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NON-MARKOVIAN MODELLING HIGHLIGHTS THE

IMPORTANCE OF AGE STRUCTURE ON COVID-19

EPIDEMIOLOGICAL DYNAMICS

Bastien Reyné1,* , Quentin Richard1 , Christian Selinger1,2 ,
Mircea T. Sofonea1 , Ramsès Djidjou-Demasse1

and Samuel Alizon1,3

Abstract. The Covid-19 pandemic outbreak was followed by a huge amount of modelling studies in
order to rapidly gain insights to implement the best public health policies. Most of these compartmental
models involved ordinary differential equations (ODEs) systems. Such a formalism implicitly assumes
that the time spent in each compartment does not depend on the time already spent in it, which
is at odds with the clinical data. To overcome this “memoryless” issue, a widely used solution is to
increase and chain the number of compartments of a unique reality (e.g. have infected individual move
between several compartments). This allows for greater heterogeneity and thus be closer to the observed
situation, but also tends to make the whole model more difficult to apprehend and parameterize.
We develop a non-Markovian alternative formalism based on partial differential equations (PDEs)
instead of ODEs, which, by construction, provides a memory structure for each compartment thereby
allowing us to limit the number of compartments. We apply our model to the French 2021 SARS-CoV-2
epidemic and, while accounting for vaccine-induced and natural immunity, we analyse and determine
the major components that contributed to the Covid-19 hospital admissions. The results indicate that
the observed vaccination rate alone is not enough to control the epidemic, and a global sensitivity
analysis highlights a huge uncertainty attributable to the age-structured contact matrix. Our study
shows the flexibility and robustness of PDE formalism to capture national COVID-19 dynamics and
opens perspectives to study medium or long-term scenarios involving immune waning or virus evolution.
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1. Introduction

Shortly after the Covid-19 outbreak in late 2019, many efforts were put in diverse research areas to understand
both the disease and its aetiological agent, SARS-CoV-2, and to produce tools to deal with what quickly became
a pandemic. Among those areas, mathematical modelling studies proliferated to better grasp the epidemics’
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dynamics on a—at first—short and medium-term scale. Stochastic models were more appropriate early on to
take into account the randomness of the transmission events [5, 20, 31], but they were rapidly complemented
by deterministic models since many epidemics were settled within a couple of months in many countries. These
modelling results provided valuable insights to guide public health policies, often on a nationwide scale [45].

Many of the deterministic models developed were variations of the classical Susceptible–Infected–Recovered
(SIR) compartmental model and usually involved a system of ordinary differential equations (ODEs) [28]. Such a
simple formalism was adapted at first given the unknowns regarding the natural history of the disease. However,
the knowledge accumulated in a matter of months made it clear that several assumptions were biologically
unrealistic. In particular, the residence times in various compartments were not distributed exponentially, and
the related “lack of memory” (also named Markov property)—meaning that the time spent in a compartment
does not depend on the time already spent in the compartment, as implicitly assumed by the ODE formalism—
became particularly detrimental to short-term forecasting (see Supplementary Fig. A.1 for an illustration of the
impact of memory on the time spent in a compartment). For example, for the time elapsed between infection
and potential hospital admission, French hospitalisation data analyses show this memoryless hypothesis does
not hold [46, 49]. A simple workaround to this issue consisted in adding new compartments, e.g. for exposed
people but not yet infectious, thereby increasing the heterogeneity in the infected period. Earlier studies indeed
show that the addition of intermediate compartments transforms the sum of exponentially distributed waiting
times into a hypoexponential distribution [33]. Accounting for memory can also be achieved by other formalisms
such as discrete-time modelling, and thus be tailored to epidemiological data the time resolution of which is
almost always that of the day [49].

Nevertheless, depending on the issue dealt with by the model, sources of heterogeneity may emerge and
increase the number of host categories and thus the total number of equations and parameters. With the
onset of vaccination campaigns, this phenomenon became even more pronounced [30, 38]. Even if the approach
consisting in a chain of compartments in ODE systems remained a useful approximation, the initial gain in
simplicity progressively vanished, making the models increasingly difficult to analyse and parameterize.

On a longer time scale, virus evolution and the emergence of variants of concern (VOC) [11], coupled with
some pre-existing unknowns regarding the behaviour of natural and vaccine-induced immune responses [2, 57],
further increased the need for modelling approaches. However, even for medium or long-term projections, ODE-
based approaches remain far from ideal since immunity waning may occur rapidly (at least from a prospective
point of view) and might not be memoryless.

To address these issues, we use an alternate formalism relying on partial differential equations (PDEs)
instead of ODEs, with which it shares similarities and simplicity in its formalism. Although models based on
PDEs require an additional initial effort for parameterization, they offer increased flexibility because biological
assumptions can be strongly varied without adding more compartments. Interestingly, the seminal work on the
SIR model by [29] was implicitly based on a PDE formalism and ODE models were simply presented as special
cases when infectivity and removal rates were assumed to be constant. PDEs are often used in epidemiological
models to take into account a population age-structure or a spatial structure [8, 21]. PDE models can also
elegantly incorporate non-linearity in models (e.g. for infectiousness profile [22, 25] or immunity waning [16]).
Including such aspects with ODE-based models would require more effort because it would be necessary to add
compartments and, therefore, change the structure of the model itself. Regarding Covid-19 epidemics, PDE
based approached have mainly been used to deal with spatial structure (e.g. [52, 55]) and sometimes to add the
age of infection in the model structure [43, 56]. But, overall, PDE-based models of Covid-19 epidemics remain
marginal compared to ODE-based models.

In this study, we build upon earlier work by [43], who developed a non-Markovian model structured in terms
of the age of the host (in years) and of the infection (in days). We extend it by generalising the PDEs non-linear
properties to vaccination status and clearance memory. More precisely, we also record the time since vaccination
as well as the time since clearance (both in days). These daily time structures allow us to keep track of the time
spent in each compartment, thereby providing a convenient way to correct the memory problem while limiting
the number of epidemiological compartments.
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We first present the details of the model and derive some of its main properties, such as the basic reproduction
number. Then, we perform a sensitivity analysis to identify which parameters affect epidemiological dynamics the
most. We also show that the model can be tailored to analyse the past French Covid-19 epidemic and formulate
projections regarding future trends. Finally, we discuss perspectives to extend the model and additional questions
regarding Covid-19 epidemics.

2. Model

2.1. Model overview

The density of susceptible individuals of age a ∈ [0, amax] at time t is denoted by S(t, a). Susceptible indi-
viduals leave the compartment either by being infected, at a rate λ(t, a) corresponding to the force of infection,
or by becoming vaccinated, at a rate ρ(t, a).

