
HAL Id: hal-03627833
https://hal.science/hal-03627833

Submitted on 1 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MITAKA: A Simpler, Parallelizable, Maskable Variant
of FALCON

Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, Yang Yu

To cite this version:
Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira Takahashi, et al.. MI-
TAKA: A Simpler, Parallelizable, Maskable Variant of FALCON. Eurocrypt 2022 - International
Conference on the Theory and Applications of Cryptographic Techniques, May 2022, Trondheim,
Norway. pp.1-50. �hal-03627833�

https://hal.science/hal-03627833
https://hal.archives-ouvertes.fr

MITAKA: A Simpler, Parallelizable,
Maskable Variant of FALCON

Thomas Espitau1, Pierre-Alain Fouque3, François Gérard6, Mélissa Rossi5, Akira Takahashi2,
Mehdi Tibouchi1, Alexandre Wallet3, Yang Yu4

1 NTT Corporation, Japan
{thomas.espitau.ax,mehdi.tibouchi.br}@hco.ntt.co.jp

2 Aarhus University, Denmark
takahashi@cs.au.dk

3 IRISA, Univ Rennes 1, Inria, Rennes Bretagne-Atlantique Center, France
pa.fouque@gmail.com, alexandre.wallet@inria.fr

4 Tsinghua University, China
yang.yu0986@gmail.com

5 ANSSI, France
melissa.rossi@ssi.gouv.fr

6 University of Luxembourg
francois.gerard@uni.lu

Abstract. This work describes the MITAKA signature scheme: a new hash-and-sign signature scheme
over NTRU lattices which can be seen as a variant of NIST finalist FALCON. It achieves comparable
efficiency but is considerably simpler, online/offline, and easier to parallelize and protect against side-
channels, thus offering significant advantages from an implementation standpoint. It is also much more
versatile in terms of parameter selection.

We obtain this signature scheme by replacing the FFO lattice Gaussian sampler in FALCON by the
“hybrid” sampler of Ducas and Prest, for which we carry out a detailed and corrected security analysis.
In principle, such a change can result in a substantial security loss, but we show that this loss can be
largely mitigated using new techniques in key generation that allow us to construct much higher quality
lattice trapdoors for the hybrid sampler relatively cheaply. This new approach can also be instantiated
on a wide variety of base fields, in contrast with FALCON’s restriction to power-of-two cyclotomics.

We also introduce a new lattice Gaussian sampler with the same quality and efficiency, but which
is moreover compatible with the integral matrix Gram root technique of Ducas et al., allowing us to
avoid floating point arithmetic. This makes it possible to realize the same signature scheme as MITAKA

efficiently on platforms with poor support for floating point numbers.

Finally, we describe a provably secure masking of MITAKA. More precisely, we introduce novel gadgets
that allow provable masking at any order at much lower cost than previous masking techniques for
Gaussian sampling-based signature schemes, for cheap and dependable side-channel protection.

1 Introduction

The third round finalists for signatures in the NIST postquantum standardization process con-
sist of just three candidates: Rainbow [10], a multivariate scheme, Dilithium [13,33], a lattice-
based scheme in the Fiat–Shamir with aborts framework, and FALCON [44], a hash-and-sign
signature over NTRU lattices. They occupy fairly different positions within the design space of
post-quantum signature schemes, and it is therefore important to understand, for each of them, to
what extent they could possibly be improved by exploring similar designs that overcome some of
their limitations. This paper aims at doing so for the FALCON signature scheme.

2 Authors Suppressed Due to Excessive Length

Hash-and-sign lattice-based signatures. FALCON fits within the long and hectic history of hash-
and-sign signatures based on lattices. In those schemes, the signing key is a “good” representation
of a lattice, the trapdoor, which makes it possible, given an arbitrary point in the ambient space, to
find lattice points that are relatively close to it (i.e. solve the approximate closest vector problem,
ApproxCVP7); the verification key, on the other hand, is a “bad” representation: it allows anyone
to check if a point is in the lattice, but not to solve ApproxCVP. In order to sign a message, it is
then hashed to a random point in the ambient space, and the signature is a lattice point close to it,
obtained using the trapdoor. To verify, one checks that the signature is in the lattice and sufficiently
close to the hash digest.

Early constructions along those lines, such as the GGH signature scheme [21] and multiple
iterations of NTRUSign [23,22], were later shown to be insecure due to a common critical vul-
nerability: the lattice points obtained as signatures would leak information about the trapdoor
used to compute them, which could then be recovered using more or less advanced statistical
techniques [38,15]. One of the first round NIST candidates was in fact broken using the same
idea [46].

It is thus crucial for security to prove that signatures are sampled according to a distribution
that is statistically independent of the trapdoor. The first approach to do so, which remains the state
of the art,8 is due to Gentry, Peikert and Vaikuntanathan (GPV) [19]: sample the ApproxCVP so-
lution according to a discrete Gaussian distribution centered at the target point and supported over
the lattice, with covariance independent from the trapdoor (usually spherical). This type of lattice
discrete Gaussian sampling can be carried out by randomizing known deterministic algorithms for
ApproxCVP, like Babai rounding and Babai’s nearest plane algorithm.

Within the overall GPV framework, specific signature schemes vary according to the lattices
over which they are instantiated, the construction of the corresponding trapdoors, and the lattice
Gaussian sampling algorithms they rely on based on those trapdoors. The security level achieved
by such a scheme is then essentially determined by the quality of the trapdoor and of the Gaussian
sampling algorithm, defined as the minimal standard deviation achievable in Gaussian sampling,
while still preserving the statistical independence of the output.

A complete overview of existing proposals for each of those elements is beyond the scope
of the current work. We focus instead on the particular case of NTRU lattices with the usual
NTRU trapdoors first considered in NTRUSign, as those lattices appear to offer the most efficient
implementations by a significant margin, thanks to their compact trapdoors.

Hash-and-sign signatures over NTRU lattices. NTRU lattices are, in essence, free rank 2 module
lattices over cyclotomic rings, and the NTRU designers showed how to construct good trapdoors
for them, even though the original signature schemes based on them proved insecure.

They were brought within the GPV framework (and thus gained provable security) thanks to
the work of Ducas, Lyubashevsky and Prest (DLP) [14], who combined them with the Gaussian
sampling algorithm obtained by randomizing Babai’s nearest plane algorithm (this randomization
is sometimes called the Klein sampler for lattice Gaussians). They analyzed the security of the
construction and provided what became the first reasonably efficient implementation of a signature
scheme in the GPV framework.

7 Sometimes, this is also seen as a bounded distance decoding problem, BDD, but with large enough decoding bound
that there are exponentially many solutions, instead of a unique one as is typically the case in the traditional formu-
lation of BDD.

8 Other techniques have been proposed that avoid Gaussian distributions, as in [34], but they tend not to be competitive.

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 3

This DLP signature scheme offers relatively compact keys and signatures, but suffers from a
relatively long signing time, quadratic in the Z-rank of the underlying lattice. This is because the
nearest plane computation is carried out after descending to Z, essentially ignoring the module
structure of the lattice.

FALCON is a direct improvement of this scheme, obtained by replacing this quadratic Gaussian
sampling by a quasilinear one, derived from the quasilinear nearest plane algorithm described in
the Fast Fourier Orthogonalization paper of Ducas and Prest [16] (and refining the parameter
selection using a tighter statistical analysis based on the Rényi divergence). The computation still
ultimately descends to Z, but takes advantage of the tower field structure of the underlying number
field (assumed to be a power-of-two cyclotomic) to achieve a better complexity.

These two approaches are equivalent in terms of the quality of the resulting Gaussian sam-
pler, which is essentially the best possible for the given NTRU lattice. However, DLP does so at
the cost of a slow signing algorithm, whereas FALCON, while fast, suffers from a very complex
signing algorithm that is hard to implement, poorly suited for parallelization and difficult to pro-
tect against side-channel attacks. On the last point, both schemes have been shown to suffer from
potential vulnerabilities with respect to side-channel leakage [18,27], and even though the most
recent implementation of FALCON appears to be protected against timing attacks [40,24], coun-
termeasures against stronger side-channel attacks like DPA seem difficult to achieve. FALCON is
also limited to NTRU lattices over power-of-two cyclotomic fields, which limits its flexibility in
terms of parameter selection. That latter limitation can be overcome to some extent by extending
the construction to higher rank modules, as done in MODFALCON [8], but the other drawbacks
remain.

Another possibility is to instantiate the randomized ApproxCVP algorithm directly over the
underlying ring, instead of doing so over Z. For the randomized version of Babai rounding, this
gives rise to (the ring version of) Peikert’s sampler, as introduced in [39]. This can also be done
for Babai’s nearest plane algorithm, leading to what Ducas and Prest call the hybrid sampler. The
resulting algorithms consist of a constant number of ring multiplications, so that quasilinear com-
plexity is obtained “for free” as long as the underlying ring has a fast multiplication algorithm (as
certainly holds for arbitrary cyclotomics). This makes them highly versatile in terms of param-
eter selection. They are also much simpler than FALCON, easy to parallelize, and support fairly
inexpensive masking for side-channel protection.

Their downside, however, is the lower quality of the corresponding samplers compared to
FALCON and DLP. Indeed, by not descending to Z but only to the ring itself, the ApproxCVP
algorithm achieves less tight of a bound compared to the Klein sampler, and hence the Gaussian
sampling has a larger standard deviation. This is analyzed in details in Prest’s Ph.D. thesis [42]
(although certain heuristic assumptions are incorrect), and results in a substantially lower security
level than FALCON and DLP.

Our contributions: the MITAKA signature scheme. In this work, we revisit in particular the hybrid
sampler mentioned above, and show that the security loss compared to FALCON can be largely
mitigated using a novel technique to generate higher quality trapdoors. The resulting scheme,
MITAKA,9 offers an attractive alternative to FALCON in many settings since:

9 Trivia: Mitaka is a neighborhood in Tokyo, Japan whose name means “the three falcons”. It sounded fitting consid-
ering the maskable, parallelizable nature of our scheme and its strong points compared to FALCON.

4 Authors Suppressed Due to Excessive Length

– it is considerably simpler from an algorithmic and an implementation standpoint, while keep-
ing the same complexity (in fact, it is likely faster at the same dimension due to better cache
locality);

– signature generation is parallel(izable);
– like Peikert’s sampler, it has an online/offline structure, with the online part requiring only

one-dimensional discrete Gaussian sampling with very small, constant standard deviation and
simple linear operations;

– it can be instantiated over arbitrary cyclotomic fields10, which makes it quite versatile in terms
of parameter selection;

– it is easier to protect against side-channels and can be cheaply masked even at high order.

The main idea that allows us to achieve higher security than previously expected is as follows.
It is well-known that, given NTRU generators (f, g), it is easy to compute the quality of the corre-
sponding NTRU trapdoor for the hybrid sampler (in particular, it can be done without computing
the whole trapdoor). It is thus very easy to check whether a given (f, g) reaches a certain thresh-
old in terms of bit security, and as a result, the costly part of key generation is the sampling of the
random ring elements f and g themselves (with discrete Gaussian coefficients). One can therefore
achieve a greatly improved security level at the same cost in terms of randomness and not much
more computation time if one can “recycle” already sampled ring elements f and g.

We propose several ways of doing so. The simplest one is to generate lists {fi}, {gj} of
candidate elements for f and g, and test the pairs (fi, gj): this increases the space of candidates
quadratically, instead of linearly, in the amount of generated randomness. One can also gener-
ate the fi’s, gj’s themselves as sums of Gaussians with smaller standard deviation (as long as it
remains above the smoothing parameters), and consider the Galois conjugates of a given gj . By
combining these techniques appropriately, we achieve a substantial security increase, of around
15 bits for typical parameter sizes. Concretely, we achieve the same security level as Dilithium–
II [13] (which was argued to reach NIST Level-I) in dimension d = 512, and attain roughly NIST
Level–V in dimension d = 1024, with intermediate parameter settings possible.

We also provide a detailed security analysis of our construction, and while most of the pre-
sentation focuses on power-of-two cyclotomics for simplicity’s sake and easier comparison with
previous work, we also show that intermediate NIST security levels can be conveniently achieved
using other base fields, e.g. of dimension 648 (same security as FALCON–512), 768 (NIST Level–
II), 864 (NIST Level–III) and 972 (NIST Level–IV).

