the
pattern in this annulus in the environment T ∗ and then in the environment T by remark (b). This is
impossible since γ does not take the pattern in any annuli Ak,N with k ≤ aℓ.

To conclude, assume, aiming at a contradiction, that B3,s,N ∩ B3,S2(T ∗),N = ∅. It implies that γ∗

takes a pattern outside B3,s,N in the environment T ∗ and the portion of γ∗ taking this pattern is a
portion of γ∗

0,s′

1
or γ∗

s′

2,x. By remark (b), the portion of γ∗ taking this pattern also takes this pattern

in the environment T . By remark (c), it implies that γ takes the pattern in the environment T in the
annulus Aaℓ,N , which is a contradiction.

Now, thanks to Lemma 2.3, we can adapt Lemma 3.8 from [1].

Lemma 2.6. There exists λ ∈ (0, 1), which does not depend on n and on x ∈ Γn, such that

P (T ∈ M(q)) ≤ λq.

Proof. Let ℓ be in {1, ..., q}. For every s ∈ Z
d, let us consider the environment T ∗

s defined for all edge e
by:

T ∗
s (e) =

{
T (e) if e /∈ B2,s,N

T ′(e) else.

Thus T ∗
s and T have the same distribution and on the event {T ∈ M(ℓ)} ∩ {S1

ℓ (T ) = s}, T ∗ = T ∗
s . So,

using this environment and writing with indicator functions the result of Lemma 2.3, we get:

1{T ∈M(ℓ)}1{S1
ℓ

(T )=s}1{T ′∈B∗(T )} ≤ 1{T ∗
s ∈M(ℓ−1)\M(ℓ)}1

⋃
s′≈s

{S2
ℓ

(T ∗
s )=s′},

where s′ ≈ s if ‖s − s′‖1 ≤ 2r3. We compute the expectation on both sides. The right side yields

P

(
T ∗

s ∈ M(ℓ − 1) \ M(ℓ),
⋃

s′≈s

{S2
ℓ (T ∗

s ) = s′}

)
= P

(
T ∈ M(ℓ − 1) \ M(ℓ),

⋃

s′≈s

{S2
ℓ (T ) = s′}

)
.
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For the left side, we have

E

[
1{T ∈M(ℓ)}1{S1

ℓ
(T )=s}1{T ′∈B∗(T )}

]
= E

[
1{T ∈M(ℓ)}1{S1

ℓ
(T )=s}E

[
1{T ′∈B∗(T )}

∣∣T
]]

.

Since on the event {T ∈ M(ℓ)} ∩ {S1
ℓ (T ) = s}, we have P (T ′ ∈ B∗(T )|T ) ≥ η, the left side is bounded

from below by ηP(T ∈ M(ℓ), S1
ℓ (T ) = s). Then, by summing on all s ∈ Z

d and writing K a constant
which bounds from above for all s′ ∈ Z

d the number of vertices s ∈ Z
d such that s′ ≈ s, we get

η

K
P(T ∈ M(ℓ)) ≤ P(T ∈ M(ℓ − 1) \ M(ℓ)).

Now, since M(ℓ) ⊂ M(ℓ − 1),

P(T ∈ M(ℓ − 1) \ M(ℓ)) = P (T ∈ M(ℓ − 1)) − P (T ∈ M(ℓ)) .

Thus,
P(T ∈ M(ℓ)) ≤ λP(T ∈ M(ℓ − 1)),

where λ =
1

1 + η
K

∈ (0, 1) does not depend on x. Hence, using P(T ∈ M(0)) = 1, we get by induction

P(T ∈ M(q)) ≤ λq.

Proof of Proposition 1.11. Recall that N , x (and then n and p) are fixed at (2.8) but that C1, D1 and
λ does not depend on x, n and p. Then, by Lemma 2.2 and Lemma 2.6, using the inequality (2.9),

P
(
there exists a geodesic γ from 0 to x such that NP(γ) = 0

)
≤ P(T ∈ Gp(N)c) + P(T ∈ M(q))

≤ D1e−C1p
1
d + λ⌊ p

2 ⌋.

As C1 > 0 and λ ∈ (0, 1), and as this inequality holds for any n ≥ 2rN and any x ∈ Γn, we get the
existence of two constants C > 0 and D > 0 such that for all n, for all x ∈ Γn,

P
(
there exists a geodesic γ from 0 to x such that NP(γ) = 0

)
≤ D exp(−Cn

1
d ).

2.2 Typical boxes crossed by geodesics

Let us first begin with the proof of the lemma stated in the paragraph of typical boxes in Section 2.1.

Proof of Lemma 2.1.

1. Let B3,s,N be a typical box. Then the event T (s, N) occurs. Let u0 and v0 be two vertices in
B2,s,N . We have

t3,s,N (u0, v0) ≤ 2 sup
z∈B2,s,N

t3,s,N (Ns, z) ≤ 2r2,3N.

Let π0 be a path from u0 to v0 which is not entirely contained in B3,s,N . Let z0 denote the first
vertex on the boundary of B3,s,N visited by π0. Then

T (π0) ≥ t3,s,N(u0, z0) ≥ t3,s,N (z0, Ns) − t3,s,N(u0, Ns)

≥ inf
z∈∂B3,s,N

t3,s,N (Ns, z) − sup
z∈B2,s,N

t3,s,N (Ns, z) ≥ 3r2,3N > 2r2,3N ≥ t3,s,N (u0, v0).

Hence, every geodesic from u0 to v0 has to be entirely contained in B3,s,N .
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2. The properties (ii) and (iii) only depend on the time of edges in B2,s,N . The event T (s; N) only
depends on edges in B3,s,N by the definition of t3,s,N .

3. First,
lim

N→∞
P(T (0; N)) = 1.

Indeed, by (1.17),

P

(
Bµ

(
0,

r2,3

2
N
)

⊂ B̃(0, r2,3N) for all large N
)

= 1,

and
P
(
B̃(0, 4r2,3N) ⊂ Bµ(0, 8r2,3N) for all large N

)
= 1.

Thus, since B2,0,1 ⊂ Bµ

(
0,

r2,3

2

)
∩ Z

d and Bµ(0, 9r2,3) ∩ Z
d ⊂ B3,0,1, almost surely there exists

N0 ∈ N
∗ such that for all N ≥ N0,

B2,0,N ⊂ B(0, r2,3N), B(0, 4r2,3N) ⊂ B3,0,N and for all y ∈ ∂B3,0,N , y /∈ B(0, 4r2,3N).

So, for all N ≥ N0,

sup
z∈∂B2,0,N

t3,0,N (0, z) ≤ r2,3N and inf
z∈∂B3,0,N

t3,0,N(0, z) ≥ 4r2,3N.

Note that, for the first inequality, we use the fact that for all z ∈ B2,0,N , t3,0,N (0, z) = t(0, z)
thanks to the first point of Lemma 2.1 proved above.

The probability that (iii) is satisfied by B3,0,N goes to 1 by (2.4). Then, let us prove that the
probability that (ii) is satisfied by B3,0,N goes to 1. Let |B3,0,N | denote the number of vertices in
B3,0,N and Π0 denote the set of self-avoiding paths entirely contained in B3,0,N . Then, using (2.3),
we have that r2 > r1, and by (1.19),

P(B3,0,N does not satisfy (ii))

≤
∑

uπ ,vπ∈B3,0,N

‖uπ−vπ‖1≥(r2−r1)N

P ((2.5) is not satisfied by a path of Π0 whose endpoints are uπ and vπ )

≤
∑

uπ ,vπ∈B3,0,N

‖uπ−vπ‖1≥(r2−r1)N

P ((2.5) is not satisfied by a path whose endpoints are uπ and vπ )

≤|B3,0,N |2e−D0(r2−r1)N −−−−→
N→∞

0,

since |B3,0,N | is bounded by a polynomial in N .

Proof of Lemma 2.2. To begin this proof, one need an upper bound on the Euclidean length of geodesics.
Using Theorem 4.6 in [2], we have two positive constants K1 and C2 such that for all y ∈ Z

d,

P (m(y) ≥ K1‖y‖1) ≤ e−C2‖y‖
1
d
1 ,

where m(y) = max {|σ|e : σ is a geodesic from 0 to y} and where for a path σ, |σ|e means the number
of different edges taken by σ. For all p ∈ N

∗, we define the event N p(N) on which every geodesic from 0
to the outer sphere of the p-th annulus takes less than K1prN distinct edges. Note that r = 2(r1 +r3 +1)
is fixed at (2.6) and rN corresponds to the widths of the annuli. Then,

P(N p(N)c) ≤
∑

y : ‖y‖1=prN

P (m(y) ≥ K1‖y‖1) ≤ (2prN + 1)de−C2(prN)
1
d .
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Hence, we obtain two positive constants C3 and D3 only depending on r, d and F such that for all
p ∈ N

∗, for all N ∈ N
∗,

P(N p(N)c) ≤ D3e−C3p
1
d .

Now, we assume that the event N p(N) ∩ Gp(N)c occurs. So, every geodesic from 0 to the outer sphere
of the p-th annulus takes a number of distinct edges which is between prN and K1prN . Let us consider
a re-normalized model. We introduce the meta-cubes

B∞
s,N =

{
w ∈ Z

d :

(
s −

1

2

)
N ≤ w <

(
s +

1

2

)
N

}
, for all s ∈ Z

d,

(where v ≤ w means vi ≤ wi for 1 ≤ i ≤ d and v < w means vi < wi for 1 ≤ i ≤ d.) These meta-cubes
form a partition of Zd. Furthermore, the meta-cubes and the boxes defined above have the same centers
(which are the vertices Ns for s ∈ Z

d), and for all s ∈ Z
d, B∞

s,N ⊂ B1,s,N . So, we can define typical
meta-cubes. A meta-cube B∞

s,N is typical if B3,s,N is a typical box.
For a geodesic γ from 0 to the outer sphere of the p-th annulus, we associate the set of meta-cubes

visited by γ, that is
A(γ) = {B∞

s,N | γ visits at least one vertex of B∞
s,N }.

This set can be identify with the subset of the re-normalized graph NZ
d:

AR
v (γ) = {sN | B∞

s,N ∈ A(γ)}.

Note that, if we consider the set AR
e (γ) of edges of NZ

d linking vertices which are both in AR
v (γ), then

the pair of sets (AR
v (γ),AR

e (γ)) forms a lattice animal, denoted by AR(γ). Recall that a lattice animal
A in NZ

d is a finite connected sub-graph of NZ
d that contains 0. We denote by AR the set of lattice

animals in NZ
d associated with a geodesic going from 0 to the outer sphere of the p-th annulus.

Let us bound the size of these lattice animals. By the size of a lattice animal AR, denoted by |AR|v,
we mean its number of vertices in the re-normalized model. Recall that, since the event N p(N) occurs,
every geodesic from 0 to the outer sphere of the p-th annulus takes a number of distinct edges which is
between prN and K1prN . Then, in the meta-cube set A(γ) associated to such a geodesic γ, since r1 = d
and thanks to the choice of r, there are p − 1 meta-cubes associated to boxes crossed by γ in distinct
annuli. In particular (considering also the meta-cube centered at the origin), the size of every lattice
animal AR ∈ AR is bounded from below by p. For an upper bound, we use the inequality

|γ|e ≥ N

(
|AR(γ)|v

3d
− 1

)
, (2.11)

for all geodesic γ from 0 to the outer sphere of the p-th annulus, where |γ|e still denotes the number of
edges taken by γ and where |AR(γ)|v is the number of vertices of AR(γ). Let us prove this inequality.
Let γ be a geodesic from 0 to the outer sphere of the p-th annulus and denote by γ = (v0, . . . , vm) the
sequence of vertices visited by γ. For all v ∈ Z

d, denote by s(v) the unique s ∈ Z
d such that v belongs

to B∞
s,N . We define by induction a strictly increasing sequence i0, . . . , iκ by setting κ = 0 and i0 = 0 and

then applying the following algorithm:

(a) If there exists i ∈ {iκ + 1, . . . , m} such that s(vi) is at distance at least 2 for the norm ‖.‖∞ from
s(viκ

), we denote by iκ+1 the smallest of these i, then we increment κ and go back to (a).

(b) Otherwise we stop the algorithm.

Then, we necessarily have 3d(κ + 1) ≥ |AR(γ)|v. Furthermore, for all k ∈ {0, . . . , κ − 1}, we have
‖vik+1

− vik
‖1 ≥ N . Hence,

|γ|e ≥ Nκ ≥ N

(
|AR(γ)|v

3d
− 1

)
,

and (2.11) is proved.
Now, using (2.11), writing K2 = ⌈3d(K1r +1)⌉ (which does not depend on p and N), for every lattice

animal AR ∈ AR, |AR|v is bounded from above by K2p. Furthermore, for j ∈ {p, . . . , K2p}, using (4.24)
in [4], we have that

∣∣{AR ∈ AR : |AR|v = j
}∣∣ ≤ |{lattice animals in Z

d of size j}| ≤ 7dj. (2.12)
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Let us consider the random variables (XN
ℓ )ℓ∈Zd such that XN

ℓ = 1 if the meta-cube B∞
ℓ,N is typical and

XN
ℓ = 0 otherwise. By Lemma 2.1, there exists a positive constant K3 such that XN

ℓ is independent
from the sigma-algebra generated by {XN

k , k ∈ Z
d : ‖k − ℓ‖1 ≥ K3}. Furthermore, also by Lemma 2.1,

lim
N→∞

P(XN
ℓ = 1) = 1.

Thus, by Corollary 1.4 in [6], there exists η1 = η1(N) > 0 such that

η1(N) −−−−→
N→∞

0,

and there exist i.i.d. random variables (Y N
ℓ )ℓ∈Zd such that (XN

ℓ )ℓ ≥ (Y N
ℓ )ℓ and Y N

0 has a Bernoulli
distribution of parameter (1 − η1(N)). Finally, we have

P(N p(N) ∩ Gp(N)c) ≤ P


∃AR ∈ AR such that p ≤ |AR|v ≤ K2p and

∑

ℓ∈AR
v

XN
ℓ ≤ |AR|v + 1 −

p

2


 .

Indeed, on Gp(N)c, there exists a geodesic γ from 0 to the outer sphere of the p-th annulus which crosses

a typical box in strictly less than
⌊p

2

⌋
annuli, and thus there are strictly more than

⌈p

2

⌉
− 1 annuli Ai,N

with i > 1 such that γ does not cross a typical box in them. Furthermore, there are p − 1 meta-cubes in
A(γ) such that each of them is associated to a box crossed by γ in one of the p − 1 distinct annuli Ai,N

with 1 < i ≤ p. Thus, there are strictly more than
⌈p

2

⌉
− 1 of these specified meta-cubes which are not

typical. Hence the number of typical meta-cubes in A(γ) is strictly smaller than |AR|v −
⌈

p
2

⌉
+ 1. Then,

using the random variables (Y N
ℓ )ℓ∈Zd ,

P(N p(N) ∩ Gp(N)c) ≤ P


∃AR ∈ AR such that p ≤ |AR|v ≤ K2p and

∑

ℓ∈AR
v

Y N
ℓ ≤ |AR|v −

⌈p

2

⌉
+ 1




≤
∑

p≤j≤K2p

|{lattice animals in Z
d of size j}|P

(
binomial(j, η1) ≥

⌈p

2

⌉
− 1
)

≤
∑

p≤j≤K2p

7dj
P

(
binomial(j, η1) ≥

⌈p

2

⌉
− 1
)

(by (2.12))

≤ K2p7dK2P

(
binomial(K2p, η1) ≥

⌈p

2

⌉
− 1
)

.

Then, for p ≥ 4 and N large enough to have η1(N) <
1

4K2
, using a Chernov bound for the binomial

distribution (see Section 2.2 in [3]), we get

P

(
binomial(K2p, η1) ≥

⌈p

2

⌉
− 1
)

≤ P

(
binomial(K2p, η1) ≥

p

4

)
≤ exp

(
−K2phη1

(
1

4K2

))
,

where for x ∈ (η1, 1),

hη1 (x) = (1 − x) ln

(
1 − x

1 − η1

)
+ x ln

(
x

η1

)
.

Thus, since we can take η1 as small as we want by taking N large enough,

P(N p(N) ∩ Gp(N)c) ≤ K2p

[
7dK2 exp

(
−K2hη1

(
1

4K2

))]p

≤ K2p exp(−2p) for N large enough

≤ exp(−C4p).

Finally, we have a constant N0 such that for all p ≥ 4, for all N ≥ N0,

P(Gp(N)c) ≤ P(N p(N) ∩ Gp(N)c) + P(N p(N)c) ≤ e−C4p + D3e−C3p
1
d .

So, there exist two positive constants C1 and D1 such that for all p ≥ 1, for all N ≥ N0,

P(Gp(N)c) ≤ D1e−C1p
1
d .
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2.3 Modification argument

The aim of this subsection is to prove Lemma 2.5. Let ℓ ∈ {1, . . . , q}. On {T /∈ M(ℓ)}, we set E∗
+(T ) = ∅

and E∗
−(T ) = ∅. Let s be in Z

d. We now define E∗
+ and E∗

− on the event {T ∈ M(ℓ)} ∩ {S1
ℓ (T ) = s}. So

assume that this event occurs. On the event {T ∈ M(ℓ)}, Γℓ is not empty and thus there is a selected
geodesic. We denote this selected geodesic by γ. We define the entry point (resp. the exit point) of a
self-avoiding path in a set of vertices as the first (resp. the last) vertex of this path belonging to this set.
Let u denote the entry point of γ in B2,s,N and v the exit point.

We call entry point and exit point of the pattern (centered at 0) the endpoints denoted by uΛ and vΛ

in the introduction. Note that, if a self-avoiding path takes the pattern, its entry and exit points in the
set B∞(0, ℓΛ) are not necessarily the entry and exit points of the pattern (as it can visit the set before
and after taking the pattern).

Here, we want to put the pattern centered at sN . The vertex s being fixed, we keep the notation uΛ

and vΛ to designate the entry and the exit points of the pattern centered at sN .

Construction of π.
We have the following inclusions:

• B∞(sN, ℓΛ) ⊂ B∞(sN, ℓΛ + 3) ⊂ B1,s,N since r1 = d and N ≥ ℓΛ + 3 (see (2.8)),

• B1,s,N ⊂ B2,s,N since r2 > r1 by (2.3).

For the modification, we need a path π, constructed in a deterministic way and satisfying several
properties, whose existence is guaranteed by the following lemma.

Lemma 2.7. We can construct a path π in a deterministic way such that :

(i) π goes from u to uΛ without visiting a vertex of B∞(sN, ℓΛ), then goes from uΛ to vΛ in a shortest
way for the norm ‖.‖1 (and thus being contained in B∞(sN, ℓΛ)) and then goes from vΛ to v without
visiting a vertex of B∞(sN, ℓΛ),

(ii) π is entirely contained in B2,s,N and does not have vertices on the boundary of B2,s,N except u and
v,

(iii) π is self-avoiding,

(iv) the length of πu,uΛ ∪ πvΛ,v is bounded from above by 2r2N + K, where K is the number of edges in

B∞(0, ℓΛ + 3).