Infected individuals are denoted I`(t, a, i). The exponent ` ∈ {m, s, d} corresponds to the three types of
infections: m for mild and asymptomatic cases, s for severe cases that will require hospitalization at some point
before recovering, and d for severe cases that always result in the patient’s death. Each of these categories of
infected individuals is further stratified according to the time since infection, which is indexed by i ∈ [0, imax].
Practically, this affects the recovery rates (γm(a, i) and γs(a, i)) and the death rate (µ(a, i)), as well as the
different transmission rates β`(a, i), ` ∈ {m, s, d}; all of which are functions of i. The number of new mildly
infected individuals at a given time t is given by the boundary condition,

Im(t, a, 0) = (1− pa)λ(t, a)S(t, a), (2.1)

where pa is the proportion of infections that lead to severe cases for individuals of age a.
We add a similar time structure j to record time since clearance for the density of recovered individuals,

R(t, a, j), to account for a possible post-infection immunity waning at a rate σ(a, j). Recovered individuals are
assumed to be vaccinated at the same rate as susceptible individuals, ρ(t, a). The number of newly recovered
individuals of age a at time t is given by the boundary condition

R(t, a, 0) =

∫ imax

0

[
γs(a, i)Is(t, a, i) + γm(a, i)Im(t, a, i)

]
di. (2.2)

The density of vaccinated individuals, V (t, a, k), also has its own time-structure k to capture the time since
vaccination. This allows taking into account the immunity waning, σv(a, k), or any temporal variation in vaccine
efficacy. The number of newly vaccinated individuals is given by the boundary condition

V (t, a, 0) = ρ(t, a)S(t, a) + ρ(t, a)

∫ jmax

0

R(t, a, j)dj. (2.3)

Since vaccine efficacy may be imperfect, we assume that vaccinated individuals can still be infected by the
virus, but at a rate reduced by 1− ε(a, k) compared to susceptible unvaccinated individuals. If the infection is
mild, infected vaccinated hosts move to the Imv(t, a, i, k) compartment, which is separated from mild-infected
former susceptible individuals to allow for reduced transmission at a rate 1− ξ(a, k). Vaccinated individuals can
also develop a severe form of Covid-19 following infection but at a rate reduced by (1− ν(a, k)). And therefore
reduced by (1− ε(a, k))(1− ν(a, k)) compared to susceptible individuals. Hence, the number of newly severely
infected individuals of age a at time t is given by the boundary conditions

Is(t, a, 0) = pa

(
1− ifra

pa

)
λ(t, a)

[
S(t, a) +

∫ kmax

0

(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
(2.4)
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Figure 1. Model flowchart. On this flowchart, subscripts denote additional structure beside
time t for each compartment: a stands for the host age, i for the time since infection, j for the
time since clearance, and k for the time since vaccination. Exponents indicate different types
of infections: m for mild or asymptomatic cases, s for severe cases who will survive, d for cases
who will die, and mv for mild infection though vaccinated host.

and

Id(t, a, 0) = ifra λ(t, a)

[
S(t, a) +

∫ kmax

0

(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
, (2.5)

where ifra denotes the infection fatality rate (IFR), that is the fraction of individuals of age a who die from the
infection. It is worth noting that due to VOC emergence inducing an increase in virulence, both pa and ifra will
be scaled by κ accounting for this increase.

Regarding the infected vaccinated individuals who develop mild symptoms, the boundary conditions are

Imv(t, a, 0, k) = [1− ε(a, k)] [1− (1− ν(a, k))pa]λ(t, a)V (t, a, k) (2.6)

and

Imv(t, a, i, 0) = 0. (2.7)

The model flowchart is displayed in Figure 1. Notice that our model only has 8 compartments. Note also
that vaccines can act in three non mutually exclusive ways by decreasing the risk of being infected (ε(a, k)), the
probability to develop severe symptoms if infected (ν(a, k)), and the transmission rate if infected (ξ(a, k)).
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The change over time, including the leaving of each compartment, is provided by the following PDE system,
coupled with the boundary conditions (2.1)–(2.7):

∂S(t, a)

∂t
= −λ(t, a)S(t, a)− ρ(t, a)S(t, a)

+

∫ jmax

0

σ(a, j)R(t, a, j)dj

+

∫ kmax

0

σv(a, k)V (t, a, k)dk, (2.8)(
∂Im(t, a, i)

∂t
+
∂Im(t, a, i)

∂i

)
= −γm(a, i)Im(t, a, i), (2.9)(

∂Is(t, a, i)

∂t
+
∂Is(t, a, i)

∂i

)
= −γs(a, i)Is(t, a, i), (2.10)(

∂Id(t, a, i)

∂t
+
∂Id(t, a, i)

∂i

)
= −µ(a, i)Id(t, a, i), (2.11)(

∂R(t, a, j)

∂t
+
∂R(t, a, j)

∂j

)
= −ρ(t, a)R(t, a, j)− σ(a, j)R(t, a, j) (2.12)(

∂V (t, a, k)

∂t
+
∂V (t, a, k)

∂k

)
= −σv(a, k)V (t, a, k)

− (1− ε(a, k))λ(t, a)V (t, a, k)

+

∫ imax

0

γmv(a, i)Imv(t, a, i, k)di, (2.13)(
∂Imv(t, a, i, k)

∂t
+
∂Imv(t, a, i, k)

∂i
+
∂Imv(t, a, i, k)

∂k

)
= −γmv(a, i)Imv(t, a, i, k), (2.14)

with

λ(t, a) =

∫ amax

0

(1− c)2K(a, a′)

∫ imax

0

[
βm(a′, i)Im(t, a′, i) + βs(a′, i)Is(t, a′, i)

+βd(a′, i)Id(t, a′, i) + βmv(a′, i)

∫ kmax

0

(1− ξ(a′, k))Imv(t, a′, i, k)dk

]
di da′, (2.15)

for any (t, a, i, j, k) ∈ R+ × [0, amax] × [0, imax] × [0, jmax] × [0, kmax]. Here, K(a, a′) is the kernel giving the
mean contact rate between two individuals belonging respectively to the age classes a and a′. We also introduce
efficacy, denoted c, of non-pharmaceutical interventions (NPIs) in reducing the contact rates between individuals
independently of their age. We assume NPIs affect all individuals indifferently, no matter the compartment they
belong to. Therefore, since both susceptibles and infected individuals are targeted, the reduction of the contact
rate is a squared term.