As an additional contribution, we also introduce a novel, alternate lattice Gaussian sampler for
MITAKA that achieves the same complexity and the same quality as the hybrid sampler, but has a
different structure, closer to Peikert’s sampler. The advantage of that alternate sampler is that it is
compatible with the integral lattice Gram root technique of Ducas et al. [12], making it possible to
instantiate it without floating point arithmetic. We call the resulting construction MITAKAZ. We
stress that MITAKA and MITAKAZ are two different approaches to implement the same signature
scheme (in the sense that the generated signatures have statistically close distributions), and one
can choose one or the other as preferred depending on whether the target platform has fast floating
point arithmetic or not.

Finally, we introduce a new, concrete approach to mask those signature generation algorithms
efficiently. In previous work, efficiently masking signature schemes using Gaussian sampling has
proved quite challenging: even for the case of 1-dimensional centered discrete Gaussians, as in the
10 In principle, even more general number fields are possible as well, provided a good basis is known for their canonical

embedding. The corresponding security analysis is cumbersome, however.

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 5

BLISS signature scheme [11], this is far from straightforward [4]. Since MITAKA and MITAKAZ,
like FALCON and DLP, require discrete Gaussian sampling with variable centers, a naive approach
to masking is unlikely to yield fast results. Instead, we introduce and prove a novel gadget for sam-
pling Gaussian distribution with an arithmetically masked center and a fixed standard deviation.
This allows us to completely avoid masking Gaussian sampling operations in the online phase:11

this works for a masked center, because picking a uniform center in [0,M) with fixed denominator
and sampling a discrete Gaussian around that center results in a close to uniform distribution mod-
ulo M . Carrying out this share-by-share sampling directly causes a slight decrease in the quality
of the resulting sampler (depending on the number of shares), but this can be overcome completely
with careful use of rejection sampling. Combining these statistical techniques with usual provable
masking methodology, we achieve very efficient side-channel protection for both MITAKA and
MITAKAZ.

2 Preliminaries

For any a ∈ R and q > 0, let [a]q = baqe/q ∈ (1/q)Z.

2.1 Linear algebra and lattices

Write At for the transpose of any matrix A. Let s1(A) = maxx 6=0
‖Ax‖
‖x‖ the largest singular value

of A. Let Σ ∈ Rn×n be a symmetric matrix. We write Σ � 0 when Σ is positive definite, i.e.
xtΣx > 0 for all non-zero x ∈ Rn. We also write Σ1 � Σ2 when Σ1 − Σ2 � 0. It holds that
Σ � 0 if and only if Σ−1 � 0 and that Σ1 � Σ2 � 0 if and only if Σ−12 � Σ−11 � 0. A lattice L
is a discrete additive subgroup of a Euclidean space. When the space is Rm, and if it is generated
by (the columns of) B ∈ Rm×d, we also write L (B) = {Bx | x ∈ Zd}. If B has full column
rank, then we call B a basis and d the rank of L . The volume of L is Vol(L) = det(BtB)

1
2 for

any basis B.

2.2 Power-of-two cyclotomic fields

For the sake of simplicity and readability, we focus in the rest of this article on the case where
the number field is a cyclotomic field of conductor a power of 2. In any case, the content of this
section generalizes straightforwardly to other cyclotomic number fields, as well as most of our
results. Besides, the use of cyclotomic fields is nowadays pervasive in lattice-based cryptography.
In this section we therefore keep only the minimum amount of notation and definitions to follow
the article. More details can be found in Appendix A.

Let d = 2` for some integer ` > 1 and ζd to be a 2d-th primitive root of 1. Then for a fixed
d, K := Q(ζd) is the d-th power-of-two cyclotomic field, and its ring of algebraic integers is
R := Z[ζd]. The field automorphism ζd 7→ ζ−1d = ζd corresponds to the complex conjugation,
and we write the image f∗ of f under this automorphism. We have K ' Q[x]/(xd + 1) and
R ' Z[x]/(xd + 1), and both are contained in KR := K ⊗ R ' R[x]/(xd + 1). Each f =∑d−1

i=0 fiζ
i
d ∈ KR can be identified12 with its coefficient vector (f0, . . . , fd−1) ∈ Rd. The adjoint

operation extends naturally to KR, and K +
R is the subspace of elements satisfying f∗ = f .

11 The same idea can be adapted to the offline phase by masking the zero center. This is a bit less compelling, however,
as it requires more shares, and replaces centered Gaussian sampling by variable center sampling.

12 This is the so-called coefficient embedding.

6 Authors Suppressed Due to Excessive Length

The cyclotomic field K comes with d complex field embeddings ϕi : K → C which map f
seen as a polynomial to its evaluations at the odd powers of ζd. This defines the so-called canonical
embedding ϕ(f) := (ϕ1(f), . . . , ϕd(f)). It extends straightforwardly to KR and identifies it to
the space H = {v ∈ Cd : vi = vd/2+i, 1 6 i 6 d/2}. Note that ϕ(fg) = (ϕi(f)ϕi(g))i6d.
When needed, this embedding extends entry-wise to vectors or matrices over KR. We let K ++

R
be the subset of K +

R which have all positive coordinates in the canonical embedding.

2.3 Matrices of algebraic numbers and NTRU modules

2.3.1 2 × 2 K -valued matrices. This work deals with free R-modules of rank 2 in K 2, or
in other words, groups of the form Rx + Ry where x = (x1, x2),y = (y1, y2) span K 2. There
is a natural K -bilinear form over K 2 defined by 〈x,y〉K := x∗1y1 + x∗2y2 ∈ K . It can be
checked that for all x ∈ K 2, 〈x,x〉K ∈ K ++

R . This form comes with a corresponding notion of
orthogonality. In particular, the well-known Gram-Schmidt orthogonalization procedure for a pair
of linearly independent vectors b1,b2 ∈ K 2 is defined as

b̃1 := b1, b̃2 := b2 −
〈b1,b2〉K
〈b1,b1〉K

· b̃1.

One readily checks that 〈b̃1, b̃2〉K = 0. The Gram-Schmidt matrix with columns b̃1, b̃2 is de-
noted by B̃ and we have det B̃ = detB.

For Σ ∈ K 2×2
R , we write Σ∗ its conjugate-transpose, where ∗ is the conjugation in KR. We

extend the notion of positive definiteness for matrices with entries in KR: Σ ∈ K 2×2
R is positive

definite whenΣ = Σ∗ and all the dmatrices induced by the field embeddings are positive definite.
We then write Σ � 0. For example, B∗B is a positive definite matrix for all B ∈ K 2×2

R . Positive
definite matrices admit “square roots”, that is, matrices

√
Σ such that

√
Σ
√
Σ
∗

= Σ.
This work uses fundamental quantities for matrices over K . The first is defined as |B|K :=

max16i62 ‖ϕ(〈b̃i, b̃i〉K)‖1/2∞ . Since the eigenvalues λ1, λ2 of B∗B are all in K ++, coordinate-
wise square roots are well-defined. The largest singular value of (the embeddings of) B is recov-
ered as s1(B) := max16i62 ‖ϕ(

√
λi)‖∞.

NTRU Modules. Given f, g ∈ R such that f is invertible modulo some prime q ∈ Z, we let
h = f−1g mod q. The NTRU module determined by h is LNTRU = {(u, v) ∈ R2 : uh − v =
0 mod q}. Two bases of this free module are of particular interest for cryptography:

Bh =

[
1 0
h q

]
and Bf,g =

[
f F
g G

]
,

where F,G ∈ R are such that fG−gF = q. This module is usually seen as a lattice of volume qd

in R2d thanks to the coefficient embedding. From the explicit description of Bf,g, one can derive
formulas for the associated quality parameters. These are proven in Appendix A.

Lemma 1 ([42], adapted). Let Bf,g be a basis of an NTRU module. We have
√
q 6 |Bf,g|K 6

s1(Bf,g) and :

|Bf,g|2K = max

(
‖ϕ(ff∗ + gg∗)‖∞,

∥∥∥∥ q2

ϕ(ff∗ + gg∗)

∥∥∥∥
∞

)
,

s1(Bf,g)
2 =

1

2
‖ϕ
(
T +

√
T 2 − 4q2

)
‖∞,

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 7

where T := ff∗+ gg∗+FF ∗+GG∗. We have |Bf,g|K = s1(B̃), where B̃ is the Gram-Schmidt
orthogonalization (over K) of Bf,g.

2.4 Gaussians over rings

The Gaussian function on Rd centered at c and with covariance matrix Σ � 0 is defined as
ρc,Σ(x) = exp(−1

2(x−c)tΣ−1(x−c)). IfΣ = s2Id, we write also ρc,s = exp(−‖x−c‖2/(2s2))
and call the associated Gaussian spherical. We omit c if it is 0. The normal distribution NΣ of
covarianceΣ then has density probability function ((2π)d ·detΣ)−1/2ρΣ . When we writeNKR,s,
we mean that (z1, . . . , zd)← (Ns/√d)

d is sampled and (z1 + iz2, . . . , zd−1 + izd) is outputted.
The discrete Gaussian distribution over a full rank lattice L , centered at c and with covariance

matrix Σ � 0 has density function given by

∀ x ∈ L , DL ,c,Σ(x) =
ρc,Σ(x)

ρc,Σ(L)
.

For c ∈ KR and s > 0, we also use the notation bces to denote the distribution Dϕ(R),ϕ(c),s. It
extends coordinate-wise to vectors in K 2

R . For ε > 0, the smoothing parameter of a lattice L is
ηε(L) = min{s > 0 : ρ1/s(L

∨) 6 1 + ε}, where L ∨ is the dual lattice. The exact definition of
the lattice dual is not needed in this work, and when L = L (B) ⊂ Rd, it is enough to know the
matrix B−t encodes it. We say that

√
Σ > ηε(L) when ρ1(

√
Σ
∗
L ∨) = ρΣ−1(L ∨) 6 1 + ε. In

particular, one checks that rB � ηε(ϕ(BR2)) when r > ηε(R2). We use the following bound.

Lemma 2 (Adapted from [19]). Let BR2 be free R-module, and let L = M(B)Z2d be the
associated rank d lattice in R2d. For all ε > 0,

ηε(L) 6 |B|K ·
1

π

√
log(2d(1 + 1/ε))

2
.

3 Sampling discrete Gaussians in R-modules

We present three approaches to sample discrete Gaussian over rings. The first two are respectively
Peikert’s perturbative approach adapted from [39], and the hybrid sampler of Ducas and Prest [42],
which is core to MITAKA and uses the first as a subroutine. Then we describe a new sampler based
on [12] which can involve integer arithmetic only and combines the ideas of the other two others.
In Appendix H, we also explicitly specify a set of operations that can be precomputed during the
offline phase, as well as where FFT or NTT should be performed in practice.

3.1 Peikert’s sampler

In [39], Peikert presented an efficient algorithm to sample discrete Gaussians in a target lattice,
using small continuous Gaussian perturbation. On a high level, it can be thought of as a randomized
version of Babai’s round-off algorithm, using random (normal) perturbations to hide the lattice
structure, and can be formulated directly over the algebra KR. The pseudo-code in Algorithm 1
outputs discrete Gaussians in a free rank 2 R-module L described by a basis B ∈ K 2×2, with
an arbitrary center in K 2

R . When Σ � r2BB∗, the existence of Σ0 below is guaranteed.

8 Authors Suppressed Due to Excessive Length

Algorithm 1: RingPeikert sampler

Input: A matrix B ∈ K 2×2 such that L = ϕ(BR2) and a target center c ∈ K 2
R .

Result: z ∈ L with distribution negligibly far from DL ,c,Σ .

1 Precomputed: a parameter r > ηε(R
2), and Σ0 ∈ K 2×2

R such that Σ0Σ
∗
0 = Σ − r2BB∗

2 x← Σ0 · (NKR,1)2

3 z← dB−1(c− x)cr
4 return Bz

Algorithm 2: RingPeikert, one-dimensional version

Input: A target center c ∈ KR.
Result: z ∈ R with distribution negligibly far from DR,c,Σ .

1 Precomputed: a parameter r > ηε(R), and σ0 ∈ KR such that σ∗0σ0 = Σ − r2

2 x← σ0 · NKR,1

3 returndc− xcr

Theorem 1 ([39], adapted). Let D be the output distribution of Algorithm 1. If ε 6 1/2 and√
Σ > s1(B) · ηε(R2), then the statistical distance between D and DL ,c,Σ is bounded by 2ε.