The proof of this lemma is given in Appendix A.2 but the idea is to construct two paths, one from
u to sN and the other from sN to v which minimize the distance for the norm ‖.‖1 and such that the
only vertex belonging to both paths is sN . Then, we denote by u0 the first vertex of B∞(sN, ℓΛ + 3)
visited by the path from u to sN and v0 the last vertex of B∞(sN, ℓΛ + 3) visited by the path from sN
to v. We construct two paths entirely contained in B∞(sN, ℓΛ + 3) from u0 to uΛ and from vΛ to v0

which do not take vertices of B∞(sN, ℓΛ) except uΛ and vΛ and which have no vertices in common and
we consider the concatenation of the path from u to u0, the one from u0 to uΛ, a path from uΛ to vΛ in
a shortest way, the path from vΛ to v0 and the one from v0 to v (see Figure 2).

Let π be the path given by Lemma 2.7.

Definition of E∗
+, E∗

− and B∗. Define E∗
−(T ) as the set of edges e such that e ∈ π \ B∞(sN, ℓΛ)

and E∗
+(T ) as the set of edges which are in B2,s,N but which are not in B∞(sN, ℓΛ) ∪ π. Recall that

{T ′ ∈ B∗(T )} is a shorthand for

{∀e ∈ E∗
+(T ), T ′(e) ≥ ν(N), ∀e ∈ E∗

−(T ), T ′(e) ≤ r + δ′, θNS1
ℓ

(T )T
′ ∈ AΛ}.

Fix η = p̃|B2,s,N |
P(T ∈ AΛ), where p̃ = min(F ([tmin, tmin + δ′]), F ([ν(N), tmax])). Thus, η only depends

on F , the pattern and N and we have

P (T ′ ∈ B∗(T )|T ) ≥ p̃|B2,s,N |
P(T ∈ AΛ) = η,
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B2,s,N

B∞(sN, ℓΛ)

B∞(sN, ℓΛ + 3)

u

v

u0 v0

uΛ

vΛ

π

γ0,u
γv,x

•

•

• •

•

•

Figure 2: Example of the construction of π in dimension 2.

Consequences of the modification. We denote by γ∗ the path γ0,u ∪ π ∪ γv,x. Note that γ∗ is a
self-avoiding path.

Lemma 2.8. We have T ∗(γ∗) < T (γ).

Proof. We have that γu,v visits at least one vertex in B1,s,N . Denote by w the first of these vertices.
Then, γu,w and γw,v are two geodesics, both between two vertices in B2,s,N . Using item 1 in Lemma 2.1,
γu,w and γw,v are entirely contained in B3,s,N . Thus, since B3,s,N is a typical box, using (2.5) and the
fact that ‖u − w‖1 ≥ (r2 − r1)N and ‖v − w‖1 ≥ (r2 − r1)N , we have

T (γu,v) ≥ 2N(r2 − r1)(tmin + δ).

Then, by the construction of π and of B∗(T ),

T ∗(π) ≤ (2r2N + K)(tmin + δ′) + τΛ,

where τΛ is fixed at (2.2). Thus,

T (γ) − T ∗(γ∗) ≥ 2N(r2(δ − δ′) − r1(tmin + δ)) − K(tmin + δ′) − τΛ.

By (2.7) and since 2N ≥ 1, we get T (γ) − T ∗(γ∗) > 0.

Lemma 2.9. Let γ∗ be a geodesic from 0 to x in the environment T ∗. Then γ∗ weakly crosses the box
B3,s,N and the first vertex of B2,s,N visited by γ∗ is u and the last is v. Furthermore, γ∗ takes the pattern
in B∞(sN, ℓΛ), γ∗

u,uΛ = πu,uΛ and γ∗
vΛ,v

= πvΛ,v.

Proof. Let γ∗ be a geodesic from 0 to x in the environment T ∗. By Lemma 2.8, T ∗(γ∗) < T (γ∗). Thus
γ∗ takes an edge of B2,s,N and by item (iii) of the definition of a typical box and since there is no edge
whose time has been modified outside B2,s,N , γ∗ can not take any edge of time greater than ν(N) in
B2,s,N . Indeed, assume that γ∗ takes an edge e such that T ∗(e) ≥ ν(N). Then, denoting by E(γ∗) the
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edges of γ∗ and using (2.4),

T ∗(γ∗) =
∑

f∈E(γ∗)∩B2,s,N

T ∗(f) +
∑

f∈E(γ∗)∩Bc
2,s,N

T ∗(f) ≥ ν(N) +
∑

f∈E(γ∗)∩Bc
2,s,N

T (f)

>
∑

f∈B2,s,N

T (f) +
∑

f∈E(γ∗)∩B2,s,N

T (f) ≥
∑

f∈E(γ∗)∩B2,s,N

T (f) +
∑

f∈E(γ∗)∩Bc
2,s,N

T (f) = T (γ∗),

which is impossible. Hence, γ∗ has to take edges of π or of the pattern and can not take other edges of
B2,s,N .

Since π does not visit any vertex on the boundary of B2,s,N except u and v, γ∗ has to visit u and
v and to follow π between u and uΛ and between vΛ and v. If γ∗

uΛ,vΛ leaves the pattern, it takes an

edge whose time is greater than ν(N), which is impossible. So, γ∗
uΛ,vΛ is a path entirely contained in

B∞(sN, ℓΛ) and is optimal for the passage time since γ∗ is a geodesic.
To conclude, let us show that u is visited by γ∗ before v. Assume that it is not the case. Then, there

exists γ∗
1 a geodesic from 0 to v and γ∗

2 a geodesic from u to x in the environment T ∗ which does not
take any edge in B2,s,N . Thus, there are also geodesics in the environment T . Then,

T (γ∗
1) + T (γ∗

2) ≤ t∗(0, x) < t(0, x) by Lemma 2.8.

By concatenating γ0,u and γ∗
2, we obtain a path from 0 to x. Thus,

T (γ0,u) + T (γ∗
2) ≥ t(0, x).

So T (γ∗
1) < T (γ0,u), which implies

T (γ∗
1) + T (γv,x) < T (γ0,u) + T (γv,x) ≤ t(0, x),

which is impossible since γ∗
1 ∪ γv,x is a path from 0 to x.

Using Lemma 2.9, we can prove Lemma 2.5. Indeed, by this previous lemma, every geodesic from 0
to x takes the pattern inside B2,s,N and the first item holds. For the third item, one can check that the
concatenation of γ0,u, πu,uΛ , one of the optimal paths for the passage time between uΛ and vΛ entirely

contained in B∞(sN, ℓΛ), πvΛ,v and γv,x gives a geodesic γ∗ which is associated to γ in B3,s,N (with
s1 = u and s2 = v). Finally, let us prove the second item. If γ∗ is a geodesic from 0 to x in the
environment T ∗, then γ∗

u,v is contained in B2,s,N . Furthermore,

T (γ0,u) = T ∗(γ0,u) ≥ T ∗(γ∗
0,u) = T (γ∗

0,u) ≥ T (γ0,u),

so T (γ∗
0,u) = T (γ0,u) and γ∗

0,u is a geodesic in the environment T . Similarly, γ∗
v,x is a geodesic in the

environment T . Hence, we get a not necessarily self-avoiding optimal path for the passage time by
considering π′ = γ∗

0,u ∪ γu,v ∪ γ∗
v,x. We get a geodesic γ′ which satisfies the properties of this item by

cutting the loops of π′ using a standard process5.

3 Bounded case

In this section, we assume that the support of F is bounded. In this case, Theorem 1.4 also follows from
Proposition 1.11. Our proof of Proposition 1.11 still follows the strategy given in the preceding section,
but the modification argument is more involved. Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern. We set
tmax = sup(support(F )). Remark that, because of (1.19), we have tmin + δ < tmax.

5Note that γ∗

0,u, γu,v and γ∗

v,x are three self-avoiding paths and that γ∗

0,u and γ∗

v,x do not have vertices in common. So
we can consider s1 the last vertex belonging to both path γ∗

0,u and γu,v in the order in which they are visited by γu,v and
s2 the first vertex belonging to both paths γs1,v and γ∗

v,x in the order in which they are visited by γu,v. Thus, since γu,v

is entirely contained in B3,s,N , s1 and s2 are two vertices contained in B3,s,N and we can take γ′ = γ∗

0,s1
∪ γs1,s2 ∪ γ∗

s2,x.
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3.1 Oriented pattern

The proof in the bounded case uses a modification argument in which we have to connect the pattern to
a straight path in a given direction. It is convenient to show the feasibility of this construction before
starting the modification. The following lemma, whose proof is in Appendix B, shows that it is indeed
feasible by proving that a pattern can be associated to d patterns (with a larger size), each having
endpoints aligned in a distinct direction, and each having the original pattern as a sub-pattern. By
direction, we mean one of the d directions of the canonical basis which is denoted by {ε1, . . . , εd}. Recall

Λ =

d∏

i=1

{0, . . . , Li}.

Lemma 3.1. There exists ℓ0 > max(L1, . . . , Ld) such that the following holds. Set Λ0 = {−ℓ0, . . . , ℓ0}d.
For all j ∈ {1, . . . , d}, there exists a pattern Pj = (Λ0, −ℓ0εj , ℓ0εj, AΛ0

j ) such that:

• P

(
AΛ0

j

)
is positive,

• on AΛ0

j , any path from −ℓ0εj to ℓ0εj optimal for the passage time among the paths entirely inside

Λ0 contains a subpath from uΛ to vΛ entirely inside Λ,

• AΛ0

j ⊂ AΛ.

We fix ℓ0, Λ0 and the patterns Pj, for j = 1, . . . , d, for the remaining of the proof. By definition, for
all j ∈ {1, . . . , d}, NP(π) ≥ NPj(π), and actually

NP(π) ≥
∑

x∈Zd

1{there exists j ∈ {1, . . . , d}, x satisfies the condition (π;Pj)}.

From now on, we forget the original pattern and only consider the oriented patterns Pj for all directions
j ∈ {1, . . . , d}. We talk about oriented pattern when its orientation is specified and we simply say
"pattern" when talking about one of the oriented patterns Pj. Consistently with these conventions and
to lighten notations, we write ℓΛ instead of ℓΛ

0 , Λ instead of Λ0 and AΛ
j instead of AΛ0

j .
Now, several parameters related to the distribution F have to be introduced. First, we fix a positive

real ν such that :

• tmin + δ ≤ ν ≤ tmax,

• F ([ν, +∞)) > 0,

• the event AΛ ∩ {∀e ∈ Λ, T (e) ≤ ν} has a positive probability.

Notice that, if F has an atom, one could have ν = tmax. Even if it means replacing AΛ
j by AΛ

j ∩ {∀e ∈
Λ, T (e) ≤ ν}, we can assume that

AΛ
j ⊂ {∀e ∈ Λ, T (e) ≤ ν}.

Further, we set τΛ = 2ℓΛν, which can be interpreted as an upper bound for the passage time of an optimal
path from ℓΛεj to −ℓΛεj on the event AΛ

j . Finally, we denote by T Λ the constant KΛ(tmax − tmin) where

KΛ is the number of edges in an oriented pattern. We will use it as an upper bound for the time that a
path can save using edges of a pattern after a modification.

3.2 Proof of Proposition 1.11 in the bounded case

We keep the overall plan of the unbounded case. Unlike in the unbounded case, we cannot use edges
of prohibitive time and thus the modification argument is more elaborate here. This section follows the
structure of Section 2.1 but the one step modification is replaced by a two-steps modification. To this
aim, we slightly change the structure of our boxes and our definition of typical boxes. Let us begin by
fixing some constants.
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Constants. Note that we keep the notations introduced in Section 1.7 and that τΛ and T Λ are fixed in
Section 3.1. In the next two paragraphs, we introduce the constants used in the proof. Before looking at

their definitions below, one can keep in mind that we fix ε ≪ 1 and r1 ≪
1

ε
≪ ∇ ≪ r2 ≪ r3 ≪ r4, where

"≪" means that the ratio is large enough and only depends on the dimension d and on the distribution
F .

• We fix δ′ = min

(
δ

4
,

δ

1 + d

)
.

• We fix L1 given by Lemma 3.11 only depending on d and ℓΛ, and L2 = L1 + (10 + d)ℓΛ.

• Using Theorem 1.6 with M = tmin + δ, we get two constants α > 0 and C, fixed for the rest of the
proof, such that for all n ∈ N

∗ and u, v ∈ Z
d such that ‖u − v‖1 = n,

P


∃ a geodesic γ from u to v such that

∑

e∈γ

1{T (e)≥tmin+δ} ≤ αn


 ≤ e−Cn. (3.1)

• Fix ε > 0 such that

ε < min

(
1

11
,

δ

24Cµ

)
.

• Fix ∇ such that

∇ > max

(
4(1 + tmax)Cµ

εcµ

, 6dL2Cµ,
8CµT Λ

3δ
, 4Cµ(2tmax + τΛ)

)
. (3.2)

We give here other lower bounds for ∇ that we need for the sequel and which are consequences of
(3.2).

– Using the fact that cµ ≤ Cµ, we get ∇ >
4Cµ

εcµ

>
1

ε
.

– From the inequality ∇ >
4(1 + tmax)Cµ

εcµ

, using the fact that ε <
1

11
, we have 1 − ε > 1 − 3ε >

1 − 10ε > ε and then ∇ >
1 + 2tmax

1 − ε
, ∇ >

4(1 + tmax)

1 − 10ε
and ∇ >

3 + 2tmax

1 − 3ε
.

– Since ε <
δ

24Cµ

and ∇ >
1

ε
, we get ∇ >

24Cµ

δ
.

– Finally, since δ − δ′ ≥
3δ

4
, we have from ∇ >

8CµT Λ

3δ
that ∇ >

2CµT Λ

δ − δ′
.

Boxes. With theses constants, we can now define boxes. For i ∈ {1, 2, 3, 4}, as in the unbounded case,
Bi,s,N is the ball of radius ri for the norm ‖.‖1 centered at the point sN with:

• r1 = d,

• r2 an integer such that

r2 > max

(
r1 +

2(∇ + 2)

cµ

, r1 + L1 +
3∇

cµ

+
2tmax(1 + (1 + d)ℓΛ)

ν

)
, (3.3)

• r3 an integer such that

r3 >
7r2(4tmax + αδ)

αδ
,

Note that r3 ≥ r2 + 1.

• r4 an integer such that

r4 >
r3(tmin + δ + tmax)

tmin + δ
. (3.4)

Note that r4 ≥ r3 + 1.

We use the word "box" to talk about B4,s,N . Recall that we denote by ∂Bi,s,N the boundary of Bi,s,N ,
that is the set of points z ∈ Z

d such that ‖z − sN‖1 = riN .
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Crossed boxes and weakly crossed boxes. We say that a path

• crosses a box B4,s,N if it visits a vertex in B1,s,N ,

• weakly crosses a box B4,s,N if it visits a vertex in B3,s,N .

Paths associated in a box. We say that two paths γ and γ′ from 0 to the same vertex x are associated
in a box B4,s,N if there exist two distinct vertices s1 and s2 such that the following conditions hold:

• γ and γ′ visit s1 and s2,

• γ0,s1 = γ′
0,s1

,

• γs1,s2 and γ′
s1,s2

are entirely contained in B4,s,N ,

• γs2,x = γ′
s2,x.

In particular, these two paths coincide outside B4,s,N .

Typical boxes. B4,s,N is called a typical box if it verifies the following properties:

(i) every geodesic γu,v from u to v entirely contained in B3,s,N with ‖u−v‖1 ≥ N has at least α‖u−v‖1

edges whose time is greater than or equal to tmin + δ,

(ii) every path π from u to v entirely contained in B4,s,N with ‖u − v‖1 ≥ N has a passage time
verifying:

t(π) ≥ (tmin + δ) ‖u − v‖1, (3.5)

(iii) for all u and v in B3,s,N , we have

(1 − ε)µ(u − v) − N ≤ t(u, v) ≤ (1 + ε)µ(u − v) + N.

As in the unbounded case, we need properties which are guaranteed with the definition of typical
boxes. We state them in the following lemma whose proof is given in Section 3.3.

Lemma 3.2. We have these three properties about typical boxes.

1. If B4,s,N is a typical box, for all points u0 and v0 in B3,s,N , every geodesic from u0 to v0 is entirely
contained in B4,s,N .

2. The typical box property only depends on the time of the edges in B4,s,N .

3. We have
lim

N→∞
P (B4,0,N is a typical box) = 1.

Successful boxes. For a fixed x ∈ Z
d, a box B4,s,N is successful if every geodesic from 0 to x takes a

pattern which is entirely contained in B2,s,N , i.e. if for every geodesic γ going from 0 to x, there exist
j ∈ {1, . . . , d} and xγ ∈ Z

d satisfying the condition (γ;Pj) such that B∞(xγ , ℓΛ) is contained in B2,s,N .

Annuli. Following the proof in the unbounded case, we define the annuli Ai,N with r = 2(r1 + r4 + 1)
and Gp(N) as in Section 2.1 but with the definitions of crossed and typical boxes defined here in Section
3.2. The bound on P(Gp(N)c) of Lemma 2.2 also holds here. The proof is exactly the same in this case
thanks to Lemma 3.2. For the rest of the proof, we fix C1, D1 and N0 given by Lemma 2.2.
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Modification argument. Fix K ′ = T Λ + 2(CµL1 + tmax(ℓΛ + 1)). Then, fix

N > max

(
N0,

12CµK ′

δ∇

)
, n ≥ 2rN and x ∈ Γn, (3.6)

(where Γn is defined at (1.15)). Fix p =
⌊ n

rN

⌋
and q =

⌊p

2

⌋
. For j ∈ {1, . . . , q}, we define Γj , S1

j , S2
j

and M(j) as in Section 2.1 but with the notions of typical and successful boxes defined here in Section
3.2. As in the unbounded case, the aim is to bound from above P(T ∈ M(q)) independently of x. For
the sequel, we use a two-steps modification. So we introduce two independent copies T ′ and T ′′ of the
environment T , the three being defined on the same probability space.

Fix ℓ ∈ {1, ..., q}. On {T ∈ M(ℓ)}, B4,S1
ℓ

(T ),N is a typical box crossed by the selected geodesic.

From this configuration, as a first step, we shall associate a set of edges E∗
+(T ) which is contained in

B3,S1
ℓ

(T ),N \ B2,S1
ℓ

(T ),N . It corresponds to the edges for which we want to reduce the time. Then, we get
a new environment T ∗ defined for all edge e by:

T ∗(e) =

{
T ′(e) if e ∈ E∗

+(T )
T (e) else.