6 B. REYNÉ ET AL.

The above system is associated with Assumption B.1 in Supplementary Methods and the following initial
conditions

S(t = 0, ·) = S0(·) ∈ L∞+ ([0, amax]),

R(t = 0, ·, ·) = R0(·, ·) ∈ L∞+ ([0, amax]× [0, jmax]),

V (t = 0, ·, ·) = V0(·, ·) ∈ L∞+ ([0, amax]× [0, kmax]),

I`(t = 0, ·, ·) = I`0(·, ·) ∈ L∞+ ([0, amax]× [0, imax]), for ` ∈ {m, s, d},
Imv(t = 0, ·, ·, ·) = Imv0 (·, ·, ·) ∈ L∞+ ([0, amax]× [0, imax]× [0, kmax]).

(2.16)

Notice that the well-posedness of System (2.1)–(2.16) is analysed in Supplementary Methods B.2.

2.2. Model parametrization

In this study, we focus on the French Covid-19 epidemic in 2021. The values used are shown in Table 1
along with the (French) data we use for parameter inference. Additional details about these can be found in
Supplementary Methods C.

The basic reproduction number is fixed but varies in time due to the emergence of the α and δ VOCs. The
α VOC was first detected in France in early January and rapidly became dominant. Therefore, the R0 retained
starting in January was 4.5 [11, 19]. By July, the α VOC was supplanted by the δ VOC, increasing the R0 up
to 6 [1].

Regarding the modelling of vaccine efficacy, for simplicity, we neglect immune waning, i.e. the decrease of
immunity with time, meaning that σ(a, j) ≡ 0 and σv(a, k) ≡ 0. This assumption is motivated by the fact that
we consider a medium-term scenario and it could readily be modified. We also assume that the three types of
vaccine efficacies (against reinfection, severe symptoms, and transmission) are not maximal upon entry into the
vaccinated compartment. More precisely, we assume a double sigmoid curve to capture two vaccine injections
(Fig. A.2). The different levels of efficacy are based on the [41] report, and additional details are provided
in the Supplementary Methods C.5. The vaccination rate ρ(t, a) is based on the observed French data (see
Supplementary Methods C.6 for details about this implementation).

The different transmission rates β`(a, i), ` ∈ {m, s, d}, are simply the generation time, weighted to correct
for the possibility for individuals to leave the infected compartments before the generation time becomes null.

Concerning some age-stratified parametrization functions, we assume no differences between age groups. This
assumption is either made for parsimony reasons (i.e. for γm(a, i), γs(a, i), and µ(a, i)) or because of lack of
information (e.g. for βm(a, i) and βs(a, i)).

2.3. Contact matrices

Due to the data available and following the parametrization relative to the severity disease, the kernel K(a, a′)
is also given for a finite number of age classes, thus providing a contact matrix. And this contact matrix K(a, a′)
is also an important part that needs to be defined as it will define the age-structure of the population regarding
an age-severity differentiated infectious disease [50, 54]. In that regard, we decide to present two competing
choices. The first one from [7] was estimated to better apprehend the spread of infectious diseases. The second
source of contact matrices comes from the French health agency (Santé Publique France) and the French national
health insurance (CNAM). They provide Covid-19 38 week-specific contact matrices ranging from August 2020
to April 2021.

The latter reveal pronounced changes across weeks. These are most likely due to a variety of reasons such as
control restrictions policies or school holidays. Interestingly, these changes do not affect all age classes in the
same way (Fig. 2).

The two sources of contact matrix also exhibit qualitative pattern differences, as illustrated in Figure 3.
Indeed, that from [7] gives more weight to relatively young people who tend to have contact with people close
in age, such as colleagues or friends, which could be representing the active population. Furthermore, in this
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Table 1. Model parameters. For each parameter, we indicate the default value used and the
references used.

Parameter Value Reference

Generation time Weibull(2.83, 5.67) [17]
Proportion of severe cases
(pa), IFR (ifra) and increase
in virulence (κ)

0.0113 (mean), 0.0022 (mean)
and 1.65 (baseline)

[10, 12, 51]

Mild recovery rate Adapted [46]
Severe recovery rate Adapted [32, 46]
Vaccination rate Fitted https://data.gouv.fr
Total severity reduction 0.925 (efficacy after 2 doses) [41]
Infection immunity 0.875 (efficacy after 2 doses) [41]
Transmission reduction 0.75 (efficacy after 2 doses) [41] (see Supplementary Methods C.5)
Initial proportion of recov-
ered

0.149 [0.132− 0.169] [23]

Age structure Real data https://www.insee.fr/fr/statistiques/2381474
Contact matrix — SPF/CNAM and [7]

Figure 2. Coefficients of variation of each element of the SPF/CNAM contact matrix over
the 38 weeks available. The higher the value, the greater the variability in contacts between
age-classes over the different weeks.

matrix, older people have few contacts. Conversely, SPF matrices seem to have more extra-generational contacts,
which could increase the role of transmission within households.

Therefore, we included all (normalized) contact matrices in the sensitivity analysis.

2.4. Model outputs and fitting procedures

The main model outputs are population sizes of the compartments overtime for the year 2021 in France. The
French publicly available hospital admission data are not stratified by age so we only use the global incidence data

https://data.gouv.fr
https://www.insee.fr/fr/statistiques/2381474
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Figure 3. Contact matrices sources. The first source corresponds to 38 weekly contact matrices
from August 2020 to April 2021 provided by SPF/CNAM (on the left, the mean contact matrix
over the 38 weeks.). The second source originates from [7] (on the right). All matrices were
normalized in order to be compared.

for parameterization and comparison purposes. In our model, incidence data in hospital admissions dynamics
corresponds to the entry in the severe infection compartments (Is(t, a, i) and Id(t, a, i)) with a twelve days lag
[46].

For each compartment dynamic, we build a 95% confidence interval using the 0.025 and 0.975 quantiles at
each time step of all model runs used for the sensitivity analysis (see below).

Regarding parameter inference, we consider a daily minimal sum of squares between the data and simulations.
We first fit the vaccination rate ρ(t, a) on French data as detailed in Supplementary Methods C.6. Due to high
computational cost, we fit the NPI policies efficacy only on the median trajectory (defined as the trajectory
obtained using the median parameter set but with the [7] contact matrix).

2.5. Sensitivity analysis

We perform a variance-based sensitivity analysis to assess the robustness of the model given its inputs. We
compute the Sobol main sensitivity indices for each model parameter and for each time step [47]. For an input
parameter Xi and a given day, this index reflects the fraction of the variance in the output Y (here the daily
hospital admissions) and is defined by

Si =
Var(E[Y |Xi])

Var(Y )
.