Moreover, we have

sup
x∈BR2

∣∣∣∣ D(x)

DL (B),c,Σ(x)
− 1

∣∣∣∣ 6 4ε.

Theorem 1 is reproved in Appendix E for the sake of completeness, where fundamental pa-
rameters for its implementation are also analyzed. From Lemma 1 and Lemma 2, note that the
condition in the statement ensures that we are above the smoothing parameter of the target lattice.
In practice, the covariance parameter is a scalar multiple of the identity matrix, or a positive real
“constant” if seen in K ++

R . We highlight in Algorithm 2 the one-dimensional version of Peik-
ert’s sampler, that is, outputting discrete Gaussians in R, because it appears as a subroutine of the
hybrid sampler in the next section.

3.2 Ducas & Prest’s hybrid sampler

In [42], a so-called hybrid sampler is presented that outputs discrete Gaussians in free R modules
of finite rank. On a high level, this hybrid sampler follows Klein’s approach, which is a randomized
version of the Nearest Plane algorithm. In the ring context, the randomization subroutine happens
“at the ring level” thanks to a ring Gaussian sampler, instead of “at the integer level”. To again
hide the lattice structure, perturbations are also involved but their distribution now depends on the
target center. The hybrid sampler is described in Algorithm 3, which makes use of floating-point
arithmetic, and is core to the MITAKA scheme.

It relies on a ring sampler which can be instantiated by Algorithm 2. For the sake of clarity,
these “Peikert sampling” steps are made explicit in lines 4–6 and 9–11. We restrict to “totally
spherical” standard deviation parameters (that is, scalar matrices) as they are the main use-case of
this work.

The next result is proved in Appendix F, where we also analyze the necessary floating-point
precision to preserve enough bits of security.

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 9

Algorithm 3: Hybrid Gaussian sampler

Input: A target center c ∈ K 2
R , a matrix B = [b1,b2] such that L = ϕ(BR2) and its GSO

[b̃1, b̃2] over K , a parameter σ > 0 (corresponding to (σ, . . . , σ) ∈ KR).
Result: z with distribution negligibly far from DL ,c,σ2I2d

.

1 Precomputed: σi :=
√

σ2

〈b̃i,b̃i〉
− r2 ∈ K ++

R .

2 c2 ← c,v2 ← 0

3 d2 ← 〈b̃2,c2〉K
〈b̃2,b̃2〉K

4 u2 ← NKR,1

5 y2 ← σ2 · u2

6 x2 ← bd2 − y2er
7 c1 ← c2 − x2b2,v1 ← x2b2

8 d1 ← 〈b̃1,c1〉K
〈b̃1,b̃1〉K

9 u1 ← NKR,1

10 y1 ← σ1 · u1

11 x1 ← bd1 − y1er
12 v0 ← v1 + x1b1

13 return v0

Algorithm 4: Hybrid Gaussian sampler, U version

Input: A target center c = (c1, c2) ∈ K 2, an upper triangular matrix U = [(1, 0), (u, 1)] with
u ∈ K , a parameter r > 0 (corresponding to (r, . . . , r) ∈ KR).

Result: z with distribution negligibly far from DL (U),c,r.

1 z2 ← RingSamplerZ(c2, r)
2 c′1 ← c1 − z2u
3 z1 ← RingSamplerZ(c′1, r)
4 return z = U(z1, z2).

Theorem 2 ([42], Theorem 5.10, adapted). Let D be the output distribution of Algorithm 3.
If ε 6 2−5 and

√
Σ > |B|K · ηε(R2), then the statistical distance between D and DL ,c,Σ is

bounded by 7ε. Moreover, we have

sup
x∈BR2

∣∣∣∣ D(x)

DL ,c,Σ(x)
− 1

∣∣∣∣ 6 14ε.

In our integer arithmetic friendly sampler presented in the next section, we rely on a specific
variant where the target lattice is described by an upper triangular matrix U, or equivalently, when
the Gram-Schmidt orthogonalization is the identity matrix. It is presented in Algorithm 4, and
is core to MITAKAZ. In particular, in MITAKAZ the ring sampler becomes a discrete Gaussian
sampler that can be emulated in integer arithmetic. This is emphasized below by RingSamplerZ.

As a simpler version of Algorithm 3, Algorithm 4 deviates less from the discrete Gaussian it
emulates; the proof can be found in Appendix F.

3.3 An integer arithmetic friendly sampler

To clarify the presentation, in this section we identify matrices over K to their structured version
over Q. Fundamentally, our new sampler for DL (B),c,s combines Peikert’s approach of Algo-
rithm 1 and hybrid sampling in the case where the Gram-Schmidt is the identity. What allows us

10 Authors Suppressed Due to Excessive Length

Algorithm 5: Integer arithmetic ring Gaussian sampler

Input: a matrix B̂ ∈ R2×2 such that B̂Uû = B = B̃Uu, where û = [u]p ∈ 1
p
R, a center

c ∈ R2, and parameters r, s > 0.
Result: z with distribution negligibly far from DL (B),c,rs.

1 Precomputed: Σp = s2I− B̂B̂t and A← IntGram(p2(Σp − I)) /* AAt = p2(Σp − I) */
2 p← Algorithm 6(p,A) /* p ∼ DR2,r2Σp */

3 ĉ← B̂−1(c− p)
4 z′ ← Algorithm 4(û, ĉ, s) /* z′ ∼ DL (Uû),ĉ,s */

5 return z = B̂z′

Algorithm 6: Offline sampler

Input: An integer p > 0, a matrix A ∈ R2×m.
Result: p ∈ R2 with distribution negligibly far from DR2,r2Σ , where Σ = 1

p2
AAt + I.

1 Precomputed: integers r > ηε(R
2) and L such that Lr > ηε(Λ(A)⊥).

2 x← (b0eLr)m
3 p′ ← 1

pL
Ax

4 p← bp′er
5 return p.

to restrict to integer arithmetic is to rely on the work of [12]. There, the authors showed how to
generate small integral perturbation vectors, relying on a generalization of the Cholesky decom-
position that can be also computed purely in integer arithmetic.

On the “hybrid side”, as observed in the previous section, it is enough for us to have access
to a discrete Gaussian sampler in integer arithmetic. Multiplying the output of Algorithm 4 by the
Gram-Schmidt orthogonalization B̃ = BU−1 of the target lattice basis, one would obtain vector
with the correct support. The Gram-Schmidt basis may however contain entries in K that may
have very large denominators. We avoid this thanks to an approximation B̂ ∈ (1/(pq))R2×2 of
B̃, obtained by p-rounding of the upper right coefficient of U. The quality of this approach is
essentially driven by |Bf,g|K = s1(B̃).

Algorithm 5 describes this approach. The notation Uû denotes that the upper-right coefficient
of the matrix is û. The procedure IntGram is fully described in [12], and impacts the choice of pa-
rameters for the algorithm to be actually correct. The determination of its parameters is discussed
in Appendix F.3. On a high level, given in input a positive definite matrix Σ ∈ R2×2, it outputs
a matrix A ∈ R2×m such that AAt = Σ, and where m > 2. In our context, the input is a small
perturbation covariance matrix Σp = s2I− B̂B̂t, where s is a large enough integer.

The offline sampler in Algorithm 6 is adapted from [12] and outputs from the expected distri-
bution as long as A has been suitably computed. In terms of notation, recall that Λ(A)⊥ ⊂ Rm is
the lattice of integer solutions of Ax = 0. Its analysis is given in Appendix F.3.

We now state the correctness of Algorithm 5, stressing that the statement is correct as long as
the integral root decomposition could be carried out. In particular, the proof assumes at least that
p > d, and can be found in Appendix F.3.

Theorem 3. Keep the notation of Algorithm 5, assuming also that IntGram correctly computes
A. For ε ∈ (0, 1), let s > |Bf,g|K (1 +

√
2d/p) + 1 be an integer and r > ηε(Z2d). Then the

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 11

distribution D of the output of Algorithm 5 is at statistical distance at most 15ε from DL (B),c,sr.
Moreover, we have

sup
z∈L (B)

∣∣∣∣ D(z)

DL (B),c,sr(z)
− 1

∣∣∣∣ 6 30ε.

3.4 Asymptotic security of the samplers

Hash-and-sign signatures over lattices are constructed, following the GPV framework [19], by
hashing a message to the ambient space of the lattice, and returning as a signature a lattice point
close to that hash digest. This is done using a “good” representation of the lattice, called the
trapdoor, that enables the signer to solve the ApproxCVP problem with a relatively small approx-
imation factor. Moreover, to prevent signatures from leaking information about the secret trapdoor,
the close lattice points need to be sampled according to a distribution that is statistically indepen-
dent of the trapdoor: usually a spherical discrete Gaussian distribution supported over the lattice
and centered at the hash digest. This is where the algorithms from the previous sections come into
play.

The security of the resulting signature scheme depends on the standard deviation of the dis-
crete Gaussian distribution output by the sampler: the smaller the standard deviation, the closer
the distance to the hash digest, the harder the corresponding ApproxCVP problem, and hence the
higher the security level. As we have seen, however, there is a lower bound (depending on the
trapdoor) to how small of a standard deviation the sampler can achieve while remaining statis-
tically close to the desired spherical Gaussian: lower than that, and the distribution may start to
deviate from that Gaussians in ways that could expose information about the secret trapdoor, and
thus compromise the security of the signing key.

In the case of NTRU lattices, the trapdoor is the secret basis:

Bf,g =

[
f F
g G

]
,

and the standard deviation of the discrete Gaussian obtained from this trapdoor varies depending
on the sampling algorithm, as discussed in particular in [42, §6]. It can be written as:

σ = α · ηε(R2) · √q (1)

where the factor α > 1, which we call the quality, depends on the sampler for a given trapdoor.
For the so-called Klein sampler used in DLP and FALCON, α

√
q is the Gram–Schmidt norm

‖Bf,g‖GS := max16i62d ‖b̃Z
i ‖2 of Bf,g over the integers. For the Peikert sampler over K , The-

orem 1 shows that α
√
q = s1(Bf,g). Finally, for the hybrid sampler, Theorem 2 shows that

α
√
q = |Bf,g|K .
For a given sampler, the generators f, g should be sampled appropriately to minimize the corre-

sponding α. In his thesis [42], Prest analyzed the optimal choices both theoretically (under suitable
heuristics) and experimentally. The resulting optimal choices for α are as follows (after correct-
ing the flawed heuristic analysis of Prest in the case of the hybrid sampler: see our discussion in
Appendix C):

– heuristically, the quality of the Peikert sampler satisfies α = O(d1/4
√

log d) [42, §6.5.2];
– for the hybrid sampler, following Appendix C, we show α = O(d1/8 log1/4 d) (and not
O(
√

log d) contrary to what was claimed in [42, §6.5.2] based on flawed heuristics);

12 Authors Suppressed Due to Excessive Length

Table 1. Comparison of the best achievable trapdoor quality α for the various Gaussian samplers over NTRU lattices.

Sampler α
√
q Best achievable α

Peikert s1(Bf,g) O(d1/4
√

log d) [42, §6.5.2]
Hybrid (MITAKA) |Bf,g|K O(d1/8 log1/4 d) [Appendix C]
Klein (FALCON) ‖Bf,g‖GS O(1) [42, §6.5.1]

– for the Klein sampler (used in DLP, and in modified form, FALCON), the heuristic analysis
in [42, §6.5.1] show that it can be taken as low as

√
e/2 ≈ 1.17 independently of the dimen-

sion, and in particular α = O(1).

These properties are summarized in Table 1.

3.5 The MITAKA signature scheme

The previous samplers can be plugged directly into the GPV framework [19] to construct secure
hash-and-sign signature schemes in the random oracle model. The idea is to sign a message by first
hashing it as a point in the ambient space of the lattice, and then using the sampler to construct
a lattice point close to that target. The signature is then the difference between the target and
the lattice point (a small vector in the lattice coset defined by the target). This is described more
precisely in Algorithm 7. Both MITAKA and MITAKAZ are specific instantiations of this paradigm,
using the samplers of Algorithms 3 and 5 respectively.