(3.7)

From this environment, as a second step, we get three new subsets E∗∗
+ (T, T ′), E∗∗

− (T, T ′) and
E∗∗

P (T, T ′) of edges of B2,S1
ℓ

(T ),N which are respectively the edges for which we want to reduce the
time, to increase the time and the edges of the location where we want to put the pattern. We get a
third environment T ∗∗ defined for all edge e by:

T ∗∗(e) =

{
T ′′(e) if e ∈ E∗∗

+ (T, T ′) ∪ E∗∗
− (T, T ′) ∪ E∗∗

P (T, T ′)
T ∗(e) else.

(3.8)

Note that T ∗∗ and T do not have the same distribution. For y and z in Z
d, we denote by t∗(y, z) (resp.

t∗∗(y, z)) the geodesic time between y and z in the environment T ∗ (resp. T ∗∗). Similarly, we define for
c ∈ Z

d and t ∈ R+:

B∗(c, t) = {u ∈ Z
d : t∗(c, u) ≤ t} and B∗∗(c, t) = {u ∈ Z

d : t∗∗(c, u) ≤ t}. (3.9)

We formalize this modification in the next lemma and we will describe precisely the construction of E∗
+,

E∗∗
+ , E∗∗

− and E∗∗
P in the next subsection.

Lemma 3.3. There exists η = η(N) such that for all ℓ in {1, . . . , q}, there exist measurable functions
E∗

+ : (R+)E 7→ P(E), E∗∗
+ : (RE

+)2 7→ P(E), E∗∗
− : (RE

+)2 7→ P(E), E∗∗
P : (RE

+)2 7→ P(E) and
O : (RE

+)2 7→ {1, . . . , d} such that:

(i) E∗
+(T ), E∗∗

+ (T, T ′), E∗∗
− (T, T ′) and E∗∗

P (T, T ′) are pairwise disjoint and are contained in B3,S1
ℓ

(T ),

(ii) on the event {T ∈ M(ℓ)}, P (T ′ ∈ B∗(T )| T ) ≥ η and on the event {T ∈ M(ℓ)} ∩ {T ′ ∈ B∗(T )},
P (T ′′ ∈ B∗∗(T, T ′)| T, T ′) ≥ η, where {T ′ ∈ B∗(T )} is a shorthand for

{∀e ∈ E∗
+(T ), T ′(e) ≤ tmin + δ′},

and {T ′′ ∈ B∗∗(T, T ′)} is a shorthand for
{

∀e ∈ E∗∗
+ (T, T ′), T ′′(e) ≤ tmin + δ′, ∀e ∈ E∗∗

− (T, T ′), T ′′(e) ≥ ν, θNS1
ℓ

(T )T
′′ ∈ AΛ

O(T,T ′)

}
,

(iii) {T ∈ M(ℓ)} ∩ {T ′ ∈ B∗(T )} ∩ {T ′′ ∈ B∗∗(T, T ′)} ⊂ {T ∗∗ ∈ (M(ℓ − 1) \ M(ℓ))} and ‖S2
ℓ (T ∗∗) −

S1
ℓ (T )‖1 ≤ 2r4.

The proof of Lemma 3.3 is left to the reader. It is the same as the proof of Lemma 2.3, replacing the
use of Lemma 2.5 by the following one.

Lemma 3.4. There exists η = η(N) such that for all ℓ in {1, . . . , q}, there exist measurable functions
E∗

+ : (R+)E 7→ P(E), E∗∗
+ : (RE

+)2 7→ P(E), E∗∗
− : (RE

+)2 7→ P(E), E∗∗
P : (RE

+)2 7→ P(E) and
O : (RE

+)2 7→ {1, . . . , d} such that items (i) and (ii) of Lemma 3.3 are satisfied and such that if the
event {T ∈ M(ℓ)} ∩ {T ′ ∈ B∗(T )} ∩ {T ′′ ∈ B∗∗(T, T ′)} occurs, then we have the following properties:
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(i) in the environment T ∗∗, every geodesic from 0 to x takes the pattern inside B2,S1
ℓ

(T ),N ,

(ii) for all geodesic γ∗∗ from 0 to x in the environment T ∗∗, there exists a geodesic γ from 0 to x in
the environment T such that γ and γ∗∗ are associated in B4,S1

ℓ
(T ),N ,

(iii) there exists a geodesic γ∗∗ in the environment T ∗∗ from 0 to x such that γ∗∗ and the selected
geodesic γ in the environment T are associated in B4,S1

ℓ
(T ),N .

The proof of Lemma 3.4 is the aim of Section 3.4. We now conclude the proof of Proposition 1.11 in
the bounded case. The following lemma is the counterpart of Lemma 2.6 in this case.

Lemma 3.5. There exists λ ∈ (0, 1) which does not depend on n and on x ∈ Γn such that

P (T ∈ M(q)) ≤ λq.

Proof. Let ℓ be in {1, ..., q}. For every s ∈ Z
d and E∗∗ subset of edges of B3,s,N , let us consider the

environment T ∗∗
s,E∗∗ defined for all edge e by:

T ∗∗
s,E∗∗ =





T ′′(e) if e ∈ E∗∗ ∩ B2,s,N

T ′(e) if e ∈ E∗∗ ∩ (B3,s,N \ B2,s,N )
T (e) else.

We define E∗∗(T, T ′) = E∗
+(T ) ∪ E∗∗

+ (T, T ′) ∪ E∗∗
− (T, T ′) ∪ E∗∗

P (T, T ′). Thus, for every s and E∗∗, T ∗∗
s,E∗∗

and T have the same distribution and on the event {T ∈ M(ℓ)} ∩ {S1
ℓ (T ) = s} ∩ {E∗∗(T, T ′) = E∗∗},

T ∗∗ = T ∗∗
s,E∗∗ . Using this environment and writing with indicator functions the result (iii) of Lemma 3.3,

we have:

1{T ∈M(ℓ)}1{S1
ℓ

(T )=s}1{T ′∈B∗(T )}1{E∗∗(T,T ′)=E∗∗}1{T ′′∈B∗∗(T,T ′)} ≤ 1{
T ∗∗

s,E∗∗ ∈M(ℓ−1)\M(ℓ)
}1⋃

s′≈s

{
S2

ℓ
(T ∗∗

s,E∗∗ )=s′

}.

We take the expectation on both sides. The right side yields

P

(
T ∗∗

s,E∗∗ ∈ M(ℓ − 1) \ M(ℓ),
⋃

s′≈s

{S2
ℓ (T ∗∗

s,E∗∗) = s′}

)
= P

(
T ∈ M(ℓ − 1) \ M(ℓ),

⋃

s′≈s

{S2
ℓ (T ) = s′}

)
.

For the left side, we have

E

[
1{T ∈M(ℓ)}1{S1

ℓ
(T )=s}1{T ′∈B∗(T )}1{E∗∗(T,T ′)=E∗∗}1{T ′′∈B∗∗(T,T ′)}

]

=E

[
E

[
E

[
1{T ∈M(ℓ)}1{S1

ℓ
(T )=s}1{T ′∈B∗(T )}1{E∗∗(T,T ′)=E∗∗}1{T ′′∈B∗∗(T,T ′)}

∣∣∣T, T ′
]∣∣∣T

]]

=E

[
1{T ∈M(ℓ)}1{S1

ℓ
(T )=s}E

[
1{T ′∈B∗(T )}1{E∗∗(T,T ′)=E∗∗}P (T ′′ ∈ B∗∗(T, T ′)| T, T ′)

∣∣T
]]

.

Since on the event {T ∈ M(ℓ)}∩
{

S1
ℓ (T ) = s

}
∩{T ′ ∈ B∗(T )}∩{E∗∗(T, T ′) = E∗∗}, P (T ′′ ∈ B∗∗(T, T ′)| T, T ′)

is bounded from below by η, the left side is bounded from below by

ηE
[
1{T ∈M(ℓ)}1{S1

ℓ
(T )=s}E

[
1{T ′∈B∗(T )}1{E∗∗(T,T ′)=E∗∗}

∣∣T
]]

.

Then, by summing on all E∗∗ subsets of edges of B3,s,N and writing K a constant which does not depend
on s and which bounds from above the number of different subsets of edges of B3,s,N , we get

η

K
E

[
1{T ∈M(ℓ)}1{S1

ℓ
(T )=s}P (T ′ ∈ B∗(T )| T )

]
≤ P

(
T ∈ M(ℓ − 1) \ M(ℓ),

⋃

s′≈s

{S2
ℓ (T ) = s′}

)
.

Now, on the event {T ∈ M(ℓ)} ∩ {S1
ℓ (T ) = s}, P (T ′ ∈ B∗(T )| T ) is bounded from below by η, so the

left side is bounded from below by

η2

K
P
(
T ∈ M(ℓ), S1

ℓ (T ) = s
)

.
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Then, by summing on all s ∈ Z
d and writing K ′ a constant which bounds from above for all s ∈ Z

d the
number of vertices s′ ∈ Z

d such that s′ ≈ s, we get

η2

KK ′
P(T ∈ M(ℓ)) ≤ P(T ∈ M(ℓ − 1) \ M(ℓ)).

Now, since M(ℓ) ⊂ M(ℓ − 1),

P(T ∈ M(ℓ − 1) \ M(ℓ)) = P (T ∈ M(ℓ − 1)) − P (T ∈ M(ℓ)) .

Thus,
P(T ∈ M(ℓ)) ≤ λP(T ∈ M(ℓ − 1)),

where λ =
1

1 + η2

KK′

∈ (0, 1) does not depend on x. Hence, using P(T ∈ M(0)) = 1, we get by induction

P(T ∈ M(q)) ≤ λq.

From Lemma 3.5, the proof of Proposition 1.11 is the same as in the unbounded case.

3.3 Properties of a typical box

In this section, we state and prove the following lemma, which gives us properties of typical boxes useful
for the modification argument, and the proof of Lemma 3.2.

Lemma 3.6. If B4,s,N is a typical box, we have the following properties.

(i) For all u and v in B3,s,N with ‖u − v‖1 ≥ K ′′N where K ′′ =
1

εcµ

> 0,

(1 − 2ε)µ(u − v) ≤ t(u, v) ≤ (1 + 2ε)µ(u − v).

(ii) For all z ∈ B3,s,N , for all r > 0, for all N ∈ N
∗,

B3,s,N ∩ B(z, Nr) ⊂ B3,s,N ∩ Bµ

(
z,

N(r + 1)

1 − ε

)
,

and if r ≥
1

ε
− 2,

B3,s,N ∩ Bµ

(
z,

N(r + 1)

1 − ε

)
⊂ B3,s,N ∩ Bµ

(
z,

Nr

1 − 2ε

)
.

(iii) For all z ∈ B3,s,N , for all r > 0, for all N ∈ N
∗,

B3,s,N ∩ Bµ(z, Nr) ⊂ B3,s,N ∩ B (z, N((1 + ε)r + 1)) ,

and if r ≥
1

ε
,

B3,s,N ∩ B (z, N((1 + ε)r + 1)) ⊂ B3,s,N ∩ B (z, (1 + 2ε)Nr) .

Proof. (i) Let u and v be in B3,s,N with ‖u − v‖1 ≥ K ′′N . Then, since B4,s,N is a typical box, we
have

(1 − ε)µ(u − v) − N ≤ t(u, v) ≤ (1 + ε)µ(u − v) + N.

The requirement on u and v implies
N

cµ

≤ ε‖u − v‖1,

so εµ(u − v) ≥ N .
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(ii) and (iii) In both cases, it is easy to check that the first inclusion follows from property (iii) of a
typical box and an easy computation using (i) shows the second inclusion.

Proof of Lemma 3.2.

1. Let B4,s,N be a typical box and u0 and v0 two points of B3,s,N . Then, taking paths minimizing
the distance for the norm ‖.‖1 between u0 and sN and between v0 and sN , we have t(u0, v0) ≤
2r3Ntmax. Then, if a geodesic γu0,v0 takes an edge which is not in B4,s,N , since r4 ≥ r3 + 1, using
the item (ii) of the definition of a typical box leads to

T (γu0,v0 ) ≥ 2(r4 − r3)N(tmin + δ),

which is impossible since r4 >
r3(tmin + δ + tmax)

tmin + δ
. Note that we only use item (ii) of the definition

of a typical box to prove this property.

2. It is clear that the first property only depends on the time of edges in B3,s,N and the second only
depends on the time of edges in B4,s,N . For the third property, by the preceding item, we know
that for all points w1 and w2 in B3,s,N , the knowledge of the time of all edges in B4,s,N allows us
to determine t(w1, w2), so to know if the two inequalities are satisfied.

3. For each item of the definition of a typical box, we show that the probability that B4,0,N satisfies
this item goes to 1. To show that the probability that item (ii) of the definition of a typical box is
satisfied goes to 1, we use the same proof as for (ii) in the proof of Lemma 2.1, replacing r2 − r1

by 1 and B3,s,N by B4,s,N . Further, using (3.1) and a similar computation as for item (ii) in the
proof of Lemma 2.1, we get:

P(B4,0,N satisfies (i)) −−−−→
N→∞

1.

To prove that
P(B4,0,N satisfies (iii)) −−−−→

N→∞
1,

recall that ε is fixed in Section 3.2 and fix ρ =
1

2d((1 + ε)Cµ + tmax)
. Let us consider the following

property for N large enough to have ⌊ρN⌋ 6= 0:

∀u′, v′ ∈ ⌊ρN⌋Zd ∩ B3,0,N , |t(u′, v′) − µ(u′ − v′)| ≤ εµ(u′ − v′). (3.10)

By (1.18), by stationarity, and since
∣∣⌊ρN⌋Zd ∩ B3,0,N

∣∣ is uniformly bounded in N , we get

P ((3.10) holds) −−−−→
N→∞

1.

Finally, the proof is completed by showing that (3.10) implies that B4,0,N satisfies (iii). Assume
(3.10) and let u and v be two vertices in B3,0,N . The aim is to show

|t(u, v) − µ(u − v)| ≤ εµ(u − v) + N. (3.11)

Let u′, v′ ∈ ⌊ρN⌋Zd ∩ B3,0,N such that ‖u − u′‖1 ≤ dρN and ‖u − u′‖1 ≤ dρN . Thus,

|t(u, v) − µ(u − v)| ≤ |t(u, v) − t(u′, v′)| + |t(u′, v′) − µ(u′ − v′)| + |µ(u′ − v′) − µ(u − v)|.

By (3.10), |t(u′, v′) − µ(u′ − v′)| ≤ εµ(u′ − v′). Furthermore,

|µ(u − v) − µ(u′ − v′)| ≤ µ(u − u′) + µ(v − v′) ≤ (‖u − u′‖1 + ‖v − v′‖1)Cµ ≤ 2dρNCµ.

Similarly

|t(u, v) − t(u′, v′)| ≤ t(u, u′) + t(v, v′) ≤ (‖u − u′‖1 + ‖v − v′‖1)tmax ≤ 2dρNtmax,

Thus, we get
|t(u, v) − µ(u − v)| ≤ εµ(u − v) + 2dρN(tmax + (1 + ε)Cµ).

We get (3.11) thanks to the choice of ρ.
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3.4 Modification argument

In this section, we prove Lemma 3.4.

3.4.1 Mains ideas of the proof

3.4.1.1 Framework. Before proving in detail Lemma 3.4, we give the main ideas of the proof of
the modification argument. We consider a geodesic γ crossing a typical box. Recall that this box is
composed of four concentric balls of different size, denoted6 by B1, B2, B3 and B4, and that γ visits at
least one vertex in B1. Recall also that the radii of the balls satisfy r1 ≪ r2 ≪ r3 ≪ r4. The aim is to
modify the environment to get the following properties:

1. Every geodesic in the new environment takes the pattern in B2.

2. Every geodesic in the new environment is associated in B4 with a geodesic in the first environment.

3. The geodesic γ is associated in B4 with at least one geodesic in the new environment.

3.4.1.2 First modification. Let us begin with some notations.

• We denote by Dbefore the set of edges e verifying the following three conditions:

– γ takes e between its first entry in B3 and its first entry in B2.

– e belongs to B3 but e does not belong to B2.

– T (e) > tmin + δ.

We denote by s1 the first vertex in Dbefore visited by γ.

• Dafter and s2 are symmetrically defined. In particular, s2 is the last vertex of Dafter visited by γ.

• We set D = Dbefore ∪ Dafter.

The first modification simply consists in reducing the passage times of edges in D below tmin + δ′ (with
0 < δ′ < δ properly chosen). This provides a localization of the geodesics in the new environment T ∗:
they all take all edges of D (see Lemma 3.7 where D is called E∗

+(T )). Note also that γ remains a geodesic
in the environment T ∗. One could easily deduce that any geodesic in this new environment visits s1 and
s2 and then that properties 2 and 3 about associated geodesics hold. The point is that these properties
will be preserved by the second modification whose influence on time is negligible with respect to the
first modification.

3.4.1.3 Second modification.

Framework and overall plan. The selected geodesic γ visits at least one vertex of B1, let us
denote by c0 the first of them. We denote by u1 the first vertex of γ such that T (γu1,c0) ≤ ∇N and v1

the last vertex of γ such that T (γc0,v1) ≤ ∇N (see (3.18)). Since the box is typical and since r1 and ∇
are small enough compared with r2, all that we consider (here and in what follows) takes place in B2

where the environments T and T ∗ coincide (see Lemma 3.8).
The rough plan is to modify the environment between u1 and v1:

1. We consider an oriented path π from u1 to v1 and we make the passage times on its edges very
small: this is our highway.

2. We put the pattern somewhere on π.

3. We make the passage times on the other edges in a certain neighborhood (to be defined) very large:
these are our walls.

6We denote Bi instead of Bi,s,N to lighten the notations in this subsection which is less formal than the proof.
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Requirements for π. It is quite simple and it is stated in Lemma 3.11. We want it to be close
to the segment [u1, v1] of Rd: this will allow us to have good estimates on the relevant times. We also
require that the path contains towards its middle a sequence of steps in the same direction: this will
allow us to place the pattern there. We call this sequence of steps the central segment of π. There is,
however, a small difficulty: we can not choose the orientation of the central segment. That is why we
need to be able to place the original pattern in an overlapping pattern of arbitrary orientation (this is
the purpose of Lemma 3.1).

Requirements for the neighborhood of the walls. This point is less simple. We do not want
to put walls on edges of γ \ γu1,v1 but we also do not want that these edges affect our estimates. Ideally,
we would like the only relevant edges, apart those from π and the pattern-location, to be walls. This
can be done in a non technical way as follows. Set

B∗(0) = B∗(0, T ∗(0, u1)) and B∗(x) = B∗(x, T ∗(x, v1)).

There are three types of edges:

• The "before" edges: the ones belonging to B∗(0).

• The "after" edges: the ones belonging to B∗(x).

• The "intermediate" edges: all other edges.