The difference between the sum of the main indices and 1 corresponds to the variance originating from the inter-
actions between all the parameters. The analysis was performed on 30,400 model runs with different parameters
sets chosen using a Latin Hypercube Sampling within the ranges detailed in Table A.1.

Assessing the sensitivity of model outputs depending on the contact matrix is more delicate since drawing
each matrix coefficient would be numerically too costly and drawing an entire matrix would cause a loss of
information regarding the role of the different age classes. However, we possess 38 weekly contact matrices from
SPF and another contact matrix from [7]. Therefore, for each age class, we randomly draw the corresponding age
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class column (i.e. the rate of being infected for the given age class by all the age classes) among the 39 available
matrices. As discussed in Section 2.3, the two sources of contact matrices exhibit qualitatively different patterns,
suggesting potential differences in terms of within-household transmission or active population transmission
patterns. To avoid giving more weight to a specific pattern, the [7] matrix was weighted 38 times more than the
SPF matrix.

Additional details regarding the sensitivity analysis can be found in Supplementary Results D.

3. Results

3.1. Basic reproduction number and NPIs

The basic reproduction number, denoted R0, is a widely used metric in epidemiology because it corresponds
to the average number of secondary infections caused by an infected host in an otherwise fully susceptible
population [3]. Calculating it for our PDE system is not trivial and for this, we use the next generation operator
approach [14, 24]. More precisely, we show that the number of new infections in individuals of age a at time t
in a fully susceptible population, denoted IN (t, a), satisfies the renewal equation (see Supplementary Methods
B.3 for details)

IN (t, a) = S0(a)

∫ t

0

∫ amax

0

K(a, a′)Ω(a′, i)IN (t− i, a′)da′di, (3.1)

where Ω(a, i) can be interpreted as the infectiousness expectation of an individual of age a infected since time
i and is defined by

Ω(a, i) = βm(a, i)(1− pa)πm(i) + βs(a, i)pa

(
1− ifra

pa

)
πs(i) + βd(a, i) ifra πd(i),

where π` is the “survival” probability (i.e. remaining in the compartment) of infected individuals of the I`

compartment. Mathematically, π`(a, i) = e−
∫ i
0
f`(a,r)dr, with f` = γm, γs, µ, respectively, for ` = m, s, d.

Following the Next Generation Theorem, the basic reproduction number R0 is calculated as the spectral
radius, noted r(U), of the next generation operator U defined from L1

+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ imax

0

∫ amax

0

K(·, a′)Ω(a′, i)v(a′)da′di.

For parametrization purpose, we assume that the contact matrix K(·, ·) is given up to a positive constant β (to
be determined), such that K(·, ·) = βK(·, ·), and K satisfies

∑
i

∑
j K(ai, aj) = 1. Consequently, we find that

β is given by

β =
R0

r
(
U
) , (3.2)

where U is the operator defined from L1
+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ amax

0

K(·, a′)Ω(a′)v(a′)da′,

with

Ω(a) =

∫ imax

0

(1− pa)βm(a, i)πm(i) + pa

(
1− ifra

pa

)
βs(a, i)πs(i) + ifraβ

d(a, i)πd(i)di.
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Figure 4. Temporal sensitivity analysis. We represent the main Sobol indices for each time step.
These indices give the relative variance explained by each parameter. There are 9 parameters
associated to the contact matrix corresponding to the rate of being infected for each age class
from younger to older (bottom to top). ‘Virulence’ corresponds to the (increased) virulence of
the VOC.

In the following, the R0 is set to correspond to that of the α and then the δ VOC, which are both higher
than that of the initial lineages. Note that, within this study, we scale K(·, ·) by

β∗ := (1− c)2β =
(1− c)2R0

r
(
U
)

rather than β because we estimate the level of NPI efficacy (c) beforehand on real data, and for prospective
scenarios after the current date, we arbitrarily set it to the desired value.

3.2. Sensitivity analysis

Performing per time-point sensitivity analyses on the daily hospital admissions for all the model parameters
(Fig. 4), we noticed that most of the variance originated from the contact matrix (and its 9 parameters), espe-
cially the younger age classes. This effect was even more striking when considering the raw variance originating
from each parameter (Fig. A.3).

We also observed important time variations of some parameters, such as the generation time Weibull’ scale
parameter. The period where this is the most predominant also corresponds to the period with few newly
hospital admissions (Fig. 6), and therefore a lesser variance. The sharp decrease of this parameter sensitivity
coincides with the epidemic’s growth reprisal.

Furthermore, others parameters explained variance, such as the VOC-increased virulence (in red) at first
or more notably the interactions between parameters progressively increasing over time reaching half of the
variance explained at the end of the year.
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Figure 5. Epidemic dynamics of the French SARS-CoV-2 epidemic in 2021. For vaccinated
hosts, we show the real data (green dots). Vertical lines indicate imposed changes in the basic
reproduction number R0 (in red) or estimated changes in the efficacy of NPIs (in blue). Plain
lines and shaded areas respectively represent the median and 95% confidence interval computed
from the simulations used for the sensitivity analysis.

3.3. Inferred dynamics

By parameterizing our model with existing data and inferring additional parameters, we could estimate past
epidemic dynamics and investigate scenarios for future trends (Fig. 5). The vaccinal coverage modelling did
follow quite well real data, even though dissimilarities emerged in the summer (corresponding to the French
summer holidays).

We may also observe a slight rebound in infected individuals mid-March, which follows by two weeks the
end of the winter holidays. We also see this phenomenon on the new hospital admissions (Fig. 6), with a
supplementary delay corresponding to the delay between infection and hospital admissions.

It seems that the current vaccination rate is not high enough to avoid a new epidemic wave. However, we
observe the uncertainty is huge and does not allow us to have a precise idea of what might happen.

4. Discussion

Mathematical modelling has emerged as a central tool to control and anticipate the SARS-Cov-2 pandemic.
This importance is likely to increase now that vaccination has become the cornerstone of the public health
response in many countries. However, the limitations of current vaccination models lie in either neglecting
memory effects or compensating by highly dimensional models with dozens of ordinary differential equations. In
this study, we used partial differential equations to model medium and long term hospital admission dynamics
in a population with natural and vaccine-induced immunity only with 8 general compartments.