In Algorithm 7, the acceptance bound γ for signatures is chosen slightly larger than σ
√
d, for

σ the standard deviation of the sampler given by Eq. (1) above, in order to ensure a low repetition
rate for signature generation. (In the concrete security evaluation of Section 5, γ is selected so as
to ensure < 10% rejection; this gives e.g. γ = 1.042σ

√
2d for d = 512). Signature verification

simply recovers the second component s2 = s1·h+c mod q and checks that the vector s = (s1, s2)
is of length at most γ.

The security argument of Gentry, Peikert, and Vaikuntanathan reduces the security of the sig-
nature scheme to the hardness of SIS in the underlying lattice up to bound 2γ. It is therefore in-
validated if an attacker can obtain two distinct outputs of the sampler with the same center (since
their difference would be a solution to this SIS problem) [19, Section 6.1]. This is avoided in the
signature scheme by randomizing the hash value associated with the message using a sufficiently
long random salt r ∈ {0, 1}k. To avoid collisions, it suffices to pick k > λ + log2 qs for λ bits of
security and qs signature queries. The choice of k = 320 as in [44,8] suffices for up to 256 bits of
security.

4 Improved Trapdoor Generation

The Peikert, hybrid and FALCON samplers for an NTRU basis Bf,g all have essentially the same
complexity, and the first two are significantly simpler, easier to implement, slightly faster in the
same dimension, and offer better avenues for parallelization and side-channel resistance (see Sec-
tion 7). It would therefore be desirable to adopt one of the first two for practical implementations.

However, as seen in Section 3.4, the FALCON sampler has a substantial advantage in terms
of security, since its Gaussian standard deviation is proportional to ‖Bf,g‖GS, whereas the Peikert
and hybrid samplers are proportional to s1(Bf,g) and |Bf,g|K respectively, which are both larger.

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 13

Algorithm 7: Signature scheme

Input: A message m, a secret key sk, a bound γ.
Result: A signature sig of m.

1 do
2 r

$← {0, 1}k
3 c← H(r‖m)
4 z← Sampler(sk, (0, c)) /* Algorithm 3 or 5 */
5 s← (s1, s2) = (0, c)− z /* s1 · h− s2 ≡ −c mod q */

6 while ‖s‖2 > γ2

7 return sig = (r, s1).

This results in a significant difference in asymptotic terms, as shown in Table 1, and also in bit
security terms as will become apparent in the next section.

To increase the security level achievable using the first two samplers, and in particular the hy-
brid sampler, we propose a new technique to significantly improve the quality of NTRU trapdoors.
We note in passing that it also applies to FALCON: while it cannot yield significant improvements
in terms of security, since the standard deviation it achieves is already a very small factor away
from the theoretical optimum, it can be used to speed up key generation substantially. The idea is
as follows.

Recall that NTRU trapdoor generation for FALCON, say, works by sampling f, g with discrete
Gaussian coefficient, computing the ‖Bf,g‖GS of the resulting NTRU basis, and checking if this
value is below the desired quality threshold. If not, we try again, and if so, the NTRU basis is
completed and kept as the secret key. Trapdoor sampling for the hybrid sampler is similar. (On the
other hand, for Peikert, completion has to be recomputed at each step to evaluate s1(Bf,g)).

In this process, the costly operations are, on the one hand, the generation of the discrete Gaus-
sian randomness, which has to be repeated several dozen times over in order to reach the desired
threshold (this is not explicitly quantified by the authors of FALCON, but experiments suggest that,
in many instances, upwards of 50 iterations are necessary), and, on the other hand, the completion
of the basis (still costly despite recent optimizations [41]), which is only carried out once at the
end and not for each iteration13.

To optimize the process, our idea is to amortize the cost of discrete Gaussian sampling, by
constructing several candidate trapdoors from the same randomness. We propose three main ideas
to do so.

Lists of candidates for f and g. The usual key generation algorithm for FALCON, as already
mentioned, normally ends up generating many pairs (fi, gi), and tests each of them as a candidate
first vector for the NTRU lattice.

Since we are generating Gaussian vectors fi and gi anyway, we can easily recycle this gen-
erated randomness by testing all the mixed pairs (fi, gj) instead: this results in a set of possible
candidates which increases quadratically with the number of random vectors we generate, instead
of just linearly.

13 This is the case at least for FALCON and for the hybrid sampler, as for both of them, one can compute the quality of
the trapdoor given only (f, g). This is especially fast for the hybrid sampler. For the Peikert sampler, however, doing
so without also obtaining (F,G) seems difficult, and is left as an open problem.

14 Authors Suppressed Due to Excessive Length

Generating the Gaussian vectors as linear combinations. Independently, one can generate each
candidate vector f as a linear combination

∑`
k=1 f

(k) where each f (k) is sampled from a discrete
Gaussian of standard deviation σ0/

√
`, for σ0 the desired standard deviation of f . It is well-known

that this results in the correct distribution provided that σ0/
√
` remains above the smoothing pa-

rameter of Z [37]. In fact, the FALCON implementation already does so for d = 512, where the
candidate vectors are sums of two Gaussians vectors of standard deviation

√
2 times lower.

Now, when generating several fi’s, one obtains ` lists Lk = {f (k)i }i of Gaussian vectors. It is
again possible to recycle this generated randomness by mixing and matching among those lists,
and constructing candidates f of the form

∑
f
(k)
ik

for varying indices ik, so that the total set of
candidates is in bijection with

∏
k Lk. Its size increases like the `-th power of the size of the lists.

Using the Galois action. Finally, one can expand the set of candidates for g, say, by applying the
action of the Galois group. In principle, other unitary transformations of g, even less structured
ones like randomly permuting the coefficients in the power basis, could also be considered, but
the Galois action in particular is convenient as it is expressed as a circular permutation on the
embeddings ϕi(g) of g (i.e., the Fourier coefficients), and for the hybrid sampler, the computation
of the quality is entirely carried out in the Fourier domain.

Concretely, recall from Lemma 1 that the quality parameter α of the hybrid sampler associated
with Bf,g satisfies:

α2 =
|Bf,g|2K

q
= max

(maxi zi
q

,
q

mini zi

)
where zi = ϕi(ff

∗ + gg∗) = |ϕi(f)|2 + |ϕi(g)|2 ∈ R+.

It is easy to compute the embeddings zτi associated to Bf,τ(g) for some Galois automorphism τ
of K simply by applying the corresponding permutation on the components of ϕ(g). Moreover,
we see from this representation that the conjugation τ∗ : g 7→ g∗ leaves this quality invariant,
so the relevant Galois elements to consider are a set of representatives of Gal(K /Q)/〈τ∗〉. For
power-of-two cyclotomics, one can for example use τk5 for k = 0, . . . , d/2−1, where τ5(ζd) = ζ5d .

Security considerations. The techniques above can potentially skew the distribution of f and g
somewhat compared to the case when each tested (f, g) that fails to pass the security threshold is
thrown away. However, this is not really cause for concern: the precise distribution of f and g is
not known to affect the security of the signature scheme other than in two ways:

– the extent to which it affects the geometry of the trapdoor, as encoded in the quality parameter
α already; and

– the length of (f, g) itself as it affects key recovery security, but this length is always at least as
large in our setting as in FALCON.

This indicates that our optimized secret keys do not weaken the scheme.

Concrete example. In Algorithm 8, we describe an example key generation procedure that com-
bines all three techniques presented above: we construct lists of candidates for f and g and test all
possible pairs. Moreover, each f and g itself is sampled as a sum of ` = 2 narrower Gaussians,
and the list of g’s is expanded using the Galois action. Of course, different combinations of the
techniques are also possible, but this particular one offers a good balance between efficiency and
achievable security.

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 15

Algorithm 8: MITAKA optimized key generation

Input: Desired standard deviation σ0 of f and g, target quality α of the Gaussian, number of
samples m to generate, set G of Galois automorphisms to apply. The total search
space is of size #G ·m4 for 4m generated discrete Gaussian vectors.

Result: NTRU first trapdoor vector (f, g) with quality better than α.

1 for i ∈ [1,m] do
2 f ′i ← DR,σ0/

√
2, f ′′i ← DR,σ0/

√
2

3 g′i ← DR,σ0/
√
2, g′′i ← DR,σ0/

√
2

4 end for
5 Lf ← {f ′i + f ′′j | i, j ∈ [1,m]}
6 Lg ← {τ(g′k + g′′`) | k, ` ∈ [1,m], τ ∈ G}
7 Lu ← {(f, ϕ(ff∗)) | f ∈ Lf}
8 Lv ← {(g, ϕ(gg∗)) | g ∈ Lg}
9 for (f, u) ∈ Lu, (g, v) ∈ Lv do

10 z ← u+ v
11 if q/α2 6 zi 6 α2q for all i then return (f, g)

12 end for
13 restart

Using this approach, as shown in Fig. 1, we are able to efficiently generate trapdoors with
α 6 2.04 for d = 512, and α 6 2.33 for d = 1024 by m ≈ 16 (corresponding to generating 64
narrow Gaussian vectors to select one candidate (f, g), largely in line with FALCON).

Improved search via early aborts and filtering. Key generation using the technique above involves
an exhaustive search in a relatively large set of candidates Lu × Lv, and testing each candidate
involves O(d) comparisons:

q/α2 6 ui + vi 6 α2q for 1 6 i 6 d/2,

as done in Step 11 of Algorithm 8. One can of course reject a candidate immediately as soon as
one of the comparison fails, but this can happen arbitrarily late in the loop through the indices.

However, it results from the analysis of Appendix C that the lower bound condition is much
more likely to fail than the upper bound for a given candidate. Moreover, if we fix u, then it
is more likely to fail on any given v for the indices i such that ui is small. One can therefore

4 6 8 10 12 14 16 18 20 22 24
1.95

2

2.05

2.1

2.15

2.2

2.25

Worst of 50
Upper quartile
Median
Lower quartile
Best of 50

4 6 8 10 12 14 16 18 20 22 24
2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

Worst of 50
Upper quartile
Median
Lower quartile
Best of 50

Fig. 1. Quality α reached by the optimized sampler of Algorithm 8 for various choices of m (50 trials each, σ0 =
1.17

√
q/2d, G coset representatives of Gal(K /Q)/〈τ∗〉). Reachable α in dimension 512 (left) and 1024 (right).

16 Authors Suppressed Due to Excessive Length

improve the algorithm by a wide margin by carrying out a simple precomputation on u: extract
the list of indices Su(w) of the w smallest elements of u for some w � d/2 (this can be done
without sorting, in timeO(d)). Then, for each corresponding candidate v, first check in timeO(w)
whether the lower bound condition holds on the indices in Su(w): if so, the comparison is carried
out normally, and otherwise v is rejected early.

Picking for example w = 25, we find that around 99.8% of candidates are rejected early in
that way for our parameters, greatly reducing the number of full-fledged comparisons. All in all,
this lets us achieve a speed-up of more than 5- to 10-fold as d ranges from 512 to 1024.

An additional, very simple optimization is to filter out values u, v such that ‖u‖∞ > α2q
(and similarly for v) from the lists Lu and Lv, since such candidates clearly cannot satisfy the
comparison.

5 Security analysis of MITAKA

Concrete security. In order to assess the concrete security of our signature scheme, we proceed
using the usual cryptanalytic methodology of estimating the complexity of the best attacks against
key recovery attacks on the one hand, and signature forgery on the other. The detailed analysis
is carried out in Appendix G. For the parameter choices relevant to our scheme (in which the
vectors of the trapdoor basis are not unusually small), key recovery is always harder than signature
forgery, and therefore the cost of signature forgery is what determines the security level. Using
the condition of Eq. (12), we see that the security of the forgery is a function of the standard
deviation of the lattice Gaussian sampler used in the signature function, which itself depends on
the quality α of the trapdoor, as discussed in Section 3.4. This analysis translates into concrete
bit-security estimates following the methodology of NEWHOPE [1], sometimes called “core-SVP
methodology”. In this model [5,30], the bit complexity of lattice sieving (which is asymptotically
the best SVP oracle) is taken as b0.292βc in the classical setting and b0.265βc in the quantum
setting in dimension β. The resulting security in terms of α is given in Fig. 2 in dimensions 512
and 1024. This allows us to compare MITAKA with FALCON as well as with a “naive” version
of the hybrid sampler that would omit the optimizations of Section 4; the results are presented in
Table 2.

In addition, as mentioned earlier, our construction can be instantiated over more general base
fields than power-of-two cyclotomics, which enables us to choose security level in a much more
flexible way than FALCON. This is analyzed in Appendix B. Example security levels which can be
reached in this way are presented in Table 3. For such fields, we can choose the modulus q to be
the first prime which is congurant to 1 modulo the conductor.