Since γ is a geodesic in the environment T ∗, γ takes "before" edges, then "intermediate" edges and then
"after" edges. Note that the edges of Dbefore are "before" edges and that the edges of Dafter are "after"
edges.

We can then define the neighborhood on which we put walls: this is the set of "intermediate" edges of
B2 which do not belong to π and to the pattern-location. We call these edges the "wall" edges. The idea
is that, as explained at (3.12), if π∗∗ is a part of a geodesic from 0 to x in the environment T ∗∗ linking
two vertices outside B∗(0) and B∗(x), then π∗∗ only takes "intermediate" edges. Hence, if in addition
π∗∗ does not take edges of π and is entirely contained in B2, then π∗∗ only takes "wall" edges or edges
of the pattern-location: this will ensure in the end that every geodesic takes the pattern.

It makes sense. Recall that γ is still a geodesic in the environment T ∗ and that it visits u1 and
then c0. Using the definition of B∗(0) and the triangle inequality, we get

T ∗(B∗(0), c0) ≥ T ∗(u1, c0) = T (u1, c0) ≈ ∇N.

In particular, the distance for the norm ‖ · ‖1 between B∗(0) and c0 is at least of order ∇N . The same
applies to the distance for the norm ‖ · ‖1 between B∗(x) and c0. Thus there is enough room for the
central segment and the pattern since their size is of order 1 (see Lemma 3.13).

The second modification.

• We put the pattern somewhere on the "central segment".

• With the exception of the edges of π connected to B∗(0) or B∗(x), we put the time of every
"intermediate" edge of π which is not in the pattern below tmin + δ′.

• We put the time of every other "intermediate" edge of B2 which does not belong to π and whose
time is lower than ν greater than or equal to ν (recall that in particular we take ν such that, in
the pattern, the passage time of every edge is lower than or equal to ν).

Consequences. In what follows, we denote by γ∗∗ a geodesic in the environment T ∗∗.

1. Since the passage times of the "before" and "after" edges have not been modified and since the
passage times of the "intermediate" edges touching B∗(0) or B∗(x) have not been reduced, B∗(0)
remains a ball centered in 0 for the passage times of the environment T ∗∗ and similarly for B∗(x)
(see again Lemma 3.13). Hence,

γ∗∗ takes "before" edges, then "intermediate" edges and then "after" edges. (3.12)
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2. The creation of the highway on π makes the passage time from 0 to x lower (as stated in Lemma
3.14, it allows to save a time of order ∇N ; it can be seen by taking a geodesic from 0 to the last
vertex of π belonging to B∗(0), then following π, then taking a geodesic from the first vertex of π
belonging to B∗(x) to x). Hence γ∗∗ takes an edge whose time has been reduced during the second
modification and thus

γ∗∗ takes an edge of π whose time has been reduced or an edge

of the pattern (and thus an "intermediate" edge of B2).
(3.13)

3. The time saved during the first modification (of order r3) is such that every geodesic in the
environment T ∗∗ from 0 to a vertex w in B2 has to take an edge of D (i.e. an edge whose time has
been reduced during the first modification). If it was not the case, a path following γ until B2 and
then taking edges of B2 to go to w would have a passage time smaller (we use here that r3 ≫ r2).
This is similar for a geodesic between a vertex of B2 and x. Hence, as stated in Lemma 3.17,

γ∗∗ takes an edge of D before and after visiting B2. (3.14)

4. Recall that D = Dbefore ∪Dafter, that the edges of Dbefore are "before" edges and that those of Dafter

are "after" edges. Combining (3.12), (3.13) and (3.14) we get that

γ∗∗ takes an edge of Dbefore then an edge of π whose time has been reduced

or an edge of the pattern and then an edge of Dafter.
(3.15)

We can easily deduce from this that γ∗∗ visits s1 just before taking the first edge whose time
has been modified and visits s2 just after taking the last edge whose time has been modified (see
Lemma 3.18). Then we can deduce the desired properties about associated geodesics. It remains
to prove that γ∗∗ takes the pattern in B2.

5. Let us now prove that

γ∗∗ takes an edge of π whose time has been reduced before (with respect to π)

the pattern and after (with respect to π) the pattern.
(3.16)

This is the purpose of Lemma 3.20. By symmetry it is sufficient to prove the first part of this
property. To this aim, it is sufficient to consider a vertex w in the pattern or on π between the
pattern and B∗(x) and to prove

T ∗∗(B∗(0), w) < T ∗(B∗(0), w).

But T ∗(B(0), w) ≥ T ∗(B∗(0), B∗(x)) − T ∗(B∗(x), w) and

T ∗(B∗(0), B∗(x)) = T ∗(u1, v1) = T (u1, v1) ≈ µ(u1 − v1)

while
T ∗(B∗(x), w) ≤ T ∗(v1, w) = T (v1, w) ≈ µ(v1 − w).

Thus (since the three vertices are roughly aligned in the correct order):

T ∗(B(0), w) & µ(u1 − v1) − µ(v1 − w) ≈ µ(u1 − w).

But (following π) we have
T ∗∗(B∗(0), w) . (tmin + δ′)‖w − u1‖

and the result holds.

6. By (3.16) and the remark made after the definition of walls, we can easily deduce that γ∗∗ takes
the pattern we have put on π (see Lemma 3.21).
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B4,s,N

B3,s,N

B2,s,N

B1,s,N

γ

u

v

u0

v0

•

•

•

•

Figure 3: Elements involved in the first modification. The edges whose time can be modified by the
first modification are represented in red.

3.4.2 First modification

Let us go back to the proof. For the rest of Section 3.4, we fix ℓ ∈ {1, . . . , q} and s ∈ Z
d, and we

assume that the event {T ∈ M(ℓ)} ∩
{

S1
ℓ (T ) = s

}
occurs. In particular, B4,s,N is a typical box in the

environment T .
As explained above, the first modification is used to get that any geodesic from 0 to x in the new

environment goes from 0 to a specific vertex in B4,s,N , then follows γ to another specific vertex in
B4,s,N and then goes to x. It is useful to get the properties about associated geodesics after the second
modification. We denote by γ the selected geodesic in the environment T . Recall the definition of entry
and exit points given at the beginning of Section 2.3. Let u denote the entry point of γ in B3,s,N and v
the exit point, and let u0 denote the entry point of γ in B2,s,N and v0 its exit point. Then, we set

E∗
+(T ) = {edges of B3,s,N that belong to γu,u0 or γv0,v and satisfy T (e) > tmin + δ} . (3.17)

We denote the first edge of γ that belongs to E∗
+(T ) by e1 and the last one by e2. Moreover, s1 denote

the first vertex of e1 visited by γ and s2 the last vertex of e2 visited by γ. Assume that the event

{T ∈ M(ℓ)} ∩
{

S1
ℓ (T ) = s

}
∩ {T ′ ∈ B∗(T )} occurs,

where B∗(T ) is defined in (ii) of Lemma 3.3. Recall the definition of T ∗ in (3.7). Note that:

• only the time of the edges of E∗
+(T ) have been modified,

• these edges belong to γ and to B3,s,N \ B2,s,N ,

• for all edges in E∗
+(T ), we have T ∗(e) ≤ tmin + δ′ < tmin + δ ≤ T (e),

• for all other edges e, we have T ∗(e) = T (e).

Lemma 3.7. We have the following properties.

(i) There are at least α(r3 − r2)N edges of γu,u0 and α(r3 − r2)N edges of γv0,v that belong to E∗
+(T ).

Thus,
min (T (γ0,u0) − T ∗(γ0,u0 ), T (γv0,x) − T ∗(γv0,x)) ≥ α(r3 − r2)N(δ − δ′).

(ii) In the environment T ∗, every geodesic from 0 to x visits every edge of E∗
+(T ).

(iii) In the environment T ∗, γ is a geodesic from 0 to x.
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Proof. (i) This item follows from the first property of a typical box applied to the portion of γu,u0

entirely contained in B3,s,N going from ∂B3,s,N to u0 and to the portion of γv0,v entirely contained
in B3,s,N going from v0 to ∂B3,s,N (note that these two portions does not have edges in common).

(ii) To prove the second point, let γ∗ be a geodesic from 0 to x in the environment T ∗. Assume that
there exists an edge of E∗

+(T ) which is not an edge of γ∗. Then

T (γ∗) − T ∗(γ∗) < T (γ) − T ∗(γ).

Since γ is a geodesic from 0 to x in the environment T , we have T (γ) ≤ T (γ∗), which implies

0 ≤ T (γ∗) − T (γ) < T ∗(γ∗) − T ∗(γ).

Thus T ∗(γ) < T ∗(γ∗), which contradicts the fact that γ∗ is a geodesic from 0 to x in the environment
T ∗.

(iii) Let us now assume that γ is not a geodesic in the environment T ∗. Hence, if we denote by γ∗ a
geodesic from 0 to x, we have T ∗(γ∗) < T ∗(γ). By item (ii),

T (γ∗) − T ∗(γ∗) = T (γ) − T ∗(γ).

Thus, T (γ∗) < T (γ), which contradicts the fact that γ is a geodesic in the environment T .

3.4.3 Construction of π

Here, we shall identify an oriented path π between two vertices of γ in B2,s,N . This oriented path is later
used to place the pattern. Let c0 denote the entry point of γ in B1,s,N and recall the definition of ∇ in

(3.2). Since by (3.3), r2 ≥ r1 +
∇

cµ

, Bµ(c0, N∇) ∩ Z
d is entirely contained in B2,s,N . We introduce

u1 the entry point of γ in Bµ(c0, N∇) ∩ Z
d and v1 the exit point. (3.18)

Lemma 3.8. We have µ(u1 − v1) ≥ N∇ and γu1,v1 is contained in B2,s,N .

Remark 3.9. The idea of the proof is that µ(u1 − v1) is roughly equal to t(u1, v1). Furthermore,
since γ is a geodesic visiting u1, c0 and v1 in this order, we have t(u1, v1) = t(u1, c0) + t(c0, v1). So
µ(u1 − v1) ≈ µ(u1 − c0) + µ(v1 − c0) ≈ 2N∇. We have a sufficient control over the approximations to
guarantee a lower bound by N∇.

Proof. Using item (ii) of Lemma 3.6 with z = c0 and r = ∇(1 − ε) − 1 leads to

B(c0, N(∇(1 − ε) − 1)) ∩ B3,s,N ⊂ Bµ(c0, N∇) ∩ B3,s,N = Bµ(c0, N∇) ∩ Z
d. (3.19)

Since u1 is the entry point of a path in Bµ(c0, N∇), there exists a vertex u1 ∈ B3,s,N such that ‖u1 −
u1‖1 = 1 and u1 /∈ Bµ(c0, N∇). By (3.19), t(c0, u1) ≥ N(∇(1 − ε) − 1), so

t(c0, u1) ≥ t(c0, u1) − t(u1, u1)︸ ︷︷ ︸
≤‖u1−u1‖1tmax

.

The same argument holds for t(c0, v1). Hence

t(u1, v1) = t(u1, c0) + t(c0, v1) ≥ 2N(∇(1 − ε) − 1) − 2tmax.

Thus, since ∇ >
3 + 2tmax

1 − 3ε
, by the third item of the definition of a typical box,

µ(u1 − v1) ≥
N(2∇(1 − ε) − 3) − 2tmax

1 + ε
≥ N∇.
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For the second part of the proof, using the third item of Lemma 3.6 with z = c0 and r = ∇ leads to

Bµ(c0, N∇) ∩ Z
d ⊂ B(c0, ((1 + ε)∇ + 1)N).

Then, by (3.3) we have r2 > r1 +
2(∇ + 2)

cµ

. So, for all z ∈ Bµ(c0, 2N(∇ + 2)), we have

‖z − sN‖1 ≤ ‖z − c0‖1 + ‖c0 − sN‖1 ≤

(
2(∇ + 2)

cµ

+ r1

)
N < r2N.

So, we have Bµ(c0, 2N(∇ + 2)) ∩ Z
d ⊂ B2,s,N and since ε < 1

3 , we have

Bµ

(
c0, N

(1 + ε)∇ + 2

1 − ε

)
⊂ Bµ(c0, 2N(∇ + 2)).

Thus, by the second item of Lemma 3.6 with z = c0 and r = ∇, we get

B(c0, ((1 + ε)∇ + N)) ⊂ Bµ

(
c0, N

(1 + ε)∇ + 2

1 − ε

)
∩ Z

d ⊂ Bµ(c0, 2N(∇ + 2)) ∩ Z
d.

To sum up,
Bµ(c0, N∇) ∩ Z

d ⊂ B(c0, (1 + ε)N∇ + N) ⊂ B2,s,N .

Now, assume that γu1,v1 visits a vertex which is not in B2,s,N . Let denote by z such a vertex and assume
for example that z is visited by γu1,c0 . Then, we have, thanks to these inclusions, t(c0, z) > t(c0, u1),
which is impossible since γu1,c0 is a geodesic.

Lemma 3.10. Recall the definition of B∗ given at (3.9) and that T ∗(γ0,u1 ) = t∗(0, u1) and T ∗(γv1,x) =
t∗(v1, x).

(i) We have the following inclusions:

B∗(0, T ∗(γ0,u1)) ⊂ B(0, t(0, u1)) and B∗(x, T ∗(γv1,x)) ⊂ B(x, t(v1, x)).

(ii) We have
B∗(0, T ∗(γ0,u1 )) ∩ B∗(x, T ∗(γv1,x)) = ∅.

Proof. (i) Let s′ be a vertex in B∗(0, T ∗(γ0,u1 )). The aim is to show

t(0, s′) ≤ t(0, u1).

Let γ∗ be a geodesic from 0 to s′ in the environment T ∗. We denote by s∗ the last vertex visited
by γ∗ among those visited by γ (note that 0 is such a vertex). First, since γ∗

s∗,s′ does not take an
edge of γ, T ∗(γ∗

s∗,s′) = T (γ∗
s∗,s′). Then, by Lemma 3.8, γu1,v1 is entirely contained in B2,s,N , so

T ∗(γu1,v1) = T (γu1,v1). Thus, also by Lemma 3.8, T ∗(γu1,v1) > 0. So γ∗ does not take an edge
of γv1,x. Otherwise, since γ is a geodesic in the environment T ∗, t∗(0, s′) ≥ T ∗(γ0,v1 ) > T ∗(γ0,u1 ).
Hence, the time saved by γ∗ after the modification comes only from the edges of γ0,u1 . So,

T (γ∗
0,s∗) − T ∗(γ∗

0,s∗) ≤ T (γ0,u1) − T ∗(γ0,u1 ). (3.20)

Hence,

t(0, s′) ≤ T (γ∗
0,s∗) + T (γ∗

s∗,s′)

≤ T (γ0,u1) − T ∗(γ0,u1 ) + T ∗(γ∗
0,s∗) + T ∗(γ∗

s∗,s′)
︸ ︷︷ ︸

=t∗(0,s′)

by (3.20),

= t∗(0, s′) + T (γ0,u1) − T ∗(γ0,u1)

≤ T ∗(γ0,u1 ) + T (γ0,u1) − T ∗(γ0,u1) since s′ ∈ B∗(0, T ∗(γ0,u1 )),

= t(0, u1),

which proves the inclusion and the same proof gives us the second inclusion.
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(ii) Let s′ be a point of B∗(0, T ∗(γ0,u1 )) ∩ B∗(x, T ∗(γv1,x)). Then

t(0, x) ≤ t(0, s′) + t(s′, x)

≤ t(0, u1) + t(v1, x) by (i)

< t(0, x)

since γ is a geodesic visiting 0, u1, v1 and x in this order and since t(u1, v1) > 0, which is a
contradiction.

Now, we can make the construction of π, which is the path on which we would like to put the pattern
that the geodesics have to take. We begin by two definitions:

• We say that a path between two vertices y1 and y2 is oriented if its number of edges is equal to
‖y1 − y2‖1.

• A step of length ℓ is a path of ℓ consecutive edges in the same direction.

We state the following lemma whose proof is left to the reader and where [u1, v1] is the segment in R
d

and ‖.‖1 is the norm on R
d.

Lemma 3.11. We can construct a path π with a deterministic rule such that:

(i) π is an oriented path connecting u1 and v1,

(ii) π is the concatenation of steps of length 10ℓΛ except in B∞(v1, 10ℓΛ), where π takes steps of length
1,

(iii) there exists a constant L1 ∈ R+ only depending on ℓΛ and d such that for all z ∈ Z
d which is in π,

the distance for the norm ‖.‖1 between z and [u1, v1] is bounded by L1, and for all y ∈ [u1, v1], the
distance for the norm ‖.‖1 between y and π (seen as a set of vertices in Z

d) is bounded by L1.

Let π be the path given by Lemma 3.11. We introduce

u2 the first vertex of π starting from v1 in B∗(0, T ∗(γ0,u1 )), (3.21)

v2 the first vertex of π starting from u1 in B∗(x, T ∗(γv1,x)). (3.22)

Remark that t∗(0, u2) ≤ t∗(0, u1) and t∗(v2, x) ≤ t∗(v1, x).

Lemma 3.12. The path π is contained in B2,s,N .

Proof. Let z be a vertex of π. Using Lemma 3.11, there exists y ∈ [u1, v1] such that ‖z − y‖1 ≤ L1. The
vertices u1 and v1 belong to Bµ(c0, N∇) which is convex, thus y ∈ Bµ(c0, N∇). So, we have

‖z − sN‖1 ≤ ‖z − y‖1︸ ︷︷ ︸
≤L1

+ ‖y − c0‖1︸ ︷︷ ︸
≤

µ(y−c0)
cµ

+ ‖c0 − sN‖1︸ ︷︷ ︸
≤r1N

≤ L1 +
N∇

cµ

+ r1N since y ∈ Bµ(c0, N∇),

≤ r2N by (3.3),

which proves that z ∈ B2,s,N .

3.4.4 Second modification

Now, let us define E∗∗
P , E∗∗

+ , E∗∗
− and O. Let c1 ∈ R

d denote the midpoint of [u1, v1] and let us consider
the set of all vertices of πu2,v2 at distance at most L1 for the norm ‖.‖1 from c1. This set is not empty,
hence we can choose one such vertex with a deterministic rule. Recall that L2 = L1 + (10 + d)ℓΛ. Since
∇ ≥ 6dL2Cµ (see (3.2)), we have that the distance for the norm ‖.‖∞ between the chosen vertex and
v1 is greater than 10ℓΛ. So there exist one or two steps of the path π of length 10ℓΛ that contain the
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chosen vertex. We chose one step (between these one or two steps) with a deterministic rule to put the
pattern. We denote the midpoint of this chosen step by cP . Then,

O(T, T ′) is equal to the direction of this step, (3.23)

and E∗∗
P (T, T ′) =

{
edges connecting vertices belonging to B∞(cP , ℓΛ)

}
. (3.24)

Note that by the direction of a step, we mean the integer j such that for every distinct vertices z1 and
z2 of this step, z1 − z2 = ±‖z1 − z2‖1εj. Note also that for all vertex z in B∞(cP , ℓΛ),

‖z − c1‖1 ≤ L2.