To identify the components of our model that affected the results most, we conducted a global sensitivity
analysis, which revealed that the contact matrix between age classes strikingly contributed more variance in
daily hospital admissions than the VOC related increase of virulence itself. This predominant role is somehow
surprising because although there is susceptibility to infection differences based on age (e.g. [13]), the strongest
age differences appear in the IFR. Furthermore, in our results, contacts of younger age groups appeared to be
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Figure 6. Daily admissions for Covid-19 in French hospitals in 2021. The blue dots show the
real data, the plain line shows the median and the gray area shows the 95% confidence interval
computed from the simulations used for the sensitivity analysis. As in Figure 5, vertical lines
show the imposed and estimated values of R0 and NPI efficacy (c).

the most important contributor to the variance of the outcome, although they were, and by far, the less likely
to be hospitalized.

An important limitation of the model is that the contact matrix is assumed not to vary throughout a simulated
epidemic. As suggested by the temporal variance in the SPF matrix data (Fig. 2), this may be oversimplistic.
For instance, we observed a difference of patterns in simulations whether they assumed high or low contact
rates among younger age classes (as shown in Supplementary Fig. A.4). A baseline for the different contacts
rates, if such a concept can even exist biologically, would most likely be impossible to determine because of
the variety of events over a year inducing changes in social interactions such as calendar events (e.g. school
holidays), implementation of control policies (e.g. lockdown, curfew), or even media coverage of the epidemic
(resulting in spontaneous behavioural change with respect to the perception of the epidemic).

The importance of the age-structure of the host population in shaping Covid-19 epidemics is widely acknowl-
edged. However, this effect is usually studied in the clinical context of disease severity and less so for transmission
dynamics [46, 49]. However, there are exceptions and, using a PDE formalism, [43] find the population structure
to be the parameter that contributed relatively the most variance to their model’s output. Both [27, 43] use a
constant contact matrix, but they explore the impact of age-differentiated NPI policies. That being said, none
of those studies (including ours), are able to fully assess the role of the age-structure since additional unknown
patterns could potentially impact medium-term forecasting. For example, in absence of external data, it seems
impossible to distinguish the “true contact matrix” from age-differentiated NPI policies. The problem is that
the two would likely yield different outputs in NPI-lifting scenarios.

Although the variance contributed by the other parameters is low, there is a noticeable effect of the increase
in virulence associated with infections caused by VOCs. Our approach allows us to quantify this effect (20% of
the variance) and even identify its peak contribution (in the declining phase of the epidemic peak). Note that
the relative importance of virulence is lower in the prospective part of the model (i.e. after August 2021) but
this is potentially because other parameters such as the ones related to vaccination and interactions between
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parameters become more important over time. We also did not consider an increase in virulence in the δ VOC
compared to the α VOC (but recent data shows this might very well be the case [48]).

The generation time Weibull’s scale parameter, which has an impact on the mean generation time, also affects
hospital admission dynamics, especially in June/July and November/December 2021. However, this needs to
be put in perspective since the impact of this parameter arises only when there is little variance (Fig. A.3) and
a decreasing epidemic (Fig. 6). This can be explained by the fact a shorter mean generation time for a given
reproduction number is known to increase the epidemic’s growth rate [39, 53]. On this aspect, it is worth noting
that the δ VOC seems to have a shorter generation time than the wildtype strain and this was not taken into
account in this model [58].

By applying our model to the context of the French epidemic, we show that the vaccination levels reached
in the summer 2021 were insufficient to prevent a new epidemic wave, even in the scenarios with good vaccine
coverage and efficacy (i.e. the lower bound of the confidence interval). A strong caveat to extending this model
to longer time scales is that anticipating variations in the vaccination rate is extremely difficult as it relies on
sociological factors. Increasing the uncertainty range for this parameter would most likely increase the variance
in the sensitivity analysis. However, given past vaccination dynamics, we do not expect this to qualitatively affect
the results. Regarding the medium-term forecasting, we did not include potential weather-related variations in
behaviour or infectivity, which have been estimated to account for 15 to 20% of the variations in temporal
reproduction number [35].

To analyse our model, we had to make several simplifying assumptions, which are common to differential
equation-based models. The two major ones are the lack of spatial heterogeneity and the contact homogeneity
among a given age class. The lack of spatial heterogeneity implies an identical contact rate across the whole
country. This is not problematic at the start of an epidemic but is not adapted for long-term modelling as it
affects the persistence of the disease [18, 34]. Furthermore, age contact patterns allow us to capture some of the
heterogeneity in the population but there could be other social heterogeneities that could, for instance, correlate
with vaccination status. As shown in the case of the influenza virus, these could affect epidemiological dynamics
[4].

One advantage of this PDE model is the restrained number of compartments, especially compared to a clas-
sical alternative in ODE-based models which consists of chaining and multiplying compartments. For the latter,
this would also require rewriting the formalism, depending on whether we consider a short, medium, or long-
term temporal scale. In a way, PDE models allow one to explore a great variety of biological scenarios without
adding any compartments thanks to the time since an event (infection, recovery, or vaccination) structure, only
by varying the ”age-since-event functions”. Therefore, the same model can be used to monitor new hospital
admissions or the need for a new vaccination campaign years later in the presence of immune waning, i.e. a
time-induced loss of immunity. For instance, we could account differential building up of vaccine immunity in
susceptible versus recovered individuals. This would be consistent with the fact that the latter enter the vacci-
nated compartment at a later ‘vaccination age’ (i.e. k > 0) and a single vaccine dose appears to be sufficient to
build strong immunity [37]. Also, in the context of waning immunity, our model can be used to investigate the
long-term benefits or costs of implementing vaccine boosters depending on assumptions regarding vaccine effi-
cacy or the duration of natural immunity. More generally, we can readily investigate the effect of implementing
age-stratified vaccination policies.

Undeniably, PDE formalism requires a greater investment to implement simple models. Furthermore, deriving
analytical results is more challenging, as illustrated by our calculation of the basic reproduction number. Another
potential downside is that the computation time for simulation can increase rapidly.

On a more prospective side, our model offers promising possibilities to investigate virus evolution because
it can explicitly capture the interplay between change in susceptibility, contagiousness, virulence and immune
escapes (post-infection and vaccine) and trade-offs between them.
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Appendix A. Supplementary figures and table

Figure A.1. Illustrating the impact of memory on the time spent in a compartment. Providing
memory to any compartment might yield different results in terms of epidemic dynamics. As
illustrated here, in both cases half of the people leave the compartment at approximately twelve
days. However, the number of people still in the compartment at 5 or 30 days might be radically
different, given the initial population, whether memory is provided or not.