Asymptotic security. As for all signature schemes in the GPV framework, the EUF–CMA security
of our scheme in an asymptotic sense reduces, both in the classical [19] and quantum random ora-
cle models [6], to the SIS problem in the underlying lattice (in this case, an instance of Module–
SIS [31]). However, as is the case for FALCON (and as holds, similarly, for Dilithium), the SIS
bound in Euclidean norm for the standard parameter choice (q = 12289) makes the underlying
assumption vacuous. This is not known to lead to any attack, and can be addressed by increasing
q if so desired, or reducing to the SIS problem in infinity norm instead.

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 17

Table 2. Concrete values for sampler quality and associated bit security level.

d = 512 d = 1024

Quality α Classical Quantum NIST Level Quality α Classical Quantum NIST Level

FALCON 1.17 124 112 I 1.17 285 258 V
Naive Hybrida 3.03 90 82 below I 3.58 207 188 IV

MITAKA 2.04 102 92 Ib 2.33 233 211 V
a Key generation with the same median amount of randomness as MITAKA Algorithm 8 with m = 16, but without the opti-

mizations of Section 4.
b Taking into account the heavy memory cost of sieving. This is the same level as Dilithium–II; see [32, §5.3].

Table 3. Intermediate parameters and security levels for MITAKA.

d = 512 d = 648 d = 768 d = 864 d = 972 d = 1024

Conductor 210 23 · 35 28 · 32 25 · 34 22 · 36 211

Security (C/Q) 102/92 136/123 167/151 192/174 220/199 233/211
NIST level Ia Ib II III IV V
Modulus q 12289 3889 18433 10369 17497 12289
Quality α 2.04 2.13 2.20 2.25 2.30 2.33

Sig. size (bytes) 713 827 1080 1176 1359 1405
a Slightly above Dilithium–II. b Above FALCON–512; arguably reaches level II.

6 Implementation Results

In order to assess the practicality of MITAKA, we carried out a preliminary, pure C implementa-
tion14 of the scheme (using the sampler described in Algorithm 3). For easier and fairer compar-
ison, we reused the polynomial arithmetic and FFT of the reference implementation of FALCON,
as well as its pseudorandom generator (an implementation of ChaCha20).

An important caveat is that the current version of our code includes direct calls to floating
point transcendental functions, and therefore cannot be guaranteed to run in constant time as is. It
is well-known that this can be addressed using the polynomial approximation techniques used e.g.
in [47,4,24], but full precision estimates for the required functions are left as future work.

14 It will soon be available on a public repository.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
75

80

85

90

95

100

105

110

115

120

125

130

135

Classical

antum

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
190

200

210

220

230

240

250

260

270

280

290

300

310

Classical

antum

Fig. 2. Security (classical and quantum) against forgery as a function of the quality 1 6 α 6 3 of the lattice sampler
(left: dimension 512 and right: dimension 1024).

18 Authors Suppressed Due to Excessive Length

Nevertheless, in our tests run on a single core of an Intel Core i7–1065G7 @ 1.30GHz laptop,
this implementation is more than twice as fast as the reference implementation of FALCON: about
6300 signatures per second for our code using d = 512 (resp. 3100 signatures per second for
d = 1024), compared to 2800 for FALCON–512 (resp. 1400 for FALCON–1024). We believe that
these preliminary results are quite promising for MITAKA.

Furthermore, performance is mainly driven by the cost of the continuous and discrete 1D
Gaussian samplers. Since signature generation can be split in an offline part and an online part (see
Algorithm 13), MITAKA can offer even better speed results if some computations can be performed
between signatures. While these results are favorable to MITAKA, optimized implementations on
specific architectures would be needed for a definitive comparison to FALCON.

7 Side-channel Countermeasure

First, our signature scheme can be easily made isochronous. According to [24], isochrony ensures
independence between the running time of the algorithm and the secret values. For our signature,
the absence of conditional branches implies that one can implement our signature isochronously
using standard techniques.

In a second step, we turn our signature scheme into an equivalent one which is protected
against more powerful side-channel attacks that exploit the leakage of several executions. More
precisely, following the seminal work due to Ishai, Sahai, and Wagner [26], we aim to protect
our samplers for MITAKA and MITAKAZ alternative described in Section 3 from the so-called
t-probing side-channel adversary, who is able to peek at up to t intermediate variables per each
invocation of an algorithm. The masking countermeasure is a technique to mitigate such attacks,
by additively secret-sharing every sensitive variables into t+ 1 values inR. The integer t is often
referred to as masking order. Essentially, we will provide two functionally equivalent alternative
algorithms for MITAKA and MITAKAZ where any set of at most t intermediate variables is inde-
pendent from the secret. In this paper, we consider the masking order as a—potentially large—
arbitrary variable t. Clearly, high masking order allows a side-channel protected implementation
to tolerate stronger probing attacks with larger number of probes. For a ring element a ∈ R, we
say that a vector (ai)06i6t ∈ Rt+1 is an arithmetic masking of a if a =

∑
i∈[0,t] ai. For readability,

we often write JaK := (ai)06i6t.
The masking of our signature presents three unprecedented difficulties in masked lattice-based

schemes.

1. Compared to Fiat-Shamir with aborts, masking the Gaussian sampling is unavoidable. We here
present a novel technique to efficiently mask Gaussian sampling in Section 7.2.1. Notably,
our approach only requires arithmetic masking, allowing us to avoid any conversion between
arithmetic and Boolean shares during the online phase.

2. The computations are performed in Z instead of a modular ring. This feature does not appear in
any other lattice-based scheme. Thus, we need to fix a bound on the size of the masks and make
sure that the computations will never pass this bound. Let Qmask be the bound on the largest
manipulated integer, the shares of JaK are implicitly reduced modulo Qmask. Sometimes we
refine the notation J·K into J·KM to explicitly specify a modulusM < Qmask for secret-sharing.

3. Some polynomial multiplications need both inputs to be masked. This unusual operation does
not appear in LWE-based schemes where the multiplications are performed between a public
matrix of polynomial and a masked vector. We handle this problem with a function in Sec-
tion 7.2.2.

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 19

7.1 Preliminaries on masking countermeasure

The most basic security notion for a masking countermeasure is the t-privacy of a gadget G [26].
This notion guarantees that any set of at most t intermediate variables observed during the com-
putation is independent of the secret input. While the idea behind the notion is relatively simple,
t-private gadgets are unfortunately not composable, meaning that a gadget consisting of multiple
t-private sub-gadgets may not be necessarily secure. Hence in this work we rely on the following
more handy security notions introduced by Barthe et al. [2].

Definition 1 (t-NI, t-SNI). LetG be a gadget with inputs (xi)06i6t ∈ Rt+1 and outputs (yi)06i6t ∈
Rt+1. Suppose that for any set of t1 intermediate variables and any subset of O ⊆ [1, t] of output
indices with t1+ |O| 6 t, there exists a subset of indices I ⊆ [1, t] such that the output distribution
of the t1 intermediate variables and the output variables (yi)i∈O can be simulated from (xi)i∈I .
Then

1. if |I| 6 t1 + |O| we say G is t-non-interfering (t-NI), and
2. if |I| 6 t1 we say G is t-strong-non-interfering (t-SNI).

It is easy to check that t-SNI implies t-NI which implies t-probing security. The above notion can
be naturally extended for a gadget with multiple input and output sharings. Note that linear op-
erations performed share-wise (such as addition of two sharings, or multiplication by a constant)
are trivially t-NI, as each computation on share i can be simulated from the input share xi. Build-
ing blocks satisfying either NI or SNI can be easily composed with each other, by inserting the
Refresh gadgets at suitable locations to re-randomize shares [2, Proposition 4]. It is also internally
used in the Unmask gadget before taking the sum of shares, so that a probe on any partial sum
doesn’t leak more information than one input share [3].

Typically, the non-interference notions only deal with gadgets where all of the inputs and
outputs are sensitive. To also handle public, non-sensitive values, a weaker notion called NI with
public output (t-NIo) was proposed in [3]. As stated in [3, Lemma 1], if a gadget G is t-NI secure
it is also t-NIo secure for any public outputs.

In the sequel, we use the SecMult gadget that computes the multiplication of two masked
inputs. It is one of the key building blocks of masking theory and has been introduced in [26,45]
and proved t-SNI in [2].

We also use the MaskedCDT gadget that generates a masked sample that follows a tabulated
Gaussian distribution of a fixed center c and a fixed standard deviation r. The table values are not
sensitive so they are the same as for the unmasked implementation. This masked CDT algorithm
was introduced in [4,20] and proved t-NI.

7.2 Two new gadgets

In Table 4, we introduce the known and new gadgets necessary for our sampler along with their
properties. These properties will be proved in the following subsections.

7.2.1 Share-by-share Gaussian sampling In this section, we present a novel technique for
generating a masked Gaussian sampling with an arbitrary masked center JcK of c ∈ 1/C · Z for
some fixed integerC. Note that 1/C ·Z is not a ring, and thus the multiplication is not well-defined
for shares in 1/C ·Z. This is not an issue in our application, since we never carry out multiplication
of two sharings in this form.

20 Authors Suppressed Due to Excessive Length

Table 4. Masking properties of known and new gadgets

Gadget name Security property Reference

SecMult t-SNI [26,45,2]
Refresh t-SNI [9,2]
Unmask t-NIo [3]
MaskedCDT t-NI [4,20]
SecNTTMult t-SNI This work, Lemma 4
GaussShareByShare t-NIo This work, Lemma 3

We aim at considering a share by share generation. A direct and fast approach is to generate
zi ← DZ,ci,r/

√
t+1 for each share of c and to output (z0, · · · , zt) as JzK. To ensure z ∼ DZ,c,r,

it requires r ≥
√

2(t+ 1)ηε(Z) according to [35], which yields a considerable security loss. To
overcome this issue, we propose a different approach sampling shares over 1/B · Z with B :=
d
√

2(t+ 1)e and utilizing rejection sampling to keep the masked output over Z. Our masked
Gaussian sampling algorithm is presented in Algorithm 9.

Correctness We now show that Algorithm 9 is correct for r ≥ ηε(Z). Since r ≥ ηε(Z) ≥√
2(t+1)

B ηε(Z), by [35, Theorem 3], in step 4, z =
∑t

i=0 zi follows D1/B·Z,c,r. Thanks to the
rejection sampling, the support of the final output z is Z and noticing that the probability of each
output z is proportional to ρr,c(z), it follows that the distribution of z is DZ,c,r. The rejection rate
is ρr,c(Z)

ρr,c(1/B·Z) ≈ 1/B as r ≥ ηε(Z) ≥ ηε(1/B · Z). All in all, we have shown that Algorithm 9

provides JzK ∼ DZ,c,r at the cost of about
√

2(t+ 1) average rejections.

Masking security Let z̄ =
∑

i z̄i mod 1. As the Unmask gadget is only NIo secure with public
output z̄, we need to show that z̄ does not leak sensitive information, i.e. the output z and the
center c. Indeed, the output only occurs when z̄ = 0, hence z̄ is independent of the output. The
support of z̄ is 1

B {0, 1, · · · , B − 1} and Pr[z̄ = i
B] ∝ ρc,r(Z+ i

B) = ρc− i
B
,r(Z) ∈ [1−ε1+ε , 1]ρr(Z)

due to the smoothness condition r ≥ ηε(Z). Therefore the distribution of z̄ is negligibly close to
uniform independent of c. Consequently, z̄ can be securely unmasked. As all the operations are
performed share by share and assuming uniformly distributed shares of the input center c, we can
deduce the following lemma.

Lemma 3. The gadget GaussShareByShare is t-NIo secure with public output z̄.

In the implementation, one needs to instantiate an unmasked Gaussian sampling with arbitrary
center and fixed standard deviation (line 2 of Algorithm 9). We chose a table based approach and
follow the technique of [37] to use a reduced number of tables.

7.2.2 Polynomial multiplication In some lattice-based schemes such as Kyber or Dilithium,
polynomial multiplication is always performed between a sensitive and a public polynomial. This
means that, using polynomials protected with arithmetic masking, one can multiply each share
independently by the public unmasked polynomial and obtain an arithmetic sharing of the result
of the multiplication. In this work, we have polynomials multiplications with both operand in
arithmetic masked form. Given JaK and JbK ∈ Rt+1, we want to compute JcK ∈ Rt+1 such

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 21

Algorithm 9: GaussShareByShare

Input: An unmasked standard deviation r. An arithmetic masking JcK of the center
c ∈ 1/C · Z. Let B := d

√
2(t+ 1)e.