We define u3 and v3 as the endpoints of the oriented pattern such that π visits u2, u3, v3 and v2 in
this order. Recall that for a pattern, the entry and exit points correspond to the endpoints given by the
definition of this pattern. Note that, thanks to the construction, u3 and v3 are two vertices of the chosen
step of length 10ℓΛ. We denote by γπ the path composed by the first geodesic in the lexicographic order
from 0 to u2 in the environment T ∗, then πu2,v2 and then the first geodesic in the lexicographic order
from v2 to x in the environment T ∗. Then, we have to define E∗∗

+ (T, T ′) and E∗∗
− (T, T ′):

E∗∗
+ (T, T ′) = {edges of πu2,u3 ∪ πv3,v2 except the one connected to u2 and the one connected to v2} ,

(3.25)

E∗∗
− (T, T ′) = {edges e in B2,s,N such that T (e) < ν and which are not

in E∗∗
P (T, T ′), πu2,u3 ∪ πv3,v2 , B∗(0, T ∗(γ0,u1 )) or B∗(x, T ∗(γv1,x))}. (3.26)

For all the sequel, we assume that the event

{T ∈ M(ℓ)} ∩
{

S1
ℓ (T ) = s

}
∩ {T ′ ∈ B∗(T )} ∩ {T ′′ ∈ B∗∗(T, T ′)} occurs.

Recall the definition of the environment T ∗∗ given at (3.8) and of B∗∗(T, T ′) given in Lemma 3.3. In
particular,

• for all e ∈ E∗
+(T ), T ∗∗(e) = T ∗(e) < T (e),

• for all e ∈ E∗∗
+ (T, T ′), T ∗∗(e) ≤ tmin + δ′,

• for all e ∈ E∗∗
− (T, T ′), T ∗∗(e) ≥ ν > T (e) = T ∗(e),

• since by Lemma 3.12, π is contained in B2,s,N , we have that E∗∗
+ (T, T ′), E∗∗

− (T, T ′) and E∗∗
P (T, T ′)

are pairwise disjoint and are contained in B2,s,N . Thus, since E∗
+(T ) is contained in B3,s,N \B2,s,N ,

item (i) of Lemma 3.3 is satisfied.

In what follows, when we talk about edges whose time has been reduced, it means the edges e such that
T ∗∗(e) < T (e). Before proving item (ii) of Lemma 3.3, we state the following lemma which completes
the vision of the sets E∗∗

+ (T, T ′), E∗∗
− (T, T ′) and E∗∗

P (T, T ′). Recall the definition of B∗∗ given at (3.9).

Lemma 3.13. We have B∗∗(0, T ∗(γ0,u1 )) = B∗(0, T ∗(γ0,u1 )), B∗∗(x, T ∗(γv1,x)) = B∗(x, T ∗(γv1,x)) and
there is no edge of E∗∗

P (T, T ′) in any of these balls.

Proof. We begin by proving that there is no edge of E∗∗
P (T, T ′) in B∗(0, T ∗(γ0,u1 )). To this aim, we

prove that there is no vertex of B∞(cP , ℓΛ) in this ball. Let z be a vertex of B∞(cP , ℓΛ). The idea is
the following. Since γ is a geodesic in the environment T ∗, since the time of the edges of γu1,v1 is not
modified by the first modification and since B4,s,N is a typical box in the environment T , for every w
vertex of γu1,v1 ,

t∗(0, w) = t∗(0, u1) + t∗(u1, w) = t∗(0, u1) + t(u1, w) ≈ t∗(0, u1) + µ(u1 − w).

We can not guarantee that z is a vertex of γu1,v1 but using a similar argument:

t∗(0, z) ≥ t∗(0, v1) − t∗(v1, z) = t∗(0, u1) + t∗(u1, v1) − t∗(v1, z),
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B∗(0, T ∗(γ0,u1 ))

B∗(x, T ∗(γv1,x))

B1,s,N

•c0

Bµ(c0, N∇)

B2,s,N

•
u2

π

•u3
•v3

E∗∗
P (T, T ′)

γ0,u1

γv1,x

•u1

•
v1 = v2

Figure 4: The construction of π, of the vertices u1, u2, u3, v1, v2, v3 and of the pattern-location in
dimension 2.

since γ is a geodesic in the environment T ∗. But

t∗(u1, v1) = t(u1, v1) ≈ 2N∇ and t∗(v1, z) ≤ t∗(v1, c1) + t∗(c1, z) ≈ N∇,

since t∗(c1, z) is negligible compared to N∇, which gives that t∗(0, z) is roughly greater than t∗(0, u1) +
N∇.

Now, we make the proof rigorous. Since z ∈ B∞(cP , ℓΛ), we have z ∈ Bµ(c1, CµL2). Since by (3.2),

∇ ≥ 2CµL2, z ∈ Bµ

(
c1,

N∇

2

)
. Furthermore, since c1 is the midpoint of [u1, v1] and µ(u1 −v1) ≤ 2N∇,

we have µ(v1 − c1) ≤ N∇. Thus, since ∇ ≥
1

ε
(by (3.2)), using the third item of Lemma 3.6 with z = v1

and r = 3∇
2 , we have

z ∈ Bµ

(
v1,

3N∇

2

)
∩ Z

d ⊂ B

(
v1,

3N∇(1 + 2ε)

2

)
.

Hence, using the lower bound for t(u1, v1) of the proof of Lemma 3.8 and since by (3.2), ∇ >
4(1 + tmax)

1 − 10ε
,

we have

t(0, v1) − t(0, u1) = t(u1, v1) ≥ 2N(∇(1 − ε) − 1) − 2tmax >
3N∇(1 + 2ε)

2
,

and thus

t(0, z) ≥ t(0, v1) − t(v1, z) ≥ t(0, v1) −
3N∇(1 + 2ε)

2
> t(0, u1).

The first item of Lemma 3.10 allows us to conclude.
Then, let us prove the first equality. The proof of the second one is the same. The inclusion

B∗(0, T ∗(γ0,u1 )) ⊂ B∗∗(0, T ∗(γ0,u1)) is easy to check. Let us take z ∈ B∗(0, T ∗(γ0,u1 )) and γ∗ a geodesic
from 0 to z in the environment T ∗. Then γ∗ is entirely contained in B∗(0, T ∗(γ0,u1 )) and there are no
edges of E∗∗

− (T, T ′) or E∗∗
P (T, T ′) in B∗(0, T ∗(γ0,u1)), so

t∗∗(0, z) ≤ T ∗∗(γ∗) ≤ T ∗(γ∗) ≤ T ∗(γ0,u1 ).
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For the other inclusion, assume that there exists a vertex z ∈ B∗∗(0, T ∗(γ0,u1 ))\B∗(0, T ∗(γ0,u1 )) and
let γ∗∗ be a geodesic from 0 to z in the environment T ∗∗. Let ω be the first vertex of γ∗∗ which is not
in B∗(0, T ∗(γ0,u1 )). By construction, there is no edge of γ∗∗

0,ω in E∗∗
+ (T, T ′) or E∗∗

P (T, T ′) and thus:

t∗∗(0, z) ≥ t∗∗(0, ω) ≥ t∗(0, ω) > T ∗(γ0,u1 ),

which is a contradiction.

Now, to get item (ii) of Lemma 3.3, fix η = min
j∈{1,...,d}

P
(
T ∈ AΛ

j

)
p̃|B3,s,N |, where

p̃ = min(F ([tmin, tmin + δ′]), F ([ν(N), tmax])) > 0.

Thus, η only depends on F , the pattern and N and we have that

P (T ′ ∈ B∗(T )| T ) ≥ p̃|B3,s,N | ≥ η

and
P (T ′′ ∈ B∗∗(T, T ′)| T, T ′) ≥ min

j∈{1,...,d}
P
(
T ∈ AΛ

j

)
p̃|B3,s,N | = η.

We end this section with two lemmas, one giving a lower bound on the time saved by the geodesics
from 0 to x thanks to the second modification and the other on the distance between u1 and any vertex
of πv3,v2 .

Lemma 3.14. For all N ∈ N
∗, we have

T ∗(γ) − T ∗∗(γπ) ≥
N∇

2Cµ

(δ − δ′) > T Λ.

Proof. This result is an easy consequence of Lemma 3.8. Since ∇ ≥ Cµ (by (3.2)) and all edges of
γu1,v1 are contained in B2,s,N , which implies that there is no edge of γu1,v1 whose time has been reduced
between the environment T and T ∗,

T ∗(γ) ≥ T ∗(γ0,u1 ) + ‖u1 − v1‖1(tmin + δ) + T ∗(γv1,x),

where we used (i) of the definition of a typical box. Further

T ∗∗(γπ) ≤ T ∗∗(γπ
0,u2

) + ‖u2 − v2‖1(tmin + δ′) + T ∗∗(γπ
v2,x) + 2tmax + τΛ,

where the term 2tmax is an upper bound for the time for both, the edge connecting u2 to E∗∗
+ (T, T ′) and

the one connecting v2 to E∗∗
+ (T, T ′), and the term τΛ is an upper bound for the time collected by γπ

in E∗∗
P (T, T ′). Since we have T ∗∗(γπ

0,u2
) = T ∗(γπ

0,u2
) ≤ T ∗(γ0,u1 ), T ∗∗(γπ

v2,x) = T ∗(γπ
v2,x) ≤ T ∗(γv1,x),

‖u2 − v2‖1 ≤ ‖u1 − v1‖1 since π is an oriented path, and ∇ ≥ 4Cµ(2tmax + τΛ) (by (3.2)), and using
Lemma 3.8, we obtain for all N ∈ N

∗,

T ∗(γ) − T ∗∗(γπ) ≥ ‖u1 − v1‖1(δ − δ′) − τΛ − 2tmax ≥
N∇

2Cµ

(δ − δ′).

Finally, since by (3.2), ∇ >
2CµT Λ

δ − δ′
we have the result.

Lemma 3.15. For all N ∈ N
∗, for all w vertex of πv3,v2 , we have

‖u1 − w‖1 ≥
‖u1 − v1‖1

3
.

Proof. Let us note that since π is an oriented path, for all w vertex of πu2,u3 ∪ πv3,v2 after E∗∗
P (T, T ′),

we have ‖u1 − w‖1 ≥ ‖u1 − v3‖1. So

‖u1 − w‖1 ≥ ‖u1 − c1‖1 − ‖c1 − v3‖1 ≥
1

2
‖u1 − v1‖1 − L2.

Then, since by (3.2), ∇ ≥ 6L2Cµ, we have
N∇

6Cµ

≥ L2 and using Lemma 3.8 leads to the result.
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3.4.5 Proof of the second and third items of Lemma 3.4

Recall that we assume that

{T ∈ M(ℓ)} ∩
{

S1
ℓ (T ) = s

}
∩ {T ′ ∈ B∗(T )} ∩ {T ′′ ∈ B∗∗(T, T ′)} occurs.

The aim of this section is to prove the following properties (which are the second and third items of
Lemma 3.4):

(ii) for all geodesic γ∗∗ from 0 to x in the environment T ∗∗, there exists a geodesic γ from 0 to x in
the environment T such that γ and γ∗∗ are associated in B4,S1

ℓ
(T ),N ,

(iii) there exists a geodesic γ∗∗ in the environment T ∗∗ from 0 to x such that γ∗∗ and the selected
geodesic γ in the environment T are associated in B4,S1

ℓ
(T ),N .

To prove this, we use the following sequence of lemmas.

Lemma 3.16. Every geodesic from 0 to x in the environment T ∗∗ takes at least one edge of πu2,u3 ∪πv3,v2 .

Proof. Let γ∗∗ be a geodesic from 0 to x in the environment T ∗∗. Since γ is a geodesic in the environment
T ∗, we have the following inequalities

T ∗∗(γ∗∗) ≤ T ∗∗(γπ) < T ∗(γ) ≤ T ∗(γ∗∗).

So, using Lemma 3.14,
T ∗(γ∗∗) − T ∗∗(γ∗∗) > T Λ.

It means that γ∗∗ has to take at least one edge whose time has been reduced during the second
modification which is not in E∗∗

P (T, T ′). Hence, since the only edges which are not in E∗∗
P (T, T ′) whose

time has been reduced are edges of πu2,u3 ∪ πv3,v2 , the result follows.

Lemma 3.17. Every geodesic from 0 to x in the environment T ∗∗ takes at least one edge of γ whose
time has been reduced before taking its first edge of B2,s,N , and takes at least one edge of γ whose time
has been reduced after taking its last edge of B2,s,N .

Proof. The idea is to use that the time saved by the geodesics from 0 to x after the first modification is
much greater than the geodesic time between any two vertices of B2,s,N in any environment. Let γ∗∗ be
a geodesic from 0 to x in the environment T ∗∗. Let u∗∗ be the first vertex in B2,s,N that γ∗∗ visits. Its
existence is guaranteed by Lemma 3.16. The aim of the proof is to show

T ∗∗(γ∗∗
0,u∗∗) < T (γ∗∗

0,u∗∗).

Indeed, the definition of u∗∗ and the fact that the only edges whose time has been reduced which are
in B3,s,N but not in B2,s,N are edges of γ gives us the result. Recall that u0 is the entry point of γ in
B2,s,N . First, since γ∗∗ is a geodesic in the environment T ∗∗,

T ∗∗(γ∗∗
0,u∗∗) ≤ T ∗∗(γ0,u0 ) + 2r2Ntmax.

Then, using the first item of Lemma 3.7, we obtain

T ∗∗(γ∗∗
0,u∗∗) ≤ T (γ0,u0) + 2r2Ntmax − α(r3 − r2)N(δ − δ′).

Finally, using the fact that γ is a geodesic in the environment T leads to

T ∗∗(γ∗∗
0,u∗∗) ≤ T (γ∗∗

0,u∗∗) + 4r2Ntmax − α(r3 − r2)N(δ − δ′).

To conclude, it is sufficient to observe that the condition r3 >
7r2(4tmax + αδ)

αδ
implies that α(r3 −

r2)N(δ − δ′) − 4r2Ntmax > 0, so we have the desired strict inequality. The same proof gives us the
second part of the lemma.
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Lemma 3.18. Let γ∗∗ be a geodesic from 0 to x in the environment T ∗∗. Then the first edge of γ∗∗

whose time has been reduced is e1 and the last is e2. Moreover, the first vertex of e1 taking by γ∗∗ is s1

and the last of e2 is s2.

Proof. Let γ∗∗ be a geodesic from 0 to x in the environment T ∗∗. Let z∗∗ denote the last vertex visited
by γ∗∗ before it takes for the first time an edge of γ whose time has been reduced. We know by the
construction and by Lemma 3.17 that z∗∗ is a vertex visited by γu,u0 or γv0,v, and thus it is a vertex visited
by γu,u1 or γv1,v. Let us prove that it is a vertex visited by γu,u1 . Assume, aiming at a contradiction
that z∗∗ is a vertex visited by γv1,v.

On the one hand, by Lemma 3.17, γ∗∗
0,z∗∗ does not take edges in B2,s,N and since by Lemma 3.12, π

is contained in B2,s,N , γ∗∗
0,z∗∗ does not take any edge of πu2,u3 ∪ πv3,v2 .

On the other hand, all edges of γv1,x are in B∗(x, T ∗(γv1,x)). So, if z∗∗ is visited by γv1,x, we have
z∗∗ ∈ B∗(x, T ∗(γv1,x)). But B∗∗(x, T ∗(γv1,x)) = B∗(x, T ∗(γv1,x)) by Lemma 3.13. Since γ∗∗ is a geodesic
in the environment T ∗∗, it implies that γ∗∗

z∗∗,x is entirely contained in B∗(x, T ∗(γv1,x)). Thus γ∗∗
z∗∗,x does

not take any edge of πu2,u3 ∪ πv3,v2 since there is no edge of πu2,u3 ∪ πv3,v2 in B∗(x, T ∗(γv1,x)).
Combining these two conclusions, we get that γ∗∗ does not visit any edge of πu2,u3 ∪ πv3,v2 , which

contradicts Lemma 3.16. So z∗∗ is a vertex visited by γu,u1 . Knowing this, we can complete the proof.
By the definition of z∗∗ and by Lemma 3.17, we have

T (γ∗∗
0,z∗∗) = T ∗∗(γ∗∗

0,z∗∗).

Since γ∗∗ is a geodesic,
T ∗∗(γ∗∗

0,z∗∗) ≤ T ∗∗(γ0,z∗∗).

Now, let us assume z∗∗ is not s1. Then, by the definition of s1, z∗∗ is visited by γu,u1 after s1 and thus,

T ∗∗(γ0,z∗∗) < T (γ0,z∗∗).

Combining these three inequalities yields

T (γ∗∗
0,z∗∗) < T (γ0,z∗∗),

which is impossible because γ0,z∗∗ is a geodesic in the environment T . So, the result is proved and the
same proof leads to the second part of this lemma.