Figure A.2. Temporal dynamics of vaccine efficacy. The double sigmoid is intended to reflect
a two-doses vaccination schedule. The colors show the different types of protection conferred
by the vaccine. The different efficacy levels remain constant over time after the second dose
(no immune waning). Data used to calibrate these curves originate from the analyses of the
Pfizer-BioNTech vaccine by [41]. Note that the “Total reduction of severity also accounts for
infection immunity.
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Figure A.3. Non-normalised sensitivity analysis results. The output is similar to that in
Figure 4 but we show, for each time step, the raw variance originating from the different
parameters instead of the relative variance.

Figure A.4. Younger age classes contact rates effect on hospital admission dynamics. We
show 100 randomly selected trajectories among runs made with younger age-classes having the
lowest (resp. highest) contact rates. We selected 50 trajectories among runs made with the 3
contacts matrices having the lowest (resp. highest) contact rates among [0−9] y.o., plus 50 for
the [10−19] y.o.
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Table A.1. Parameters range used in the sensitivity analysis. Further explanations are
provided in Supplementary Methods C, especially when assumptions are made.

Parameter Interval References
Virulence increase (κ) due to α VOC [1.37− 1.93] [10, 12]
Initial proportion of recovered [0.137− 0.169] [23]
Scale parameter generation time [1.75− 4.7] [17]
Shape parameter generation time [4.7− 6.9] [17]
Contact matrix Columns randomly drawned See Section 2.5
Final transmission reduction [0.71− 0.79] By assumption
Final infection immunity [0.78− 0.99] [41]
Final total reduction of severity [0.87− 0.99] [41]
Final number of vaccinated people [5− 5.5] · 107 By assumption

Appendix B. Model

System (2.1)–(2.16) is considered under the following general assumption

Assumption B.1. 1. pa ∈ [0, 1], and ifra ∈ [0, pa] for all a ∈ R+;
2. ρ ∈ L∞+ (R+ × R+), with 0 ≤ ρ(t, a) ≤ 1, for all (t, a) ∈ R+ × R+;
3. ε(a, ·), ξ(a, ·), ν(a, ·) ∈ L∞+ (R+), for all a ∈ R+, and 0 ≤ ε(a, ·), ξ(a, ·), ν(a, ·) ≤ 1;
4. σ(a, ·), µ(a, ·), γm(a, ·), γs(a, ·), γmv(a, ·), ω(a, ·) ∈ L∞+ (R+), for all a ∈ R+;
5. K ∈ L∞+ (R+ × R+);
6. Transmission rates satisfy β` ∈ L∞+ (R+ × R+) for each ` ∈ {m, s,mv}.

B.1 Implementation

The model was implemented in R [42], using Rcpp [15] to maximize computational efficiency.
The PDE system was implemented using an Euler explicit scheme.

B.2 Well-posedness

Let us introduce the Banach space

X = L1(R+)× L1(R+,R3)× L1(R2
+,R3)× L1(R2

+)× L1(R3
+)× L1(R+)× L1(R2

+)× L1(R+)× L1(R2
+),

as well as its positive cone

X+ = L1
+(R+)× L1(R+,R3

+)× L1(R2
+,R3

+)× L1
+(R2

+)× L1
+(R3

+)

× L1
+(R+)× L1

+(R2
+)× L1

+(R+)× L1
+(R2

+).

Now, we define the subspaces Y1 ⊂ L1(R2
+,R3), Y2 ⊂ L1(R3

+), Y3, Y4 ⊂ L1(R2
+) by:

Y1 =

{
ϕ : (a, i) 7−→ ϕ(a, i), ϕ ∈ L1(R2

+,R3) :
∂ϕ

∂i
∈ L1(R2

+,R3)

}

Y2 =

{
ϕ : (a, i, k) 7−→ ϕ(a, i, k), ϕ ∈ L1(R3

+) :
∂ϕ

∂i
∈ L1(R3

+),
∂ϕ

∂k
∈ L1(R3

+)

}
.
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Y3 =

{
ϕ : (a, j) 7−→ ϕ(a, j), ϕ ∈ L1(R2

+) :
∂ϕ

∂j
∈ L1(R2

+)

}

Y4 =

{
ϕ : (a, k) 7−→ ϕ(a, k), ϕ ∈ L1(R2

+) :
∂ϕ

∂k
∈ L1(R2

+)

}
.

It follows that there exists a unique linear operator Π` ∈ L(Y2, L
1(R2

+)) for each ` ∈ {1, 2} such that Π1ψ =
ψ(·, 0, ·) and Π2ψ = ψ(·, ·, 0) for all ψ ∈ Y2. Next, let A : D(A) ⊂ X → X be the linear operator on the domain

D(A) =L1(R+)× {0L1(R+,R3)} × Y1 × {0L1(R2
+)} × (Y2 ∩ ker(Π2))×

(
W 1,1(R2

+,R) ∩ ker(Π2)
)

× {0L1(R+)} × Y3 × {0L1(R+)} × Y4,

and defined by

A



S
0L1(R+,R3)

ϕi

0L1(R2
+)

ψ
0L1(R+)

ϕj

0L1(R+)

ϕk


=



0
−ϕi(·, 0)

−∂iϕi − diag [γm, γs, µ]ϕi

−Π1ψ
−∂iψ − ∂kψ − γmvψ

−ϕj(·, 0)
−∂jϕj − σϕj
−ϕk(·, 0)

−∂kϕk − σvϕk


.

Finally, let us introduce the following nonlinear map F : D(A)→ X:

F (t, φ(t, a)) =

−λ(t, a)S(t, a)− ρ(t, a)S(t, a) +
∫ jmax

0
σ(a, j)R(t, a, j)dj +

∫ kmax

0
σv(a, k)V (t, a, k)dk

(1− pa)λ(t, a)S(t, a)

pa

(
1− ifra

pa

)
λ(t, a)

[
S(t, a) +

∫ kmax

0
(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]
ifra λ(t, a)

[
S(t, a) +

∫ kmax

0
(1− ε(a, k))(1− ν(a, k))V (t, a, k)dk

]


0
[1− ε(a, k)] [1− (1− ν(a, k))pa]λ(t, a)V (t, a, k)

0∫ imax

0

[
γs(a, i)Is(t, a, i) + γm(a, i)Im(t, a, i)

]
di

−ρ(t, a)R(t, a, j)

ρ(t, a)S(t, a) + ρ(t, a)
∫ jmax

0
R(t, a, j)dj

−(1− ε(a, k))λ(t, a)V (t, a, k) +
∫ imax

0
γmv(a, i)Imv(t, a, i, k)di



.

wherein φ(t) is the function:

φ(t) =
(
S(t, ·), 0, Im(t, ·, ·), Is(t, ·, ·), Id(t, ·, ·), 0, Imv(t, ·, ·, ·), 0, R(t, ·, ·), 0, V (t, ·, ·)

)
∈ D(A).
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From here, System (2.1)–(2.16) rewrites as the following nondensely defined Cauchy problem:

dφ(t)

dt
= Aφ(t) + F (t, φ(t)), t > 0,

φ(0) =
(
S0, 0, I

m
0 , I

s
0 , I

d
0 , 0, I

mv
0 , 0, R0, 0, V0

)
∈ D(A) ∩X+.