Result: An arithmetic masking JzK with z’s distribution negligibly far from DZ,c,r.

1 for i ∈ [0, t] do
2 zi ← D1/B·Z,ci,r/

√
t+1

3 end for
/* Extracting the fractional part of z */

4 Jz̄K1 ← (z0 mod 1, . . . , zt mod 1) /* secret-sharing in (1
B
· Z)/Z */

5 if Unmask(Jz̄K1) 6= 0 then
6 restart to step 1
7 end if
8 return (z0, . . . , zt)

that
∑t

i=0 ci =
(∑t

i=0 ai
)
·
(∑t

i=0 bi
)
. To perform this masked polynomial multiplication, we

propose to rely on an NTT-based multiplication. Using NTT, the product of two polynomials
a, b ∈ ZQmask [x]/(xd + 1) is given by

NTT−1(NTT(a) ◦ NTT(b))

with ◦ the coefficient-wise product between two vectors in ZQmask . Since the NTT is linear, it
can be applied on each share independently and we only have to mask the coefficient-wise mul-
tiplication between elements of ZQmask using the technique of [26]. While a naive multiplication
algorithm would require d2 ISW multiplications, we only need d of them. Since we want to multi-
ply the polynomials in Z and not in ZQmask , we need to work with a modulus large enough to avoid
any reduction in the result. Recall that it is also possible to use several Qmask with CRT techniques
to reduce the size.

Let us define SecNTTMult, the masked product of two polynomials JaK, JbK arithmetically
masked in ZQmask [x]/(xd + 1) by

NTT−1((SecMult(NTT(JaK)j ,NTT(JbK)j)0≤j≤d−1).

This product is detailed in algorithm 16.

Lemma 4. SecNTTMult (Alg. 16) is t-SNI secure.

Note that here the shares are entire polynomials containing d coefficients. So, t probes actually
provide t× d coefficients to the attacker.

Proof. Let δ ≤ t be the number of observations made by the attacker. Assume the following dis-
tribution of the attacker δ observations of intermediate shared polynomials: δ1 observations on the
first NTT computation on â, δ2 observations on the first NTT computation on b̂, δ3 observations
on the SecMult part (which provides the knowledge of the d× δ3 coefficients of the probed poly-
nomials), δ4 observations on the last NTT−1 computation, and δ5 observations of the returned
values. Finally, we have

∑5
i=1 δi ≤ δ. The algorithm NTT−1 is linear, thus it is t-NI and all the

observations on steps 6 and 7 can be perfectly simulated with at most δ4 + δ5 shares of ĉ. The
algorithm SecMult is applied coefficient-wise, thus each i-th execution has δ3 observations of in-
termediate values (here coefficients) and δ4+δ5 observations on the outputs (here coefficients too).
By applying d times the t-SNI property for each SecMult operation, we can conclude that every

22 Authors Suppressed Due to Excessive Length

Algorithm 10: MaskedMITAKAZSampler

Input: A masked secret key in the following form: (JB̃∗K, JB̃∗
−1

K, JṽK, JAK) and a masked
vector JcK for a center c ∈ R2, both arithmetically masked mod Qmask.

Result: An unmasked sample z ∼ DL (B),s,c.

1 Offline
2 JpK← MaskedOfflineSampling(JAK)
3 Online
4 JcpertK← JcK− JpK

5 JcpertK← SecNTTMult(JB̃∗
−1

K, JcpertK)
6 JvK← MaskedOnlineSampling(JṽK, JcpertK)
7 JzK← SecNTTMult(JB̃∗K, JvK)
8 return

∑t
i=0 zi mod Qmask

observation from steps 3 to 7 can be perfectly simulated with at most δ3 shared (polynomials) of â
and b̂. The linearity of the NTT with arithmetic masking allows to finish proving that every set of
size at most t observations containing

∑4
i=1 δi (resp. δ5) intermediate (resp. returned) polynomial

shares can be perfectly simulated with at most
∑4

i=1 δi polynomial shares of each input.

In the following, we extrapolate this polynomial multiplication technique to matrices of poly-
nomials and keep the same notation SecNTTMult. We also remark that although SecNTTMult are
sometimes called back-to-back in the masked samplers, this can be further optimized in practice: to
minimize the number of NTT/NTT−1 invocations in an implementation, one could keep the NTT
representation as much as possible, and then bring it back to the coefficient domain whenever it
encounters GaussShareByShare, as explicitly described in H.

7.3 Masking the MITAKAZ sampler

The detailed overall structure of the sampler is presented in Algorithm 10; the algorithms for the
online and offline samplings are detailed in Appendix I.1. We remark that Algorithm 10 consists
in a linear succession of gadgets with no dependency cycle, i.e. each line depends on freshly
computed masked inputs. Thus, one can show that this algorithm is t-NI, as proved in Theorem 4
below. The proof is detailed in Section I.2.

Theorem 4. The masked MITAKAZ sampler (Alg. 10) is t-NIo with public output z.

7.4 Masking the MITAKA samplers

Algorithm 17 (resp. Algorithm 18) corresponds to our masked version of the RingPeikert sampler
of Algorithm 1 (resp. the Hybrid sampler of Algorithm 3). Although masked MITAKA is instan-
tiated with the MaskedHybrid sampler, we also include MaskedRingPeikert for completeness be-
cause the former can be essentially obtained by extending the basic masking paradigm outlined in
the latter.

Contrary to MITAKAZ, one can remark that we here need to mask floating-point arithmetic.
However, we can avoid it by representing each sensitive variable from KR as a fixed-point number.
Concretely, an element x ∈ KR is approximated by x̃ ∈ KR such that every coefficient of qkx̃
is an integer, where k is a parameter determining the precision. Then we can secret-share qkx̃ in

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 23

Zd
Qmask for Qmask � qk. Since we do not perform many multiplication operations, an accumulated

scaling factor does not break the correctness of sampler if we choose sufficiently large Qmask.
We also remark that a secret-shared center in fixed-point representation must be divided by a

scaling factor qk for the following 1-dimensional discrete Gaussian sampling to work share-by-
share (i.e. division of Jqkvi,jK at line 9-12 of Alg. 17, and of Jqkzi,jK at lines 12-14 and 19-21
of Alg. 18, respectively). This division can be performed in floating-point arithmetic in practice.
For the sum of shares to represent the correct center in the MaskedRingPeikert sampler, we fur-
ther set Qmask = qk+` for some ` > 0. The resulting shares after division form a sharing of
v = [(v1,j)j∈[0,d−1], (v2,j)j∈[0,d−1]] over (Q/q`Z)2d. Thanks to our GaussShareByShare intro-
duced earlier, we are able to perform the discrete Gaussian sampling independently w.r.t each
share of the center, while avoiding a factor of

√
t+ 1 overhead incurred in the standard deviation.

As a result we obtain shares of discrete Gaussian samples Jzi,jKq` such that the distribution of zi,j
is statistically close to DZ,vi,j ,r mod q` for every i = 1, 2 and j ∈ [0, d − 1]. Since the output
values of the signature are defined mod q we can further map the shares to J·Kq and the remaining
computations can be performed mod q.

Since we invoke the above routine twice in the MaskedHybrid sampler, the initial masking
modulus needs to be increased so that no wrap-around occurs during the masked computation of
the second nearest plane. Concretely, the first nearest plane operations are computed with modulus
Qmask = q2k+`; the second nearest plane operations are performed on J·Kqk+` , with correspond-
ing arithmetic shares of sensitive inputs; the output values can be represented in J·Kq as in the
MaskedRingPeikert.

Although a naive implementation of the MITAKA sampler should rely on floating-point arith-
metic and thus naturally carry out FFT-based polynomial multiplications (as presented in Alg. 12),
we instead make use of NTT in our masked algorithms. Notice that the masked instances only deal
with a multiplication between polynomials mapped to ZQmask [x]/(xd + 1) (or Zq`+k [x]/(xd + 1)
during the second nearest plane of the Hybrid sampler) thanks to the fixed-point representation.
This allows us to exploit SecNTTMult as in MaskedMITAKAZSampler. One caveat is that in the
current setting Qmask is restricted to a power of q, but we are able to show such a choice is indeed
NTT-friendly. Recall that the prime q is usually chosen such that q = 1 mod 2d, so that xd + 1
has exactly d roots (ζ, ζ3, . . . , ζ2d−1) over Zq. Now thanks to the Hensel lifting, one can construct
another set of d roots (ω, ω3, . . . , ω2d−1) over Zq2 , such that ω = ζ mod q. By iterating this pro-
cedure until the roots for a sufficiently large modulus Qmask are obtained, we can indeed utilize
the NTT for evaluating f(x) ∈ ZQmask [x]/(xd + 1) on the primitive 2d-th roots of unity.

We are able to prove that both masked samplers meet the standard security notion (t-NIo) for
masked signature schemes. The proof is detailed in Section I.3 and I.4.

Theorem 5. The masked MITAKA sampler (Alg. 18) is t-NIo secure with public output v0.

Acknowledgements

This work was partly supported by the European Union PROMETHEUS project (Horizon 2020
Research and Innovation Program, grant 780701) for Pierre-Alain Fouque and Yang Yu.

24 Authors Suppressed Due to Excessive Length

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange - A new hope. In: Holz, T., Savage,
S. (eds.) USENIX Security 2016. pp. 327–343. USENIX Association (Aug 2016)

2. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y., Zucchini, R.: Strong non-interference
and type-directed higher-order masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016. pp. 116–129. ACM Press (Oct 2016).

3. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.A., Grégoire, B., Rossi, M., Tibouchi, M.: Masking the GLP lattice-
based signature scheme at any order. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol.
10821, pp. 354–384. Springer, Heidelberg (Apr / May 2018).

4. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.A., Rossi, M., Tibouchi, M.: GALACTICS: Gaussian sampling for
lattice-based constant- time implementation of cryptographic signatures, revisited. In: Cavallaro, L., Kinder, J.,
Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2147–2164. ACM Press (Nov 2019).

5. Becker, A., Ducas, L., Gama, N., Laarhoven, T.: New directions in nearest neighbor searching with applications to
lattice sieving. In: Krauthgamer, R. (ed.) 27th SODA. pp. 10–24. ACM-SIAM (Jan 2016).

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum
world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (Dec
2011).

7. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. The Annals of Mathematical
Statistics 29(2), 610–611 (1958)

8. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: ModFalcon: Compact signatures based on
module-NTRU lattices. In: Sun, H.M., Shieh, S.P., Gu, G., Ateniese, G. (eds.) ASIACCS 20. pp. 853–866. ACM
Press (Oct 2020).

9. Coron, J.S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg (May 2014).

10. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y., Kannwischer, M., Patarin, J.: Rainbow. Tech. rep.,
National Institute of Standards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

11. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (Aug 2013).

12. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice gaussian sampling without floats. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 608–637. Springer, Heidelberg
(May 2020).

13. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-Dilithium:
A lattice-based digital signature scheme. IACR TCHES 2018(1), 238–268 (2018). , https://tches.iacr.
org/index.php/TCHES/article/view/839

14. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (Dec 2014).

15. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: Cryptanalysis of NTRUSign countermeasures. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (Dec 2012).

16. Ducas, L., Prest, T.: Fast Fourier orthogonalization. Cryptology ePrint Archive, Report 2015/1014 (2015), https:
//eprint.iacr.org/2015/1014

17. Espitau, T., Kirchner, P.: The nearest-colattice algorithm: Time-approximation tradeoff for approx-cvp. ANTS XIV
p. 251

18. Fouque, P.A., Kirchner, P., Tibouchi, M., Wallet, A., Yu, Y.: Key recovery from Gram-Schmidt norm leakage in
hash-and-sign signatures over NTRU lattices. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS,
vol. 12107, pp. 34–63. Springer, Heidelberg (May 2020).

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In:
Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 197–206. ACM Press (May 2008).

20. Gérard, F., Rossi, M.: An efficient and provable masked implementation of qtesla. In: Belaïd, S., Güneysu, T. (eds.)
CARDIS 2019. Lecture Notes in Computer Science, vol. 11833, pp. 74–91. Springer (2019)

21. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski
Jr., B.S. (ed.) CRYPTO’97. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (Aug 1997).

22. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: Performance improvements and a
baseline parameter generation algorithm for NTRUSign. Cryptology ePrint Archive, Report 2005/274 (2005),
https://eprint.iacr.org/2005/274

23. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN: Digital signatures using
the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (Apr
2003).

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://eprint.iacr.org/2015/1014
https://eprint.iacr.org/2015/1014
https://eprint.iacr.org/2005/274

MITAKA: A Simpler, Parallelizable, Maskable Variant of FALCON 25

24. Howe, J., Prest, T., Ricosset, T., Rossi, M.: Isochronous gaussian sampling: From inception to implementation.
In: Ding, J., Tillich, J.P. (eds.) Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020. pp.
53–71. Springer, Heidelberg (2020).

25. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack against NTRU. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (Aug 2007).

26. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (Aug 2003).

27. Karabulut, E., Aysu, A.: Falcon down: Breaking Falcon post-quantum signature scheme through side-channel
attacks (2021)

28. Kirchner, P., Espitau, T., Fouque, P.A.: Fast reduction of algebraic lattices over cyclotomic fields. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 155–185. Springer, Heidelberg (Aug 2020).

29. Kirchner, P., Fouque, P.A.: Revisiting lattice attacks on overstretched NTRU parameters. In: Coron, J.S., Nielsen,
J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 3–26. Springer, Heidelberg (Apr / May 2017).

30. Laarhoven, T.: Search problems in cryptography. Ph.D. thesis, Eindhoven University of Technology (2015)
31. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3),

565–599 (2015)
32. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS-DILITHIUM.

Tech. rep., National Institute of Standards and Technology (2019), available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions

33. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G., Stehlé, D., Bai, S.: CRYSTALS-
DILITHIUM. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions

34. Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a broad class of distributions. In: Katz, J. (ed.)
PKC 2015. LNCS, vol. 9020, pp. 716–730. Springer, Heidelberg (Mar / Apr 2015).

35. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (Aug 2013).

36. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput.
37(1), 267–302 (2007)

37. Micciancio, D., Walter, M.: Gaussian sampling over the integers: Efficient, generic, constant-time. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 455–485. Springer, Heidelberg (Aug 2017).

38. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures. Journal of
Cryptology 22(2), 139–160 (Apr 2009).

39. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 80–97. Springer, Heidelberg (Aug 2010).

40. Pornin, T.: New efficient, constant-time implementations of Falcon. Cryptology ePrint Archive, Report 2019/893
(2019), https://eprint.iacr.org/2019/893

41. Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation using the field norm. In: Lin, D., Sako,
K. (eds.) PKC 2019, Part II. LNCS, vol. 11443, pp. 504–533. Springer, Heidelberg (Apr 2019).

42. Prest, T.: Gaussian Sampling in Lattice-Based Cryptography. Ph.D. thesis, École Normale Supérieure, Paris, France
(2015)

43. Prest, T.: Sharper bounds in lattice-based cryptography using the Rényi divergence. In: Takagi, T., Peyrin, T. (eds.)
ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 347–374. Springer, Heidelberg (Dec 2017).

44. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Ricosset, T., Seiler, G., Whyte,
W., Zhang, Z.: FALCON. Tech. rep., National Institute of Standards and Technology (2020), available at https:
//csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

45. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Standaert, F.X. (eds.)
CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (Aug 2010).

46. Yu, Y., Ducas, L.: Learning strikes again: The case of the DRS signature scheme. In: Peyrin, T., Galbraith, S. (eds.)
ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 525–543. Springer, Heidelberg (Dec 2018).

47. Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: Fast, compact, and constant-time discrete gaussian sampler over
integers. IEEE Transactions on Computers 69(1), 126–137 (2020)

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2019/893
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

A Additional background

In the coefficient representation, the adjoint is given by f∗ = (f0,−fd−1, . . . ,−f1). We have√
d‖f‖ = ‖ϕ(f)‖, where both norms are `2 norm over the coefficients of the elements. All f ∈

KR can also be represented by the nega-circulant matrix M(f) ∈ Rd×d of multiplication by f in
the power basis 1, x, . . . , xd−1 of R[x]/(xd + 1). This extends block-wise to matrices over KR.

H

K ⊂ KR

ϕ

::

coeff
$$
Rd

DFT

OO

For this work, there are two useful representations of KR, and embeddings
of K extend straightforwardly to this algebra. The coefficient embedding
directly identifies a real polynomial in R[x]/(xd + 1) with its coefficient
vector in Rd endowed with the standard dot product, while the embedding ϕ
identifies it to the space H = {v ∈ Cd : vi = vd/2+i, 1 6 i 6 d/2}. The
standard Hermitian product on Cd induces a real inner product on H. The
Discrete Fourier Transform (DFT) gives a linear isomorphism between the
coefficient embedding space and H, which is depicted by the commutative
diagram on the left. In practice, it can be computed in quasilinear time using
the Fast Fourier Transform (FFT) algorithm.

In this work we also consider implicitly a version of NTRU lattices under the embedding ϕ,
which can be described thanks to the matrices

ϕi(Bf,g) :=

[
ϕi(f) ϕi(F)
ϕi(g) ϕi(G)

]
, and

ϕ(Bf,g) :=

ϕ1(Bf,g)
. . .
ϕd(Bf,g)

 ∈ C2d×2d.

Noting that detϕi(Bf,g) = ϕi(detBf,g) = q, the lattice ϕ(Bf,gR
2) has volume qd∆K inH.

Let Bf,g = [b1|b2] and b̃2 = (F̃ , G̃) the second Gram-Schmidt vector of Bf,g. For all i 6
d/2, note that ϕi(〈b1,b1〉K) = |ϕi(f)|2 + |ϕi(g)|2 and ϕi(〈b̃2, b̃2〉K) = |ϕi(F̃)|2 + |ϕi(G̃)|2.
In particular, the Euclidean norm of the largest Gram-Schmidt vector of ϕ(Bf,g) is |Bf,g|K .

Proof (Proof of Lemma 1). With a basis Bf,g = [b1|b2], we have b̃1 = (f, g) of squared
norm ff∗ + gg∗ = 〈b̃1, b̃1〉K , and det B̃∗B̃ = q2 = 〈b̃1, b̃1〉K 〈b̃2, b̃2〉K . Both the left side
of the claimed inequality and the expression of |Bf,g|K follow. The KR-spectrum of B̃∗B̃ is
{〈b1,b1〉K , 〈b̃2, b̃2〉K }. In particular, we get

s1(B̃)2 = max(‖ϕ(〈b1,b1〉)‖∞, ‖ϕ(〈b̃2, b̃2〉)‖∞),

which gives the last claimed equality.
Let e1, . . . , e2d be the canonical basis of C2d. Consequently, we have ‖ϕ(Bf,g)e2i−1‖2 =

|ϕi(f)|2 + |ϕi(g)|2 and ‖ϕ(Bf,g)e2i‖2 = |ϕi(F)|2 + |ϕi(G)|2. By definition of the operator
norm, this gives max(‖ϕ(〈b1,b1〉K)‖∞, ‖ϕ(〈b2,b2〉K)‖∞) 6 s1(B)2. We check that ϕi(b̃2)
is the Gram-Schmidt orthogonalization of ϕi(b2) with respect to ϕi(b1), hence we have

‖ϕi(b̃2)‖2 = ϕi(〈b̃2, b̃2〉K) 6 ‖ϕi(b2)‖2 = ϕi(〈b2,b2〉K),

for all i. This implies the right side of the inequality. Next, the trace of B∗f,gBf,g is T ∈ K ++,
so that its characteristic polynomial is χ = X2 − TX + q2 with totally real discriminant ∆ =

T 2 − 4q2. If there was an embedding K → C where ∆ is negative, this would contradict that the
corresponding embedding of B∗f,gBf,g is positive definite in the usual sense. Hence ∆ ∈ K ++,
and this also means that (each embedding of) T+

√
∆ is larger than (the corresponding embedding

of) T −
√
∆. The last claim follows.

In matrix form, one can write the Gram-Schmidt orthogonalization as B = B̃Uu with u =
〈b1,b2〉K
〈b1,b1〉K and

Uu :=

(
1 u

1

)
∈ K 2×2.

For all u, u′ ∈ K , one has U−1u = U−u and UuUu′ = Uu+u′ .

B Finer-grained selection parameter using cyclotomic fields of composite
conductors

As mentioned earlier, a strength of the MITAKA scheme lies in the possibility to instantiate it
over any number fields K . To remain practically competitive, one needs to be sable to sample
efficiently discrete Gaussian over its ring of integers R = OK . We saw that on cyclotomic of
conductor 2n, this is trivially the case as the power basis is orthogonal; and as a result sampling
over R boils down to perform a coefficient wise sampling. In this section, we show that we can
efficiently sample in cyclotomic fields of smooth enough conductor.

B.1 Geometry of the power basis

Let Q(ζm) be the cyclotomic field of conductor m = pa2b for an odd prime number p and non-
negative integers a, b. Set B = (1, ζm, . . . , ζ

ϕ(m)−1
m). As Q(ζm) is the compositum of the prime-

power cyclotomic fields Q(ζ2a and Q(ζ2b , its ring of integers is the tensor product of the ring of
integers of these two fields, so that a routine computation ensures that the Gram-matrix of a well
chosen reordering of B in the canonical embedding is:

ϕ(m)

p− 1
G(p, b)⊗ Idϕ(m)

p−1

,

where

G(p, b) =

{
Circp−1(p− 1,−1, . . . ,−1) if b = 0

Circp−1(p− 1, 1,−1, . . . ,−1, 1) if b > 0
,

for Circp−1(X) designating the circulant matrix of size p − 1 × p − 1 and coefficients following
the (p− 1)-uple X .

B.2 Sampling

As a consequence, we can use the hybrid sampler to reduce the sampling over R to a module
sampling over a module of rank p − 1, which Gram-matrix is G(p,B), defined over a subring

isometric to ϕ(m)
p−1 Z

ϕ(m)
p−1 . Let us study this matrix in more details. Its principal minor Gi of order

i is the circulant matrix Circi(p − 1,−1, . . . ,−1). Elementary theory of Toeplitz-like matrices
ensures that this minor have for spectrum:

Sp(Gi) = {p− i, p, . . . , p︸ ︷︷ ︸
i−1−times

},

so that its determinant is det(Gi) = (p − i)pi−1. Henceforth a direct induction ensures that the
(square of the) diagonal of the Cholesky decomposition of G(p, b) is[

p− 1,
(p− 2)p

p− 1
,
(p− 3)p

(p− 2)
, . . . ,

p

2

]
,

which is a decreasing sequence. Hence the maximum value of the diagonal elements of the
Cholesky decomposition of G(p, b) is

√
p− 1. As it is also the norm of the corresponding Gram-

Schmidt vectors. As such, the hybrid sampler induces an additional
√
p− 1 compared to the sam-

pling over the power-of-two cyclotomic fields.

B.3 Practical impact on the parameter selction

Using this analysis, we get a wider range of parameters for instantiating the MITAKA scheme. In
particular, the 3-smooth conductors are of particular interest as they only induce a loss of a factor√

2 in the sampler quality and allows sampling which is asymptotically as fast as the sampling in
power-of-two conductors, using the hybrid sampler. In Fig. 3, we show the impact of the base field
on the bit-security with regards to the parameter α. Moreover, achievable quality parameters α for
the MITAKA hybrid sampler when using the key generation algorithm of Section 4 are displayed
in Fig. 4 (for each individual degree) and summarized in Fig. 5 based on the median output of
Algorithm 8.

C Concentration bounds for Gamma distributions

Let X ∼ Γ (α, β) be a Gamma-distributed random variable. Its logarithmic moment generating
function is as follows for all λ < β:

ΦX(λ) = logE
[
eλX

]
= log

∫ +∞

0
eλx · βα

Γ (α)
xα−1e−βxdx

= log

(
βα

Γ (α)

∫ +∞

0
xα−1e(λ−β)xdx

)

= log

(
βα

Γ (α)

∫ +∞

0

zα−1

(β − λ)α−1
e−z

dz

β − λ

)

= log

(
βα

Γ (α)
· Γ (α)

(β − λ)α

)
= −α log

(
1− λ

β

)
.