We can now prove the two properties stated at the beginning of this subsection. For item (ii), let γ∗∗

be a geodesic from 0 to x in the environment T ∗∗. By Lemma 3.17 and Lemma 3.18, like γ, γ∗∗ visits
s1 and before that γ∗∗ does not visit any edge whose time has been changed when replacing T by T ∗∗.
Hence,

T (γ0,s1) = T ∗∗(γ0,s1 ) ≥ T ∗∗(γ∗∗
0,s1

) = T (γ∗∗
0,s1

) ≥ T (γ0,s1). (3.27)

This proves that T (γ0,s1) = T (γ∗∗
0,s1

) and γ∗∗
0,s1

is a geodesic in the environment T . Similarly, γ∗∗
s2,x is a

geodesic in the environment T and the path γ = γ∗∗
0,s1

∪ γs1,s2 ∪ γ∗∗
s2,x is a geodesic in the environment T

that satisfies (ii) in Lemma 3.4 if we prove that it is a self-avoiding path and it is contained in B4,s,N .
Assume, aiming at a contradiction that γ∗∗

0,s1
visits a vertex of γs1,s2 which is not s1 and denote it by

s3. Then γ∗∗
0,s1

∪ γs1,x is an optimal path for the passage time in the environment T since γ∗∗
0,s1

is a
geodesic in this environment. It implies that γ∗∗

s3,s1
∪ γs1,s3 has at least one edge which is e1 and that

T (γ∗∗
s3,s1

∪ γs1,s3 ) = 0, which is impossible since T (e1) > 0. The same proof gives that γ∗∗
s2,x does not

visit a vertex of γs1,s2 and thus γ is self-avoiding. To get item (ii), it remains to prove that γ∗∗
s1,s2

is
contained in B4,s,N . This comes from the fact that, in any environment, the geodesic time between two
vertices of B3,s,N is bounded by 2r3tmax, and, since the edges in B4,s,N \ B3,s,N have the same times in
the environments T or T ∗∗, by property (i) of a typical box, the geodesic time to reach a vertex outside
B4,s,N and to come back in B3,s,N is bounded from below by 2(r4 − r3)(tmin + δ). The condition on r4

insures that (r4 − r3)(tmin + δ) > r3tmax.
For item (iii), observe that from (3.27), we also get T ∗∗(γ∗∗

0,s1
) = T ∗∗(γ0,s1 ) and T ∗∗(γ∗∗

s2,x) =
T ∗∗(γs2,x). Thus, the path γ0,s1 ∪γ∗∗

s1,s2
∪γs2,x is an optimal path for the passage time in the environment

T ∗∗. If it is not self-avoiding, we get a geodesic that satisfies the requirement of (iii) in Lemma 3.4 by
cutting its loops with the same process as in the proof of Lemma 2.5 in the unbounded case. If we
denote by s′

1 and s′
2 the two vertices such that γ0,s′

1
∪ γ∗∗

s′

1,s′

2
∪ γs′

2,x is a geodesic in the environment T ∗∗
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obtained by cutting the loops, we have to justify that γs′

1,s′

2
is entirely contained in B4,s,N . We know

that γs1,s2 is entirely contained in B4,s,N . Let us show that γs′

1,s1
is also entirely contained in B4,s,N ,

the proof for γs2,s′

2
is the same. Since γ0,s1 ∪ γ∗∗

s1,s2
∪ γs2,x is an optimal path for the passage time in the

environment T ∗∗, we have T ∗∗(γ∗∗
s1,s′

1
) + T ∗∗(γs′

1,s1
) = 0 and thus in particular T ∗∗(γs′

1,s1
) = 0. Since s1

belongs to B3,s,N , if γs′

1,s1
visits a vertex outside B4,s,N , there exist two vertices z and z′ of γs′

1,s1
such

that z ∈ ∂B3,s,N , z′ ∈ ∂B4,s,N and γz,z′ except for z is contained in B4,s,N \ B3,s,N . So T ∗∗(γs′

1,s1
) = 0

implies that T ∗∗(γz,z′) = 0 but T (γz,z′) = T ∗∗(γz,z′) = 0 since the time of the edges of B4,s,N \ B3,s,N

has not been changed. It makes a contradiction with (3.5) since r4 − r3 ≥ 1 by (3.4).

3.4.6 Every geodesic takes the pattern.

Recall that we assume that

{T ∈ M(ℓ)} ∩
{

S1
ℓ (T ) = s

}
∩ {T ′ ∈ B∗(T )} ∩ {T ′′ ∈ B∗∗(T, T ′)} occurs.

The aim of this last subsection is to show that every geodesic in the environment T ∗∗ takes the pattern
in E∗∗

P (T, T ′). The proof is decomposed in two steps. The first step is to show that every geodesic takes
an edge of πu2,u3 and an edge of πv3,v2 . The second step is to show that every geodesic verifying this
property takes the pattern in E∗∗

P (T, T ′). We begin with a technical lemma.

Lemma 3.19. For all w vertex of πu2,u3 ∪ πv3,v2 ,

|µ(u1 − w) + µ(v1 − w) − µ(u1 − v1)| ≤ 2CµL1.

Proof. Let w be a vertex of πu2,u3 ∪πv3,v2 . Then, by the construction of π, there exists a w ∈ [u1, v1] ⊂ R
d

such that ‖w − w‖1 ≤ L1. We have

µ(u1 − v1) = µ(u1 − w) + µ(v1 − w).

Then

|µ(u1 − w) − µ(u1 − v1) + µ(v1 − w)| ≤ |µ(u1 − w) − µ(u1 − w)| + |µ(v1 − w) − µ(v1 − w)|

≤ 2Cµ‖w − w‖1

≤ 2CµL1.

Lemma 3.20. Let γ∗∗ be a geodesic from 0 to x in the environment T ∗∗. Then γ∗∗ visits a vertex of
πu2,u3 and one of πv3,v2 . More precisely, the first vertex of γ∗∗ that belongs to πu2,u3 ∪ πv3,v2 belongs to
πu2,u3 and the last to belongs to πv3,v2 .

Proof. Let γ∗∗ be a geodesic from 0 to x in the environment T ∗∗. By Lemma 3.16, there exists at least
one vertex of πu2,u3 ∪πv3,v2 visited by γ∗∗. Let w be the first vertex of γ∗∗ that belongs to πu2,u3 ∪πv3,v2

and assume that w belongs to πv3,v2 . Note that γ∗∗
0,w does not visit any other vertex of πu2,u3 ∪ πv3,v2 .

The aim of the proof is to show that

T ∗∗(γπ
0,w) < T ∗∗(γ∗∗

0,w),

which is impossible since γ∗∗ is a geodesic in the environment T ∗∗. We start with

T ∗(γ∗∗
0,w) ≥ t∗(0, w)

≥ t∗(0, v1) − t∗(v1, w)

= t∗(0, u1) + t∗(u1, v1) − t∗(v1, w),

since, by Lemma 3.7, γ is a geodesic in the environment T ∗. By construction, there is no edge of γu1,v1

whose time has been changed at the first modification, thus t∗(u1, v1) = t(u1, v1). Furthermore, since
there is no edge whose time has been increased at the first modification, t∗(v1, w) ≤ t(v1, w), so

T ∗(γ∗∗
0,w) ≥ t∗(0, u1) + t(u1, v1) − t(v1, w).
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We now want to bound from below T ∗∗(γ∗∗
0,w). The only edges whose time has been reduced at the second

modification are among those of πu2,u3 ∪ πv3,v2 and of E∗∗
P (T, T ′). So, since γ∗∗

0,w does not take any edge
of πu2,u3 ∪ πv3,v2 , it can only save time taking edges of E∗∗

P (T, T ′). So,

T ∗∗(γ∗∗
0,w) ≥ t∗(0, u1) + t(u1, v1) − t(v1, w) − T Λ.

Then, using the definition of a typical box, Lemma 3.19 and the inequality t∗(0, u1) ≥ t∗(0, u2) (which
comes from the definition of u2) leads to

T ∗∗(γ∗∗
0,w) ≥ t∗(0, u2) + µ(u1 − w) − ε(µ(u1 − v1) + µ(v1 − w)) − 2N − 2CµL1 − T Λ.

On the other hand, note that, π being an oriented path, ‖u1 − w‖1 ≥ ‖u2 − w‖1, so, using the knowledge
of T ∗∗ on edges of π,

T ∗∗(γπ
0,w) = T ∗∗(γπ

0,u2
) + T ∗∗(γπ

u2,w)

≤ t∗(0, u2) + 2tmax + 2tmaxℓΛ + (tmin + δ′)‖u1 − w‖1.

To conclude, let us show that we have the inequality

t∗(0, u2) + 2tmax + 2tmaxℓΛ + (tmin + δ′)‖u1 − w‖1

< t∗(0, u2) + µ(u1 − w) − ε(µ(u1 − v1) + µ(v1 − v)) − 2N − 2CµL1 − T Λ. (3.28)

First, combining Lemma 3.8 and Lemma 3.15 leads to

‖u1 − w‖1 ≥
N∇

3Cµ

. (3.29)

Then, by (1.20), we have
µ(u1 − w) ≥ (tmin + δ) ‖u1 − w‖1.

Recall that K ′ = T Λ + 2(CµL1 + tmax + tmaxℓΛ), it is sufficient to have

δ′ < δ − εCµ

‖u1 − v1‖1 + ‖v1 − w‖1

‖u1 − w‖1
−

2N

‖u1 − w‖1
−

K ′

‖u1 − w‖1
.

Then, by Lemma 3.15,
‖u1 − v1‖1 + ‖v1 − w‖1

‖u1 − w‖1
≤ 6. So, since ε <

δ

24Cµ

, we have

εCµ

‖u1 − v1‖1 + ‖v1 − w‖1

‖u1 − w‖1
<

δ

4
.

By (3.29) and since 1 <
δ∇

24Cµ

(by (3.2)) and N >
12CµK ′

δ∇
(by (3.6)), the condition δ′ ≤

δ

4
gives us

(3.28). Hence T ∗∗(γπ
0,w) < T ∗∗(γ∗∗

0,w).

Finally, let us prove the following lemma which completes the proof of Lemma 3.4.

Lemma 3.21. Any geodesic from 0 to x takes the pattern at the pattern-location E∗∗
P (T, T ′).

Proof. Let γ∗∗ be a geodesic from 0 to x in the environment T ∗∗. By Lemma 3.20, γ∗∗ visits a vertex
of πu2,u3 and one of πv3,v2 . As a consequence, there exist a vertex u4 of πu2,u3 and a vertex v4 of πv3,v2

such that γ∗∗ goes from u4 to v4 without taking edges of πu2,u3 ∪ πv3,v2 . Let us remember that for all
edge e of E∗∗

P (T, T ′), we have T ∗∗(e) ≤ ν. We prove successive properties.

• The edges of γ∗∗
u4,v4

which are not in E∗∗
P (T, T ′) have a passage time greater than or equal to ν.

Since there is no edge of γ∗∗
u4,v4

in B∗∗(0, T ∗(γ0,u1 )), B∗∗(x, T ∗(γv1,x)) or πu2,u3 ∪πv3,v2 , it is sufficient
to prove that γ∗∗

u4,v4
is entirely contained in B2,s,N . By convexity, we have that all points of [u1, v1]

are contained in Bµ(c0, N∇), so by Lemma 3.11, ‖u4 − c0‖1 ≤
N∇

cµ

+ L1, and thus,

‖u4 − sN‖1 ≤ N

(
∇

cµ

+ r1

)
+ L1.
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So, if γ∗∗
u4,v4

is not entirely contained in B2,s,N , the number of edges whose time is greater than or

equal to ν that γ∗∗
u4,v4

has to travel to leave B2,s,N is bounded from below by
(

r2 − ∇
cµ

− r1

)
N −

2dℓΛ − L1, and we get

T ∗∗(γ∗∗
u4,v4

) ≥

((
r2 −

∇

cµ

− r1

)
N − 2dℓΛ − L1

)
ν.

But

T ∗∗(γπ
u4,v4

) ≤
2N∇

cµ

(tmin + δ′) + 2tmax(1 + ℓΛ),

and since N ≥ 1,
tmax

ν
≥ 1,

tmin + δ

ν
≤ 1 and by (3.3),

r2 > r1 + L1 +
3∇

cµ

+
2tmax

ν
(1 + (1 + d)ℓΛ),

we have T ∗∗(γπ
u4,v4

) < T ∗∗(γ∗∗
u4,v4

), which is impossible since γ∗∗
u4,v4

is a geodesic in the environment
T ∗∗.

• We have that ‖u4 − u3‖1 ≤ 4ℓΛ and ‖v4 − v3‖1 ≤ 4ℓΛ.

Assume that it is not the case. Let us show that T ∗∗(γ∗∗
u4,v4

) − T ∗∗(πu4,v4 ) > 0, which is a
contradiction since γ∗∗

u4,v4
is a geodesic in the environment T ∗∗. To this aim, let us compare the

time that can save each path compared with the other in any direction. Recall the notation
introduced in the proof of Lemma 4.1: for i ∈ {1, . . . , d} and a path π̃, T ∗∗

i (π̃) denotes the sum of
the passage times of the edges of π̃ which are in the direction εi. In the direction O(T, T ′), since
‖u4 − u3‖1 > 4ℓΛ or ‖v4 − v3‖1 > 4ℓΛ, and by the construction, we have that

T ∗∗
O(T,T ′)(γ

∗∗
u4,v4

) − T ∗∗
O(T,T ′)(πu4,v4) ≥ 4ℓΛν − 4ℓΛ(tmin + δ′) + 2ℓΛtmin − 2ℓΛν,

where the term 2ℓΛtmin − 2ℓΛν comes from the time potentially saved by γ∗∗
u4,v4

by taking edges

of E∗∗
P (T, T ′). Then, in any other direction, γ∗∗

u4,v4
can save a time lower than or equal to 2ℓΛδ′

compared with πu4,v4 thanks to the edges in E∗∗
P (T, T ′). Hence,

T ∗∗(γ∗∗
u4,v4

) − T ∗∗(πu4,v4 ) ≥ 2ℓΛν + 2ℓΛtmin − 4ℓΛ(tmin + δ′) − 2(d − 1)ℓΛδ′

≥ 2ℓΛν − 2ℓΛtmin − (4ℓΛ + 2(d − 1)ℓΛ)δ′ > 0

since tmin + (1 + d)δ′ < tmin + δ ≤ ν.

• We have that u4 = u3 and v4 = v3.

Assume that it is not the case. First, assume that γ∗∗
u4,v4

does not take any edge of E∗∗
P (T, T ′).

According to the first property, T ∗∗(γ∗∗
u4,v4

) ≥ ‖u4 − v4‖1ν. Then, since π is an oriented path,

T ∗∗(γπ
u4,v4

) ≤ (‖u4 − v4‖1 − 2ℓΛ)(tmin + δ′) + 2ℓΛν.

Since u4 6= u3 or v4 6= v3, we have that ‖u4 − v4‖1 > 2ℓΛ and we obtain

T ∗∗(γπ
u4,v4

) < T ∗∗(γ∗∗
u4,v4

),

which is a contradiction since γ∗∗
u4,v4

is a geodesic in the environment T ∗∗. So γ∗∗
u4,v4

takes an edge
of E∗∗

P (T, T ′). Let u∗∗
0 be the first entry point of γ∗∗

u4,v4
in E∗∗

P (T, T ′) and consider the path π∗∗

following πu4,u3 , then going from u3 to u∗∗
0 in one of the shortest way for the norm ‖.‖1 and then

following γ∗∗
u∗∗

0 ,v4
. Then the number of edges of π∗∗

u4,u∗∗

0
is lower than or equal to the number of edges

of γ∗∗
u4,u∗∗

0
, for all e ∈ π∗∗

u4,u∗∗

0
, T ∗∗(e) ≤ ν, there exists e′ ∈ π∗∗

u4,u∗∗

0
such that T ∗∗(e′) ≤ tmin + δ′ and

for all e ∈ γ∗∗
u4,u∗∗

0
, T ∗∗(e) ≥ ν. So we have T ∗∗(π∗∗) < T ∗∗(γ∗∗

u4,v4
), which is impossible since γ∗∗ is

a geodesic in the environment T ∗∗. The same proof gives v4 = v3.

45



• γ∗∗ takes the pattern at the pattern-location E∗∗
P (T, T ′).

Assume that γ∗∗
u4,v4

is not entirely contained in E∗∗
P (T, T ′). Let v∗∗

0 be the first exit point from
E∗∗

P (T, T ′) of γ∗∗
u4,v4

and u∗∗
1 the first entry point after v∗∗

0 . Let us consider the shortcut π∗∗ going
from v∗∗

0 to u∗∗
1 in one of the shortest way for the norm ‖.‖1. Then let v∗∗

0,+ denote the first vertex
visited by γ∗∗ after v∗∗

0 , then

‖u∗∗
1 − v∗∗

0,+‖1 = ‖u∗∗
1 − v∗∗

0 ‖1 + 1.

Indeed, we have that ‖u∗∗
1 − v∗∗

0,+‖1 − ‖u∗∗
1 − v∗∗

0 ‖1 is equal to 1 or −1, and if it is equal to −1, it
implies that v∗∗

0,+ is in E∗∗
P (T, T ′), which is impossible. So, γ∗∗

v∗∗

0 ,u∗∗

1
has strictly more edges than

π∗∗. Furthermore, all edges of γ∗∗
v∗∗

0 ,u∗∗

1
have a time greater than or equal to ν although all edges of

π∗∗ have a time lower than or equal to ν. So, T ∗∗(π∗∗) < T ∗∗(γ∗∗
v∗∗

0 ,u∗∗

1
), which is a contradiction

since γ∗∗
v∗∗

0 ,u∗∗

1
is a geodesic in the environment T ∗∗.

Thus γ∗∗
u4,v4

is a path entirely contained in E∗∗
P (T, T ′), going from u3 to v3 and with an optimal

time. So, we have the result.

4 Proofs of generalizations of modification arguments in [5]

4.1 Modification proof for the Euclidean length of geodesics

To prove Theorem 1.8, we begin by defining the valid pattern in three different cases. Recall that k and
ℓ are given by the assumptions of this theorem and that (εi)i∈{1,...,d} are the vectors of the canonical
basis.

Case where zero is an atom. In addition to the assumptions of Theorem 1.8, we assume that
zero is an atom for F . We set L1 = k + 2, L2 = ℓ + 2 and if d ≥ 3, for all i ∈ {3, . . . , d}, Li = 2. We

define a pattern in Λ =

d∏

i=1

{0, . . . , Li}. We take the endpoints u =
∑d

i=2 εi and v = u + (k + 2)ε1. We

denote by π+ the path going from u to v by k + 2 steps in the direction ε1 and by π++ the path going
from u to u + ε1 by one step in the direction ε1, then to u + ε1 + ℓε2 by ℓ steps in the direction ε2, then
to u + (k + 1)ε1 + ℓε2 by k steps in the direction ε1, then to u + (k + 1)ε1 by ℓ steps in the direction −ε2

and then to v by one step in the direction ε1. We define AΛ as follows:

• for all e ∈ π+ ∪ π++, T (e) = 0,

• for all e ∈ Λ which is not in π+ ∪ π++, T (e) > 0.

Note that AΛ has a positive probability. Then, π+ and π++ are the only two optimal self-avoiding paths
from u to v entirely contained in the pattern. Furthermore, for every vertex z ∈ π+ ∪ π++ different from
u and v, there exists no path from ∂Λ \ {u, v} to z whose passage time is equal to 0.

Unbounded case. Here, in addition to the assumptions of Theorem 1.8, we assume that zero is
not an atom and that the support of F is unbounded. We set L1 = k, L2 = ℓ and if d ≥ 3, for all

i ∈ {3, . . . , d}, Li = 0. We define a pattern in Λ =

d∏

i=1

{0, . . . , Li}. We take the endpoints u = 0 and

v = kε1. We denote by π+ the path going from 0 to kε1 by k steps in the direction ε1 and by π++ the
path going from 0 to ℓε2 by ℓ steps in the direction ε2, then to kε1 + ℓε2 by k steps in the direction ε1

and then to v by ℓ steps in the direction −ε2. Then, we index the edges of π+ and the ones of π++ in
the order in which they are taken by theses paths. We respectively denote them by (e1

i )i∈{1,...,k} and

(e2
i )i∈{1,...,k+2ℓ}. We fix M >

k∑

j=1

s′
j and we define AΛ as follows:
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• for all i ∈ {1, . . . , k}, T (e1
i ) = s′

i and for all i ∈ {1, . . . , k + 2ℓ}, T (e2
i ) = r′

i,

• for all e ∈ Λ which are not in π+ or π++, T (e) > M .