(B.1)

Therefore, under Assumption B.1, we have the well-posedness of System (B.1); that is, the Cauchy problem
(B.1) generates a unique globally defined, positive and bounded non-autonomous semiflow.

The proof of this result is based on a rather standard methodology combining an integrated semigroup
approach and Volterra integral formulation in the context of multiple structured variables (e.g., [44] and the
references therein) and existence of the semiflow for non-autonomous systems (e.g., [36, 40]).

B.3 Basic reproduction number and NPI policices

We consider that there are no vaccinated, i.e ρ(t, a) ≡ 0 and V (t, a, k) ≡ 0, nor recovered people, i.e.
R(t, a, j) ≡ 0, and that the number of susceptible individuals is very close to the total population size. For
simplicity, we first introduce the “survival” probability (i.e. the probability to remain in the compartment) of
infected individuals of, respectively, the Im, Is, and Id compartments:

πm(a, i) = exp

(
−
∫ i

0

γm(a, r)dr

)
, (B.2)

πs(a, i) = exp

(
−
∫ i

0

γs(a, r)dr

)
, (B.3)

πd(a, i) = exp

(
−
∫ i

0

µ(a, r)dr

)
. (B.4)

By linearizing System (2.1)–(2.16), we obtain the following Volterra formulation for Im, Is, and Id compart-
ments:

Im(t, a, i) =

{
Im0 (a, i− t) πm(a,i)

πm(a,i−t) for t ∈ [0, i[,

(1− pa)λ0(t− i, a)S0(a)πm(a, i) for t ≥ i,
(B.5)

Is(t, a, i) =

{
Is0(a, i− t) πs(a,i)

πs(a,i−t) for t ∈ [0, i[,

pa

(
1− ifra

pa

)
λ0(t− i, a)S0(a)πs(a, i) for t ≥ i,

(B.6)

Id(t, a, i) =

{
Id0 (a, i− t) πd(a,i)

πd(a,i−t) for t ∈ [0, i[,

ifraλ0(t− i, a)S0(a)πd(a, i) for t ≥ i,
(B.7)

with λ0(t, a) defined as λ(t, a) with no control policies (c = 0),

λ0(t, a) =

∫ amax

0

K(a, a′)

∫ imax

0

[
βm(a′, i)Im(t, a′, i) + βs(a′, i)Is(t, a′, i) + βd(a′, i)Id(t, a′, i)

]
di da′.
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Let IN (t, a) = λ0(t, a)S(0, a) be the density of newly infected of age a at time t. Then, by (B.5)–(B.7) it comes

IN (t, a) = S0(a)

∫ t

0

∫ amax

0

K(a, a′)Ω(a′, i)IN (t− i, a′)da′di+ f(t, a), (B.8)

where

Ω(a, i) = βm(a, i)(1− pa)πm(i) + βs(a, i)pa

(
1− ifra

pa

)
πs(i) + βd(a, i) ifra πd(i),

and f(t, a) is accounting for the initial population.
The basic reproduction number R0 is then the spectral radius, denoted by r(U), of the next generation

operator U defined from L1
+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ imax

0

∫ amax

0

K(·, a′)Ω(a′, i)v(a′)da′di.

For parametrization purpose, we assume that the contact matrix K(·, ·) is given up to a positive constant
β (to be determined), such that K(·, ·) = βK(·, ·), and K satisfies

∑
i

∑
j K(ai, aj) = 1. Consequently, we find

that β is given by

β =
R0

r
(
U
) , (B.9)

where U is the operator defined from L1
+([0, amax],R) into itself by

U : v 7−→ S0(·)
∫ amax

0

K(·, a′)Ω(a′)v(a′)da′,

with

Ω(a) =

∫ imax

0

[
(1− pa)βm(a, i)πm(i) + pa

(
1− ifra

pa

)
βs(a, i)πs(i) + ifraβ

d(a, i)πd(i)

]
di.

Note that, within this paper, we scale K(·, ·) by

β∗ := (1− c)2β =
(1− c)2R0

r
(
U
)

rather than β since the NPI level efficacy was fitted beforehand on real data.
To go further steps in the computation of r(U), in addition to the general Assumption B.1, we also assume

that

Assumption B.2. Functions S0,K,Ω are positive almost everywhere.

Then, we can show that r(U) is given by the spectral radius of the following linear operator, defined from
L1

+([0, amax],R) into itself:

v 7−→
∫ amax

0

K(·, a′)Ω(a′)S0(a′)v(a′)da′.
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The spectral radius of this later operator is computed easily since the age a is numerically divided into n ∈ N∗
classes so that the term inside the integral of the latter equation is a n×n matrix. Finally, the scaling parameter
β is obtain from (B.9).

Importantly, the symmetric property of the contact matrix K is not strictly necessary for the computation
of r(U). However, in addition to Assumptions B.1 and B.2, if K is a symmetric function, then the Rayleigh
quotient formulation leads to (see Proposition F.2 in [43])

r(U) = sup
v∈L2([0,amax],R)

‖v‖L2([0,amax],R)=1

∫ amax

0

∫ amax

0

K(a, a′)

√
S0(a′)Ω(a′)

√
S0(a)Ω(a)v(a′)v(a)da′ da.

Appendix C. Model parametrization

In this section, we describe the parametrization and the assumptions made in the main text. The uncertainty
ranges retained for each parameter are displayed in Table A.1.

C.1 Proportion of severe cases, IFR and increase in virulence

The proportion of severe cases corresponds here to the fraction of the population who will be hospitalized
following a SARS-CoV-2 infection. This parameter is age-dependent and follows the infection fatality rate (IFR)
by [51].

However, studies show that the virulence of the infection increased (taken into account by the κ parameter)
by more than 60% with the α VOC [10, 12]. Estimation for the δ VOC are still at an early stage, so we used
the virulence from the α VOC, even if the former seems more virulent [48].