Since the support of F is unbounded, P(AΛ) is positive. Furthermore, we have

T (π+) = T (π++).

Since M > T (π+), the optimal paths from u to v entirely contained in the pattern can not take other
edges than those in π+ ∪ π++. Hence π+ and π++ are the only two optimal paths from u to v entirely
contained in the pattern.

Bounded case. In addition to the assumptions of Theorem 1.8, we assume that zero is not an
atom and that the support of F is bounded. We set tmax = sup(support(F )). We denote amax =
max(r′

1, . . . , r′
k+2ℓ, s′

1, . . . , s′
k). Then, there are at least 2ℓ integers j ∈ {1, . . . , k+2ℓ} such that r′

j < amax.
Indeed, assume that this is not the case. Then, we have

k+2ℓ∑

i=1

r′
i ≥ (k + 1)amax > kamax ≥

k∑

j=1

s′
j ,

and this contradicts (1.6). Thus, even if it means changing the indexes, we can assume that for all
i ∈ {1, . . . , 2ℓ}, r′

i < amax and we denote tw = amax − max(r′
1, . . . , r′

2ℓ) > 0. We fix α > 0 an integer such
that:

α > max

(
k

2ℓ
,

kamax

ℓtw

)
. (4.1)

We set k′ = αk, ℓ′ = αℓ, L1 = k′, L2 = ℓ′ and if d ≥ 3, for all i ∈ {3, . . . , d}, Li = 0. We define a pattern

in Λ =
d∏

i=1

{0, . . . , Li}. We take the endpoints u = 0 and v = k′ε1. Let π+ be the path going from u to v

by k′ steps in the direction ε1 and π++ be the path going from u to u′ = ℓ′ε2 by ℓ′ steps in the direction
ε2, then to v′ = k′ε1 + ℓ′ε2 by k′ steps in the direction ε1 and then to v by ℓ′ steps in the direction −ε2.
Then we index the edges of π+, π++

u,u′ , π++
u′,v′ and π++

v′,v in the order in which they are taken by these paths.

We respectively denote them by
(
e1

i

)
i∈{1,...,k′}

,
(
e2

i

)
i∈{1,...,ℓ′}

,
(
e3

i

)
i∈{1,...,k′}

and
(
e4

i

)
i∈{1,...,ℓ′}

. The idea

for the event AΛ is just to alternate the atoms on every boundary of the rectangle whose vertices are u,
u′, v′ and v. It allows us a better control of the time of a path taking both vertices of π+ and vertices
of π++

u′,v′ (see Figure 5).

So, we define AΛ as follows :

• for all i ∈ {1, . . . , k′}, T (e1
i ) = s′

i[k] and T (e3
i ) = r′

2ℓ+i[k] where i[k] is the integer in {1, . . . , k} such

that i − i[k] is divisible by k,

• for all i ∈ {1, . . . , ℓ′}, T (e2
i ) = r′

i[ℓ] and T (e4
i ) = r′

ℓ+i[ℓ],

• for all other edges e ∈ Λ, T (e) = amax.

Note that AΛ has a positive probability and that on this event, T (π+) = T (π++).

Lemma 4.1. The paths π+ and π++ belong to the family of optimal paths from u to v which are entirely
contained in the pattern.

Proof of Lemma 4.1. Let us begin by introducing some notations. For i ∈ {1, . . . , d} and a path π,
Ti(π) denotes the sum of the passage times of the edges of π which are in the direction εi. So we have
T (π) = T1(π) + · · · + Td(π). Furthermore, for j ∈ {0, . . . , ℓ′ − 1}, we denote by Sj

2 the set of edges of Λ
which can be written {x, x + ε2} where the second coordinate of x is equal to j.

Now, to prove the lemma, assume for a contradiction that there exists an optimal self-avoiding path
π entirely contained in Λ such that

T (π) < T (π+) = T (π++). (4.2)
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r′
1

r′
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r′
3

r′
3

r′
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Figure 5: Paths π+ and π++ with their passage times in the pattern for the proof of Theorem 1.8 in
the bounded case with d = 2, k = 4, ℓ = 2 and α = 4.

First step: π takes at least one edge in π++
u′,v′ . Indeed, assume that it is not the case. Then

T (π) ≥ T1(π) ≥ T1(π+) = T (π+),

which contradicts (4.2). Note that the second inequality comes from the fact that edges in the direction
ε1 whose passage time is strictly smaller than those in π+ must belong to π++

u′,v′ .

Second step: We denote by x (resp. y) the first vertex of π++
u′,v′ visited by π. Let us prove that

πx,y = π++
x,y . Note that, since π is a self-avoiding path from u to v and since every path entirely contained

in the pattern can only take edges of directions ε1 and ε2,

• x (resp. y) is also the first vertex of π visited by π++
u′,v′ ,

• πx,y does not take any edge of π++
u,x and π++

y,v .

Assume for a contradiction that πx,y 6= π++
x,y . Denote by x′ and y′ two distinct vertices of π++

x,y ∩ πx,y

such that πx′,y′ does not take any edge of π++ and such that x′ is visited by π++
u′,v′ before y′. We have

|πx′,y′ | > |π++
x′,y′ | and thus πx′,y′ has to take at least one edge in π+, else

T (πx′,y′) = |πx′,y′ |amax > |π++
x′,y′ |amax ≥ T (π++

x′,y′),

which contradicts the fact that π is an optimal path. Since πx′,y′ has to take edges in π+, and since it
cannot take edges of π++, we get

T2(πx′,y′) ≥ 2ℓ′amax.

Furthermore, for each edge e in π++
x′,y′ , πx′,y′ has to take an edge in the direction ε1 such that this edge

is the edge e − ℓ′ε2 ∈ π+ or such that its passage time is equal to amax. Hence

T1(πx′,y′) ≥

⌊
‖x′ − y′‖1

k

⌋ k∑

i=1

s′
i.

But,

T1(π++
x′,y′) ≤

⌈
‖x′ − y′‖1

k

⌉ k+2ℓ∑

i=1+2ℓ

r′
i.
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Thus, since
k+2ℓ∑

i=1+2ℓ

r′
i ≤

k∑

i=1

s′
i ≤ kamax, we have

T (π++
x′,y′) − T (πx′,y′) ≤

k∑

i=1

s′
i − 2αℓamax ≤ (k − 2αℓ)amax < 0 by (4.1),

which contradicts the fact that π is an optimal path.
Third step: We have just proven that πx,y = π++

x,y . Hence, (4.2) implies that T (πu,x) < T (π++
u,x ) or

that T (πy,v) < T (π++
y,v ). Assume for a contradiction that

T (πu,x) < T (π++
u,x ), (4.3)

the other case being the same. First, we have x 6= u′ else, using again that π is a self avoiding path from
u to v and the fact that every path entirely contained in the pattern can only take edges of directions ε1

and ε2, πu,x can not take any edge of π++
x,v , we have T2(πu,u′) ≥ T2(π++

u,u′) and thus

T (πu,x) = T (πu,u′) ≥ T2(πu,u′) ≥ T2(π++
u,u′) = T (π++

u,u′) = T (π++
u,x ),

which contradicts (4.3).
Denote by x′′ the last vertex of π++

u,u′ visited by πu,x (note that we can have x′′ = u). We have that
x′′ 6= u′, else x′′ = x = u′. Now, since π is a self-avoiding path and using the definitions of x′′ and x, we
get that πx′′,x cannot take any edge of π++

u,x . Hence, πx′′,x takes at least one edge of π+. Indeed, if it is

not the case, we have T1(πx′′,x) ≥ T1(π++
x′′,x) and we get (using that ‖x′′ − u′‖1 > 0):

T (πx′′,x) = T1(πx′′,x) + T2(πx′′,x) ≥ T1(π++
x′′,x) + ‖x′′ − u′‖1amax

> T1(π++
x′′,x) + ‖x′′ − u′‖1 max(r′

1, . . . , r′
2ℓ) ≥ T1(π++

x′′,x) + T2(π++
x′′,x) = T (π++

x′′,x),

which contradicts the fact that π is an optimal path.
Now, since πx′′,x takes edges of π+, πx′′,x has to take at least ℓ′ edges in the direction ε2 of passage

time equal to amax. Thus,
T2(πx′′,x) ≥ ℓ′amax.

Then, for each edge e in π++
u′,x, πx′′,x has to take an edge in the direction ε1 such that this edge is the

edge e − ℓ′ε2 ∈ π+ or such that its passage time is equal to amax. We get

T1(πx′,y′) ≥

⌊
‖u′ − x‖1

k

⌋ k∑

i=1

s′
i.

On the other hand, we have

T1(π++
x′′,x) ≤

⌈
‖u′ − x‖1

k

⌉ k+2ℓ∑

i=1+2ℓ

r′
i,

and
T2(π++

x′′,x) ≤ ‖x′′ − u′‖1 max(r′
1, . . . , r′

2ℓ) ≤ ℓ′ max(r′
1, . . . , r′

2ℓ) ≤ ℓ′(amax − tw).

Hence, since

k+2ℓ∑

i=1+2ℓ

r′
i ≤

k∑

i=1

s′
i,

T (π++
x′′,x) − T (πx′′,x) ≤ T1(π++

x′′,x) − T1(πx′′,x) + T2(π++
x′′,x) − T2(πx′′,x)

≤
k∑

i=1

s′
i

︸ ︷︷ ︸
≤kamax

−ℓ′tw

≤ kamax − αℓtw < 0 by (4.1),

which contradicts the fact that π is an optimal path. Thus, there is no optimal self-avoiding path π
entirely contained in Λ such that (4.2) holds and the proof is complete.
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Conclusion in the three cases.

Proof of Theorem 1.8. For x ∈ Z
d, we denote by π(x) the first geodesic from 0 to x in the lexicographical

order7 among those who have the minimal number of edges. We say that two patterns are disjoint if they
have no vertex in common. We denote by NP(π(x)) the maximum number of disjoint patterns defined
above in the three cases visited by π(x). Simple geometric considerations provide a constant c > 0 such
that for all path π, NP(π) ≥ cNP(π). Further, note that, in each pattern visited by π(x), π(x) takes the
π+ segment since the π+ segment belongs to the set of optimal paths entirely contained in the pattern
and is the only optimal path for the norm ‖.‖1. We can define a self-avoiding path π̂(x) from 0 to x by
replacing each π+ segment of π(x) with the π++ segment in each disjoint pattern visited by π(x). This
path π̂(x) has the same passage time and hence both π(x) and π̂(x) are geodesics. Note that in the case
where zero is not an atom, π̂ is obviously self-avoiding (since every geodesic is self avoiding), and in the
case where zero is an atom, π̂ is self-avoiding since in the patterns, the passage times of all edges which
are not in the π+ or π++ segments are strictly positive, and thus π(x) can not visit vertices in the π++

segments except those which also belong to the corresponding π+ segment. In the three cases, we have:

|π̂(x)| ≥ |π(x)| + 2NP(π(x)).

Finally, we get:
L0,x ≥ |π̂(x)| ≥ |π(x)| + 2NP(π(x)) ≥ L0,x + 2NP(π(x)). (4.4)

The hypothesis of Theorem 1.4 are satisfied, thus there exist α > 0, β1 > 0 and β2 > 0 such that for all
x ∈ Z

d,
P
(
∃ a geodesic γ from 0 to x such that NP(γ) < α‖x‖1

)
≤ β1e−β2‖x‖1 .

Then, taking D = 2αc, we get by (4.4),

P
(
L0,x − L0,x ≥ D‖x‖1

)
≥ P

(
NP(π(x)) ≥ cα‖x‖1

)
≥ P

(
NP(π(x)) ≥ α‖x‖1

)
≥ 1 − β1e−β2‖x‖1 .

4.2 Modification proof for the strict concavity of the expected passage times
as a function of the weight shifts

Proof of Theorem 1.9. Recall that we assume that the support of F is bounded and that there are two
different positive points in this support. We set tmax = sup(support(F )). Let 0 < r < s be two points in
the support of F . Fix b ∈ (0, r). Applying Lemma 5.5 in [5], we get positive integers k, ℓ fixed for the
rest of the proof such that

k(s + δ) < (k + 2ℓ)(r − δ) < (k + 2ℓ)(r + δ) < k(s − δ) + (2ℓ − 1)b (4.5)

holds for sufficiently small δ > 0. Fix L = k + ℓ + 1, L1 = k + 2L, L2 = ℓ + 2L and if d ≥ 3, for all

i ∈ {3, . . . , d}, Li = 2L. We define a pattern in Λ =

d∏

i=1

{0, . . . , Li}. We take the endpoints uΛ =

d∑

i=2

Lεi

and vΛ = uΛ + (k + 2L)ε1. Then we define

Λ0 = {L, . . . , k + L} × {L, . . . , ℓ + L} ×
d∏

i=3

{L}. (4.6)

With this definition, every path from the boundary of Λ to the boundary of Λ0 has to take at least
L edges of Λ \ Λ0. We take π+ the path going from uΛ to vΛ by k + 2L steps in the direction ε1,
and π++ the one going from uΛ to u1 = uΛ + Lε1 ∈ Λ0 by L steps in the direction ε1, then going to
u2 = u1 + ℓε2 ∈ Λ0 by ℓ steps in the direction ε2, then to u3 = u2 + kε1 ∈ Λ0 by k steps in the direction
ε1, then to u4 = u3 − ℓε2 ∈ Λ0 by ℓ steps in the direction −ε2, and then to vΛ by L steps in the direction
ε1.

For a deterministic family (te)e∈EΛ
of passage times on the edges of Λ and for a path π, we use the

abuse of writing T (π) to denote
∑

e∈π

te. For all δ ≥ 0, we consider the set G(δ) of families (te)e∈EΛ
of

passage times on the edges of Λ which satisfy the following two conditions:

7The lexicographical order is based on the directions of the consecutive edges of the geodesics.

50



• for all e ∈ π++ ∩ Λ0, te ∈ [r − δ, r + δ],

• for all other edges e in Λ, te ∈ [s − δ, s + δ].

Then, consider the set H of families (te)e∈EΛ
such that:

(P1) π+ is the unique optimal path from uΛ to vΛ among the paths entirely contained in Λ,

(P2) for all path π1 from a vertex w1 of the boundary of Λ0 to a vertex of the boundary of Λ, for all w2

in Λ0, for all path π2, optimal for the norm ‖.‖1, going from w1 to w2, we have T (π2) < T (π1).

Note that for all δ > 0, since r and s belong to the support of F , we have that P((T (e))e∈EΛ
∈ G(δ)) > 0.

Let us prove that G(0) ⊂ H . Consider a family (te)e∈EΛ
∈ G(0). So there are only two different passage

times in Λ which are r and s. Assume for a contradiction that (P1) does not hold. Then there exists
an optimal path π going from uΛ to vΛ, different from π+. Recall the notation Ti for i ∈ {1, . . . , d}
introduced in the proof of Lemma 4.1. Since π+ is the unique path between uΛ and vΛ taking only edges
in the direction ε1 and since there is no passage time equal to zero in Λ, we have T1(π) < T (π). Hence

T1(π+) = T (π+) ≥ T (π) > T1(π).

Since the only edges in the direction ε1 whose passage time is smaller than s are in π++
u2,u3

, π takes an
edge of π++

u2,u3
and thus T2(π) ≥ 2ℓr. Furthermore

T1(π) ≥ T1(π+) − k(s − r).

Hence we get

T (π) ≥ T1(π) + T2(π) ≥ T1(π+) + 2ℓr − k(s − r) > T1(π+) = T (π+),

where the strict inequality comes from (4.5). Thus, it contradicts the fact that π is an optimal path and
(P1) holds. Now, to prove that (P2) holds, let π1 be a path from a vertex w1 of the boundary of Λ0 to
a vertex of the boundary of Λ and let w2 a vertex of Λ0. Let π2 be an optimal path for the norm ‖.‖1

going from w1 to w2. Then, by the definition of Λ0 (see (4.6)), π1 has to take at least L edges whose
passage time is equal to s although π2 takes at most k + ℓ edges whose passage time is smaller than or
equal to s. Thus

T (π1) ≥ Ls > (k + ℓ)s ≥ T (π2, )

where the strict inequality comes from the fact that L = k + ℓ + 1. Hence (P2) holds and G(0) ⊂ H .
Furthermore, H is an open set since for a family (te)e∈EΛ

to belong to H , it is required that the time
of a finite family of paths is strictly smaller than the time of every path of another finite family of paths.
Hence, for δ > 0 small enough, we have

G(δ) ⊂ H. (4.7)

Fix δ > 0 such that (4.5) and (4.7) hold. Consider the pattern P = (Λ, uΛ, vΛ, AΛ) with AΛ =
{(T (e))e∈EΛ

∈ G(δ)}. Now, we denote by π(x) the first geodesic from 0 to x in the lexicographical
order among those of maximal Euclidean length and we denote by NP(π(x)) the maximum number of
disjoint patterns visited by π(x). Recall the existence of a constant c > 0 small enough such that for
all path π, NP(π) ≥ cNP(π). Since P(AΛ) > 0, we can apply Theorem 1.4. Let α, β1, β2 > 0 be the
constants given by Theorem 1.4. Then, we have

E[NP(π(x))] ≥ ⌊cα‖x‖1⌋P(NP(π(x)) ≥ cα‖x‖1)

≥ ⌊cα‖x‖1⌋P(NP(π(x)) ≥ α‖x‖1) ≥ ⌊cα‖x‖1⌋(1 − β1e−β2‖x‖1 ) ≥ C‖x‖1.

Now, let us follow the end of Stage 3 of the proof of Theorem 5.4 in [5]. By (P1), π(x) takes the π+

segment in each pattern that it takes. Furthermore, by (P2), π(x) does not take any edge in the π++

segment which is not in the π+ segment. So, we can define a self-avoiding path π̂(x) from 0 to x by
replacing each π+ segment with the π++ segment in each pattern visited by π(x). Reduce the weights
on each edge e from T (e) to T (−b)(e) = T (e) − b. By the definition of the pattern, the T (−b)-passage
times of the segments π+ and π++ obey the inequality:

T (−b)(π++) = T (π++) − b|π++| < T (π+) + (2ℓ − 1)b − b|π++| = T (−b)(π+) − b.
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Then, following the proof of Theorem 5.4 in [5], we get

t(−b)(0, x) ≤ T (−b)(π̂(x)) < T (−b)(π(x)) − bNP(π(x))

= T (π(x)) − b|π(x)| − bNP(π(x))

= t(0, x) − bL0,x − bNP(π(x)). (4.8)

Since b ∈ (0, tmin + ε0), E[t(−b)(0, x)] is finite. Thus, taking expectation in (4.8), we get the result.

A Unbounded case

A.1 Assumptions on the pattern in the proof of the unbounded case

Lemma A.1. Let P = (Λ, uΛ, vΛ, AΛ) be a valid pattern. There exists a positive integer ℓΛ and a valid
pattern P0 = (Λ0, uΛ

0 , vΛ
0 , AΛ

0 ) such that:

• Λ0 = B∞(0, ℓΛ),

• for every self-avoiding path π, NP(π) ≥ NP0 (π).

Proof. Denote by L1, . . . , Ld the integers such that Λ =
d∏

i=1

{0, . . . , Li}. Fix ℓΛ = max(L1, . . . , Ld). Let

MΛ > 0 such that
P
(
AΛ ∩ {∀e ∈ Λ, T (e) ≤ MΛ}

)
> 0.

Consider the pattern P0 = (Λ0, uΛ
0 , vΛ

0 , AΛ
0 ) defined by:

• Λ0 = B∞(0, ℓΛ)

• uΛ
0 (resp. vΛ

0 ) one vertex of ∂Λ0 such that there exists a path πu (resp. πv) fixed for the remaining
of the proof linking uΛ

0 and uΛ (resp. vΛ
0 and vΛ) which satisfies the following two conditions:

– πu (resp. πv) does not visit any vertex of Λ except uΛ (resp. vΛ),

– πu (resp. πv) only takes edges in the direction of one external normal unit vector associated
with uΛ (resp. vΛ) chosen arbitrarily if there are several such vectors,

• AΛ
0 the event such that:

– AΛ ∩ {∀e ∈ Λ, T (e) ≤ MΛ} occurs,

– for all e belonging to πu ∪ πv, we have T (e) ≤ MΛ,

– for all e which does not belong to Λ ∪ πu ∪ πv,

T (e) > |Λ0|eMΛ,

where |Λ0|e is the number of edges in Λ0.

Note that, since uΛ and vΛ are distinct, πu and πv are disjoint. We get:

• P(AΛ
0 ) is positive since P is valid and since the support of F is unbounded, and then P0 is a valid

pattern.

• On AΛ
0 , any path from uΛ

0 to vΛ
0 optimal for the passage time among the paths entirely inside Λ0

contains a subpath from uΛ to vΛ entirely inside Λ. Indeed, let π0 be a path from uΛ
0 to vΛ

0 which
does not contain a subpath from uΛ to vΛ entirely inside Λ. It implies that π0 takes an edge whose
time is greater than |Λ0|eMΛ. Let π′

0 be a path following πu, then going from uΛ to vΛ inside Λ,
and then following πv. We have T (π′

0) ≤ |Λ0|eMΛ < T (π0) and thus π0 is not an optimal path.
Hence, for every path π, if a vertex x ∈ Z

d satisfies the condition (π;P0), x satisfies the condition
(π;P).

Thus we get that NP(π) ≥ NP0 (π).
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A.2 Construction of the path π for the modification in the unbounded case

Recall that, here, uΛ and vΛ are the vertices defined at the beginning of Section 2.3. The aim is to prove
that we can construct a path π in a deterministic way such that:

(i) π goes from u to uΛ without visiting a vertex of B∞(sN, ℓΛ), then going from uΛ to vΛ in a
shortest way for the norm ‖.‖1 (and thus being contained in B∞(sN, ℓΛ)) and then goes from vΛ

to v without visiting a vertex of B∞(sN, ℓΛ),

(ii) π is entirely contained in B2,s,N and does not have vertices on the boundary of B2,s,N except u
and v,

(iii) π is self-avoiding,

(iv) the length of πu,uΛ ∪ πvΛ,v is bounded from above by 2r2N + K, where K is the number of edges

in B∞(0, ℓΛ + 3).

As it is said in Section 2.3, we want to construct a path from u to sN and a path from sN to v which
have no vertex in common except sN and such that their lengths are bounded from above by r2N . To
get them, we use the following lemma whose proof is left to the reader.

Lemme A.2. Let m ∈ N
∗ and x, y two vertices of Z

d such that ‖x‖1 = ‖y‖1 = m and x 6= y. Then
we can build in a deterministic way two paths πx and πy linking respectively x and y to 0 and such that
their length is equal to m, they have only 0 as a common vertex and they have respectively only x and y
as vertices whose norm ‖.‖1 is greater than or equal to m.

Using this lemma and replacing 0 by sN using a translation, we get two paths linking u to sN and v
to sN with the stated properties. Recall that B∞(sN, ℓΛ + 3) ⊂ B2,s,N and let u0 (resp. v0) denote the
first vertex in B∞(sN, ℓΛ +3) visited by the path going from u to sN (resp. the one going from v to sN).
Then we get two paths πu,u0 and πv0,v respectively from u to u0 and from v0 to v both constructed in a
deterministic way such that πu,u0 and πv0,v do not have any vertex in common, are entirely contained in
B2,s,N , have only u or v as points on the boundary of B2,s,N , and their lengths are bounded from above
by r2N − (ℓΛ + 3).

Then we build two paths πu0,uΛ and πvΛ,v0
respectively from u0 to uΛ and from vΛ to v0 contained in

B∞(sN, ℓΛ +3)\B∞(sN, ℓΛ) except for uΛ and vΛ, such that they do not have any vertex in common. By
the definition of K, this implies that the sum of their lengths is bounded from above by K (recall that K is
the number of edges in B∞(0, ℓΛ+3)). To get these paths, assume first that ‖u0−vΛ‖1 > 3 or ‖v0−uΛ‖1 >
3. Assume that we have ‖v0 − uΛ‖1 > 3, the other case being the same. We begin by considering a
path π̃ going in a shortest way from v0 to a vertex of the boundary of B∞(sN, ℓΛ + 2), denoted by v′

0.
This path has at most d edges. Then, let uΛ,0 be a vertex on the boundary of B∞(sN, ℓΛ + 3) such
that ‖uΛ − uΛ,0‖1 = 3. We get πu0,uΛ by going from u0 to uΛ,0 in a shortest way on the boundary of

B∞(sN, ℓΛ + 3) avoiding all vertices of π̃, and then by going from uΛ,0 to uΛ by three steps. This is
possible since ‖v0 − uΛ‖1 > 3. To get πv0,vΛ , we begin by following π̃. Let vΛ,0 be a vertex on the

boundary of B∞(sN, ℓΛ + 2) such that ‖vΛ − vΛ,0‖1 = 2. Then, πv0,vΛ goes from v′
0 to vΛ,0 in a shortest

way on the boundary of B∞(sN, ℓΛ+2) avoiding the unique vertex of πu0,vΛ belonging to B∞(sN, ℓΛ+2).

Finally, πv0,vΛ goes from vΛ,0 to vΛ by two steps (see the left side of Figure 6 for an example of this
construction in dimension 2).

Now, if ‖u0 − vΛ‖1 = 3 and ‖v0 − uΛ‖1 = 3, the construction has to be slightly different. From u0,
πu0,uΛ goes to a vertex u′′

0 belonging to the boundary of B∞(sN, ℓΛ + 3) and such that ‖u′′
0 − v0‖1 = 1

in a shortest way on the boundary of B∞(sN, ℓΛ + 3). After, it makes one step to go to the boundary of
B∞(sN, ℓΛ + 2) and goes to uΛ in a shortest way by taking only one vertex in B∞(sN, ℓΛ + 1). Then,
πv0,vΛ goes on the boundary of B∞(sN, ℓΛ+3) to a vertex v′′

0 belonging to the boundary of B∞(sN, ℓΛ+3)
and such that ‖v′′

0 − u0‖1 = 1 by avoiding every vertex which belongs to πu0,uΛ , and then makes two

steps to go to the boundary of B∞(sN, ℓΛ + 1) and goes to vΛ in a shortest way (see the right side of
Figure 6 for an example of this construction in dimension 2). In this case, we also have that the sum of
their lengths is bounded from above by K.

Finally, π is the path obtained by concatenating πu,u0 , πu0,uΛ , a path going from uΛ to vΛ in a
shortest way for the norm ‖.‖1, πvΛ,v0

and πv0,v in this order. We have that π is a self-avoiding path
contained in B2,s,N and has only u and v on the boundary of B2,s,N .
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B∞(sN, ℓΛ)

B∞(sN, ℓΛ + 2)

B∞(sN, ℓΛ + 3)

u0

uΛ,0uΛ

πu0,uΛ

v0

vΛ,0

vΛ

πvΛ,v0

B∞(sN, ℓΛ)

B∞(sN, ℓΛ + 1)

B∞(sN, ℓΛ + 2)

B∞(sN, ℓΛ + 3)

u0

u′′
0

uΛ

πu0,uΛ

v0

v′′
0

vΛ

πvΛ,v0

Figure 6: Example of the construction of the portion of π which is contained in
B∞(sN, ℓΛ + 3) \ B∞(sN, ℓΛ) in dimension 2. On the left, this is an example of the case where

‖u0 − vΛ‖1 > 3 or ‖v0 − uΛ‖1 > 3 and on the left the other case.

B Overlapping pattern in the bounded case

Proof of Lemma 3.1. Recall that ν is fixed at the beginning of Section 3 and that δ′ = min

(
δ

8
,

δ

1 + d

)
.

Then, we fix a positive real ν0 such that:

• tmin + δ ≤ ν0 ≤ ν ≤ tmax,

• the event AΛ ∩ {∀e ∈ Λ, te ≤ ν0} has a positive probability,

• F ([ν0, ν]) > 0.

Notice that, if F has an atom, one could have ν0 = ν, or even ν0 = ν = tmax. Then, fix

ℓΛ = max(L1, . . . , Ld), (B.1)

ℓ1 >
4dℓΛ

(
ν0 − tmin − δ′

2

)

ν0 − tmin − δ′
, (B.2)

and ℓ0 >
ℓΛ((2d + 1)ν0 + (2d − 1)tmin + 2dδ′) + ℓ1(ν0 + 3tmin + 4δ′)

ν0 − tmin − 2δ′
. (B.3)

Fix also

δ′′ < min

(
δ′,

ν0 − tmin

2dℓ0

)
. (B.4)

Let j ∈ {1, ..., d}. Let us construct the overlapping pattern in Λ0 = {−ℓ0, ..., ℓ0}d with endpoints
ℓ0εj and −ℓ0εj . We denote by u3 and v3 the endpoints of the original pattern. The first step is the
construction of an oriented path going from the face of Λ0 containing ℓ0εj to the face containing −ℓ0εj

and visiting u3 and v3. We denote by Λ1 the set

d∏

i=1

{−ℓ1, . . . , Li + ℓ1}. Then we define u2 (resp. v2) the
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Λ0

Λ

Λ1

ℓ0ε2
•
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Figure 7: Example of the construction of π̃ in an overlapping pattern in dimension 2.

vertex of ∂Λ1 which can be linked to u3 (resp. v3) by a path using exactly ℓ1 edges in only one direction
(the direction of the external normal vector associated to u3 (resp. v3)). If u3 or v3 are associated
to several external normal unit vectors, then the choice of the direction is not unique. We choose one
external normal unit vector in an arbitrary way but we ensure that the two normal unit vectors chosen to
build u2 and v2 are different. Note that this is possible since the pattern is valid (recall Definition 1.2).
For a vertex z ∈ Z

d, denote by z(j) its j-th coordinate. Even if it means exchanging the roles of u3 and v3,
we can assume that u2(j) ≥ v2(j). Then, we define u1 = u2 + (ℓ0 − u2(j))εj and v1 = v2 − (ℓ0 + v2(j))εj .
Note that u1 (resp. v1) belongs to the face of Λ0 containing ℓ0εj (resp. −ℓ0εj). We define a path π̃
going from ℓ0εj to u1 in a shortest way, then to u2 in the shortest way, then to u3 in the shortest way,
then to v3 in a shortest way, then to v2 in the shortest way, then to v1 in the shortest way and to v0 in
a shortest way. Note that π̃u1,v1 is an oriented path. Indeed, π̃u3,v3 is an oriented path. Extending it
outside Λ following the direction of an external normal unit vector preserves the fact that it is oriented.
Thus π̃u2,v2 is an oriented path. Then, we assume that u2(j) ≥ v2(j) on purpose to guarantee that, with
the definitions of u1 and v1, the path π̃u1,v1 remains an oriented path.

The event (whose probability is positive) of the overlapping pattern, denoted by AΛ0

j is the following:

• for all e ∈ π̃ℓ0εj ,u3 and e ∈ π̃v3,−ℓ0εj
, T (e) < tmin + δ′′,

• the event AΛ ∩ {∀e ∈ Λ, T (e) ≤ ν0} is realized,

• for all e in Λ0 \ (π̃ ∪ Λ), ν0 ≤ T (e) ≤ ν.

On this event, let γ be one of the fastest path from ℓ0εj to −ℓ0εj among the path entirely contained
in Λ0 and let us show that γ visits u3 and v3 and that γu3,v3

is entirely contained in Λ. We proceed by
proving successive properties.

• There exist one vertex a0 of π̃u1,u2 and one vertex b0 of π̃v2,v1 visited by γ. Further, γℓ0εj ,a0
=

π̃ℓ0εj ,a0 and γb0,−ℓ0εj
= π̃b0,−ℓ0εj

.

Let us assume that γ does not visit any vertex of π̃u1,u2 , the other case being the same. The path
γ has to take at least ℓ0 − ℓΛ − ℓ1 edges connecting vertices such that at least one of them has its
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j-th coordinate strictly between ℓΛ + ℓ1 and ℓ0. The only edges in this set whose passage time is
smaller than ν0 are those of π̃u1,u2 . Hence

T (γ) ≥ (ℓ0 − ℓΛ − ℓ1)ν0 + (ℓ0 + ℓΛ + ℓ1)tmin.

But, thanks to our construction, we have

T (π̃) ≤ T (π̃ℓ0εj ,u1) + T (π̃v1,−ℓ0εj
)

︸ ︷︷ ︸
≤(2dℓΛ+2ℓ1)(tmin+δ′′)

+ T (π̃u1,u2) + T (π̃v2,v1 )︸ ︷︷ ︸
≤2ℓ0(tmin+δ′′)

+ T (π̃u2,u3) + T (π̃v3,v2 )︸ ︷︷ ︸
≤2ℓ1(tmin+δ′′)

+ T (π̃u3,v3 )︸ ︷︷ ︸
≤2dℓΛν0

≤ 2(dℓΛ + 2ℓ1 + ℓ0)(tmin + δ′) + 2dℓΛν0 since δ′′ < δ′.

So, (B.3) leads to T (π̃) < T (γ), which is impossible.

To prove that γℓ0εj ,a0
= π̃ℓ0εj ,a0 , we use the fact that by the construction, if γℓ0εj ,a0

6= π̃ℓ0εj ,a0 ,
γℓ0εj ,a0

has to take at least one edge whose time is greater than or equal to ν0. Hence,

T (γℓ0εj ,a0
) ≥ ν0 + (‖ℓ0εj − a0‖1 − 1)tmin,

although
T (π̃ℓ0εj ,a0) ≤ ‖ℓ0εj − a0‖1(tmin + δ′′).

Since ‖ℓ0εj − a0‖1 ≤ 2dℓ0, (B.4) leads to T (π̃ℓ0εj ,a0) < T (γℓ0εj ,a0
), which is impossible sing γ is an

optimal path.

• If a1 (resp. b1) is a vertex of π̃u2,u3 (resp. π̃v3,v2 ) visited by γ, then γℓ0εj ,a1
= π̃ℓ0εj ,a1 (resp.

γb1,−ℓ0εj
= π̃b1,−ℓ0εj

).

Indeed, let a1 be such a vertex and let a0 be the vertex of the preceding property. We only have
to prove that γa0,a1

= π̃a0,a1 and the proof is the same as the one for γℓ0εj ,a0
= π̃ℓ0εj ,a0 .

Among the vertices visited by γ, we denote by a (resp. b) the last vertex of π̃ℓ0εj ,u3 (resp. the first
vertex of π̃v3,−ℓ0εj

). Then, γa,b does not visit any vertex of π̃ℓ0εj ,u3 ∪ π̃v3,−ℓ0εj
(except a and b). Indeed,

by the two properties above, we have that γℓ0εj ,a = π̃ℓ0εj ,a and γb,−ℓ0εj
= π̃b,−ℓ0εj

and γa,b can not visit
a vertex of π̃a,u3 ∪ π̃v3,b thanks to the definition of a and b.

• The vertex a (resp. b) belongs to π̃u2,u3 (resp. π̃v3,v2).

Assume that a or b does not satisfy this property. Then ‖a − u3‖1 ≥ ℓ1 or ‖b − v3‖1 ≥ ℓ1. Since
π̃a,b is oriented and since ‖u3 − v3‖1 ≤ 2dℓΛ,

T (π̃a,b) ≤ (‖a − b‖1 − 2dℓΛ)(tmin + δ′′) + 2dℓΛν0 ≤ (‖a − b‖1 − 2dℓΛ)(tmin + δ′) + 2dℓΛν0.

Then, since the edges whose time is smaller than ν0 taken by γa,b are those in Λ,

T (γa,b) ≥ (‖a − b‖1 − 2dℓΛ)ν0 + 2dℓΛtmin.

Using (B.2), we get T (γa,b) > T (π̃a,b), which is impossible.

• We have that a = u3 and b = v3.

Assume that a 6= u3, the other case being the same. We have

T (π̃a,b) ≤ (‖a − b‖1 − ‖u3 − v3‖1)(tmin + δ′) + ‖u3 − v3‖1ν0,

and thus γa,b takes at least one edge of Λ otherwise T (γa,b) ≥ ‖a−b‖1ν0 > T (π̃a,b) since ‖a−b‖1 −
‖u3 − v3‖1 > 0. Let u0 be the first entry point of γa,b in Λ and let us consider the path π following
π̃a,u3 , then going from u3 to u0 in a shortest way and then following γu0,b. Then, the number of
edges of πa,u0 is lower than or equal to the number of edges of γa,u0

, for all e ∈ πa,u0 , T (e) ≤ ν0,
there exists e′ ∈ πa,u0 such that T (e′) ≤ tmin + δ′ and for all e ∈ γa,u0

, T (e) ≥ ν0. So, we have
T (π) < T (γa,b) which is impossible since γ is an optimal path among paths entirely contained in
Λ0.
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• γa,b takes the original pattern.

Assume that γa,b is not entirely contained in Λ. Let v0 be the first exit point from Λ of γa,b and
u0 the first entry point after v0. Let us consider the shortcut π going from v0 to u0 in a shortest
way. Then, using the same argument as in the proof of Lemma 3.21, we have that γv0,u0

has
strictly more edges than π. Furthermore, all edges of γv0,u0

have a time greater than or equal to
ν0 although all edges of π have a time lower than or equal to ν0. So, T (π) < T (γv0,u0

), which is
impossible since γ is an optimal path among paths entirely contained in Λ0. Since γa,b is a path
entirely contained in Λ, going from u3 to v3 and with an optimal time, so we have the result.
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