C.2 Generation time and transmission rates

For the underlying generation time, we use that provided by [17], which follows a Weibull distribution, with
a shape parameter of 2.826 (95% CI [1.75− 4.7]) and scale parameter of 5.665 (95% CI [4.7− 6.9]). We assume
that the transmission rates from mild infections βm(a, i) and severe cases βs+d(a, i) are equal to the generation
time corrected by the probability for individuals to leave their infected compartment.

C.3 Recovery rates

From the data shown in [46], we retrieve the time severely-infected individuals spend as infected, whether
they required ICU admission or not, by adding up the different exponential distributions of the different infected
compartments of their model (which will be denoted E1, E2, Ihosp, Inon ICU, IICU, H1, H2, HICU, ICU 1, ICU 2 in
a later study by [30]). This gives us the probability of remaining in the infected compartment over time, thereby
allowing us to infer the recovery rates. We also know from [32] the probability for hospitalized individuals to
require ICU admission, which provides us with appropriate recovery rates weighting for severe cases.

We apply the same method for mildly-infected individuals.

C.4 Initial conditions

For this PDE model, the initialization is not as straightforward as for ODE models since within a compartment
individuals do not have the same age of infection (for infected individuals) or time since clearance (for recovered
individuals). Initialising over all the domain of definition of each compartment is difficult since a uniform
initialization would almost immediately be counterbalanced by a higher probability to leave the compartment
for higher ages (i.e. i > 0 and j > 0). Put differently, this would produce distributions different from what we
might expect with a constant inflow in the compartments. To overcome this issue, we start the different runs
with a 45 days delay (not shown) to let the different compartments stabilise around a distribution.
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Reference [23] estimate that the proportion of recovered adults in France was of 0.149 (95% CI [0.132−0.169])
on January 15th, 2021. For simplicity, and in absence of more detailed data, we assumed this proportion to be
constant across age classes, including the younger age groups.

For infected individuals, we initialize the density with a qualitative value. The β coefficient associated to the
R0 and the NPI were fitted such that the number of daily hospital admissions was close to the real data. The
overall number of infected individuals in the model on January 1st was around 267, 000 [170, 000−310, 000].

C.5 Vaccine properties

We assume that the three types of vaccine efficacies (against infection, severe forms, and transmission) follow
a double-sigmoid temporal pattern starting from the day of injections (Fig. A.2). The reduction in transmission
rate corresponds to function ξ(a, k) in our model, the infection immunity corresponds to function ε(a, k). The
total reduction of virulence corresponds to the cumulative effects of ε(a, k) and ν(a, k).

The order of magnitude of the final (full) efficacy levels is based on that from the Pfizer-BioNTech vaccine
after two doses provided by [41]. However, note that the outcomes referenced in the report were used as overall
proxy in this study (“symptomatic disease” and “infection” for ε(a, k), “hospitalisation” and “mortality” for
ν(a, k) and “transmission” for ξ(a, k)) as they do not exactly match our implementation. The reduction of
transmission estimation 14 days after the second dose was not available, so we applied a rule of thumb in order
the increase between the two injections was similar to the other vaccine properties. Hence, we assume a 75%
efficacy for transmission reduction 14 days after the second dose.

We also assume there was no difference in efficacy between age classes, and that the different efficacy levels
remain constant 14 days after the second dose until the end of our projections (i.e. no immune waning).

C.6 Vaccination rate

We model the vaccination rate using a sigmoid function,

f(t; θ1, θ2, vtot) =
vtot

1 + exp
(
θ1−t
θ2

) ,
where vtot denotes the total number of vaccinated individuals at the end of the year (which is a model input),
and θ1 and θ2 are the sigmoid curve parameters fitted to the observed data. This gives us the number of newly
vaccinated people at each time step.

The number of doses attributed to each age-group at each time step depends on initial weights (ωa(t0)),
which can be interpreted as the age-based strategy vaccination prioritization, the proportion of the age group
targeted (ta), assuming that the total number of vaccinated in each age class may vary and is lower than 100%,
and the proportion of individuals already vaccinated within each age-group at time t (pv(t, a)).

Therefore, at time t+ ∆t, the splitting of the number of doses is given by ωa(t+ ∆t) which is defined by

ωa(t+ ∆t) =
$a(t+ ∆t)∑
a$a(t+ ∆t)

with $a(t+ ∆t) = ωa(t0) · (ta − pv(t, a)).

Finally, we have

ρ(t, a) · [S(t, a) +R(t, a)] = ωa(t) · f(t; θ1, θ2, vtot).

The initial weights, ωa(t0), and ta is fitted on an ordinary least squares metric to reproduce at best the real
vaccination rate.

Vaccination is assumed to start on January, 1st, 2021.
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C.7 Age groups

The different data sources we used had non-homogeneous age groups, and these groups sometimes overlapped.
For instance, the contact matrices were provided by 5 years bins, while the parameters related to the disease
severity were provided by 10 years bins. On another hand, vaccination data were provided with age groups
better reflecting the French society structure (0–4, 5–11, 12–18, 18–24, . . . ).

We decided to use 10 years bins age groups since it was the option that required less data transformation.

Appendix D. Sensitivity analysis

To perform the sensitivity analysis, we use the lhs package [9] to generate a Latin Hypercube Sample (LHS).
The parameters were drawn in a uniform distribution within the confidence interval specified for each parameter
and shown in Table A.1.

For each parameter combination, a model run was computed. In total, 30, 400 model runs were performed.
Then, for each time step, we used the multisensi package [6] to compute the Sobol main indices, given by

Si =
Var(E[Y |Xi])

Var(Y )
,

as implemented in the sensitivity package [26]. The difference between the sum of all the main indices and
1 corresponds to the effect of interactions between parameters. More explanations are available in [47].

Due to numerical approximations, some indices may sometimes be negative (the lowest was −0.004). These
were rounded to 0.
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[49] M.T. Sofonea, B. Reyné, B. Elie, R. Djidjou-Demasse, C. Selinger, Y. Michalakis and S. Alizon, Memory is key in capturing
COVID-19 epidemiological dynamics. Epidemics 35 (2021) 100459.

[50] S.Y.D. Valle, J.M. Hyman and N. Chitnis, Mathematical models of contact patterns between age groups for predicting the
spread of infectious diseases. Math. Biosci. Eng. 10 (2013) 1475.

[51] R. Verity, L.C. Okell, I. Dorigatti, P. Winskill, C. Whittaker, N. Imai, G. Cuomo-Dannenburg, H. Thompson, P.G.T. Walker,
H. Fu, A. Dighe, J.T. Griffin, M. Baguelin, S. Bhatia, A. Boonyasiri, A. Cori, Z. Cucunubá, R. FitzJohn, K. Gaythorpe,
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