In particular, Φ′X(λ) = α
β−λ , and thus the map λ 7→ tλ− ΦX(λ) is maximal at λ0 such that:

t =
α

β − λ0
, namely λ0 = β − α

t

(assuming t > 0; otherwise the function is unbounded on (−∞, β)). Therefore, the Cramér trans-
form of X is given by:

Φ∗(t) = sup
λ<1

(
tλ− ΦX(λ)

)
= tλ0 − ΦX(λ0) = βt− α− α log

βt

α

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
70

90

110

130

150

170

190

210

230

250

270
512 648

768 864

972 1024

Fig. 3. Security of the MITAKA scheme for different choices of cyclotomic fields with 3-powersmooth conductors.

4 6 8 10 12 14 16 18 20 22 24
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

512 648

768 864

972 1024

Fig. 4. Median quality α reached in the same cyclotomic fields by the optimized sampler of Algorithm 8 for various
choices of m (50 trials each, σ0 = 1.17

√
q/2d, G coset representatives of Gal(K /Q)/〈τ∗〉).

4 6 8 10 12 14 16 18 20 22 24
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

Worst of 50
Upper quartile
Median
Lower quartile
Best of 50

(a) Degree 648
4 6 8 10 12 14 16 18 20 22 24

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

Worst of 50
Upper quartile
Median
Lower quartile
Best of 50

(b) Degree 768

4 6 8 10 12 14 16 18 20 22 24
2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

Worst of 50
Upper quartile
Median
Lower quartile
Best of 50

(c) Degree 864
4 6 8 10 12 14 16 18 20 22 24

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

Worst of 50
Upper quartile
Median
Lower quartile
Best of 50

(d) Degree 972

Fig. 5. Quality α reached in 3-powersmooth degrees by the optimized sampler of Algorithm 8 for various choices of m
(50 trials each, σ0 = 1.17

√
q/2d, G coset representatives of Gal(K /Q)/〈τ∗〉).

for t > 0. Noting that E[X] = Φ′X(0) = α/β, the Cramér–Chernoff inequality then yields:

Pr[X > t] 6 eα−βt
(βt
α

)α
6
(eβt
α

)α
for t >

α

β
, (2)

Pr[X < t] 6 eα−βt
(βt
α

)α
6 (2e)αe−βt/2 for 0 < t <

α

β
, (3)

where the second inequalities in the two cases follow from e−βt 6 1 and βt/α 6 2eβt/2α respec-
tively.

Now we consider X1, . . . , Xk ∼ Γ (α, β) independent gamma-distributed random variables,
and want to estimate the tail bound on max(X1, . . . , Xk, γ/X1, . . . , γ/Xk) for some constant
γ > 0.

On the one hand, by the union bound and Eq. (3), we have, for 0 < γ/t < α/β:

Pr
[

max
(γ
X1

, . . . ,
γ

Xk
) > t

]
= Pr

[
min(X1, . . . , Xk) <

γ

t

]
6 k

(eβγ
αt

)α
.

In particular, we have Pr[max(γ/X1, . . . , γ/Xk) > t] 6 δmin as soon as:

k
(eβγ
αt

)α
6 δmin

⇐⇒ eβγ

αt
6
(δmin

k

)1/α
⇐⇒ t >

eβγ

α

(k

δmin

)1/α
.

On the other hand, by the union bound and Eq. (2), we also have, for t > α/β:

Pr[max(X1, . . . , Xk) > t] 6 k(2e)αe−βt/2.

In particular, we have Pr[max(X1, . . . , Xk) > t] 6 δmax as soon as:

k(2e)αe−βt/2 6 δmax

⇐⇒ α log(2e)− β

2
t 6 − log

k

δmax

⇐⇒ t >
2

β

(
log

k

δmax
+ α log(2e)

)
.

This results in the following theorem.

Theorem 6. Let X1, . . . , Xk ∼ Γ (α, β) independent gamma-distributed random variables, and
fix γ > 0, δmin ∈ (0, 1) and δmax ∈ (0, 1). We have:

Pr
[

max
(
X1, . . . , Xk,

γ

X1
, . . . ,

γ

Xk

)
< max(tmin, tmax)

]
6 δmin + δmax

where:

tmin =
eβγ

α

(k

δmin

)1/α
and tmax =

2

β

(
log

k

δmax
+ α log(2e)

)
.

This simply follows from the union bound applied to the previous inequalities, together with the
observation that tmin and tmax always satisfy the required bounds 0 < γ/tmin < α/β and tmax >
α/β.

We can then apply this result to estimate the quality of the hybrid sampler obtained from an
NTRU basis Bf,g, which is given by the norm |Bf,g|K , where (as recalled in Lemma 1):

|Bf,g|2K = max

(
‖ϕ(ff∗ + gg∗)‖∞,

∥∥∥∥ q2

ϕ(ff∗ + gg∗)

∥∥∥∥
∞

)
. (4)

The ring elements f, g have all their coefficients sampled independently according to the cen-
tered discrete Gaussian of standard deviation σ0 =

√
νq
4d for some ν > 0. Then, all the embed-

dings ϕi(f), ϕi(g) ∈ C are (statistically close to) 2-dimensional discrete Gaussian of standard
deviation

√
νq/4, which we heuristically assume behave like normal vectors of the same stan-

dard deviation.15 Then, the ϕi(ff∗), ϕi(gg∗) (1 6 i 6 d/2) are independent scaled χ2(2) dis-
tributed random variables, or equivalently Γ

(
1, 2

νq

)
-distributed random variables. As a result, the

Xi = ϕi(ff
∗+gg∗) (1 6 i 6 d/2) are independent Γ

(
2, 2

νq

)
-distributed random variables. Now,

by Eq. (4), we have:

|Bf,g|2K = max
(
X1, . . . , Xd/2,

q2

X1
, . . . ,

q2

Xd/2

)
,

which is of the form considered in Theorem 6 with α = 2, β = 2
νq , γ = q2 and k = d/2. There-

fore, it follows that for any choice of δmin, δmax ∈ (0, 1), Pr
[
|Bf,g|2K < max(tmin, tmax)

]
6

δmin + δmax, where:

tmin =
eq

ν

√
d

2δmin
and tmax = νq log

2e2d

δmax
.

We can moreover choose ν in key generation in such a way that tmin = tmax, by setting:

ν =

√
e

log(2e2d/δmax)
· 4

√
d

2δmin
.

Picking e.g. δmax = δmin = 1/4, we get Pr[|Bf,g|2K < t] 6 1/2, where:

t = q
√
e log(8e2d)

4
√

2d = O(q · d1/4 log1/2 d).

Thus, the quality of the hybrid sampler scales as O(d1/8 log1/4 d), and not
√

log d as incorrectly
claimed in [42]. The error in that work was due to the overly optimistic assumption that the
q2/ϕi(ff

∗ + gg∗) components had the same tail behavior as the ϕi(ff∗ + gg∗), which is not
the case, since they are Inverse-Gamma distributed, and thus not sub-Gamma; in fact, they do not
even have finite variance.

D Security arguments from Renyi divergence

Let D ,D ′ be two distributions sharing the same support. Their relative error is defined as∆RE(D ,D ′) =

supx∈Supp(D)

∣∣ D(x)
D ′(x) − 1

∣∣.
15 We can do away with this heuristic assumption in the analysis by generalizing Theorem 6 to sub-Gamma random

variables.

Lemma 5 ([43], adapted). Assume that for two distributions D ,D ′ with the same support, we
have ∆RE(D ,D ′) 6 δ for some δ > 0. Then we have

R2λ(D‖D ′) 6
(

1 +
λ(2λ− 1)δ2

(1− δ)2λ+1

) 1
2λ−1

.

Additionally, if λ ∈ {128, 256} and δ < 2−10, then:

R2λ(D‖D ′) 6 1 + 2λδ2.

In practice, the parameter δ is quite smaller than the bound in the statement (which ensures the
correctness of the second inequality). As argued in [43], when trying to solve a search problem,
one cannot distinguish if one queried D or D ′ up to Q times as long as 2λδ2 6 (4Q)−1. In
practice for signature algorithms, it is often the case that Q = 264 and λ is a target security level,
e.g. 128 or 256. The value for Q can be larger if rejection sampling happens, as the target sampler
will definitely be queried more time. Contrary to, say, BLISS, this does not happen for the lattice
samplers considered in this work.

E Analysis of Peikert’s sampler.

The following lemma can be identified as an intermediate step when calculating that the convolu-
tion of two Gaussians distribution is again a Gaussian distribution. It is very useful in analyzing
Peikert’s sampler and more generally, perturbative arguments for sampling discrete Gaussian dis-
tributions.

Lemma 6. [e.g. [39, Fact 2.1]] LetΣ1, Σ2 be positive definite d×d matrices and x, c1, c2 ∈ Rd.
We have

ρΣ1(c1 − x)ρΣ2(x− c2) = ρΣ1+Σ2(c1 − c2)ρΣ′(x− c′),

where Σ′ = (Σ−11 +Σ−12)−1 and c′ = Σ′(Σ−11 c1 +Σ−12 c2).

In our work, the second factor on the right-hand side will lead to the Gaussian mass of a lattice
coset “above smoothing”, which means that the mass is essentially that of the lattice itself. In
particular, we rarely need explicit expressions for either c′ or Σ′.

E.1 Correctness of Algorithm 1, smoothing parameter choice

Proof (of Theorem 1, adapted from [39]). Let Y be a random variable of distribution NΣ0Σ∗0
. If

x← DR2,B−1(c−y),r2 , then by composition z := Bx← DBR2,c−y,r2BB∗ . Denoting by Out the
output of Algorithm 1, we then have:

P[Out = z ∧ Y = y] =
ρΣ0Σ∗0

(y)

detΣ0
· ρr2BB∗(z− (c− y))

ρr2BB∗(BR2 − (c− y))
.

Next recall that Σ = Σ0Σ
∗
0 + r2BB∗, and use Lemma 6 to obtain the identity

ρΣ0Σ∗0
(y)ρr2BB∗(z− (c− y)) = ρΣ(z− c)ρΣ′(y − c′),

where the exact expressions for c′ and Σ′ are actually not needed. Let D(z) the probability of
Algorithm 1 to output z, and we obtain:

D(z) =
ρΣ(z− c)

detΣ0

∫
Rn

ρΣ′(y − c′)

ρr2BB∗(BR2 − (c− y))
dy.

Because all matrices here are positive definite over KR we also have det(Σ∗0) = det(Σ0) (it could
have been equal to (detΣ0)

∗). Note that this gives det(Σ′) = det(rB)2 det(Σ)−1 det(Σ0)
2. As

we are above ηε(BR2) in the denominator of the integral, we get

D(z) ∈
[
1,

1 + ε

1− ε

]
· det(rB)

(detΣ)1/2
· ρΣ(z− c)

ρr2BB∗(BR2)
,

By definition of discrete Gaussians, it is equivalent to

D(z) ∈
[
1,

1 + ε

1− ε

]
· α ·DBR2,c,Σ(z),

where we let α = det(rB)

(detΣ)1/2
· ρΣ(BR2−c)
ρr2BB∗ (BR2)

. Summing both the left-hand side and right-hand side

over all possible z’s we see that α 6 1 6 1+ε
1−εα, or equivalently, that α ∈ [1−ε1+ε , 1]. We thus obtain

D(z) ∈
[

1− ε
1 + ε

,
1 + ε

1− ε

]
·DBR2,c,Σ(z). (5)

Using that ε 6 1/2, we see that the statistical distance between D and DBR2,c,Σ is bounded by
2ε, as well as ∣∣∣∣ D(z)

DBR2,c,Σ(z)
− 1

∣∣∣∣ 6 4ε.

Following the discussion in Appendix D, we see that the Rényi divergence of order 2λ is
bounded by 32λε2. To preserve up to λ = 128, resp. 256 bits of security for Q = 264 queries, it is
then enough to set ε 6 2−39, resp. 2−40. This allows us to set accordingly an upper bound on the
needed smoothing parameter.

Floating point precision analysis In practice, one can want to use floating point arithmetic to
instantiate the Peikert sampler. This means that a sufficiently high precision of computation must
be selected to avoid an adversary to distinguish between an “ideal” (infinite precision) sampler
and the one that is implemented.

We now turn to the precision analysis of Algorithm 1. To make the analysis simpler, we in fact
consider its variant in Algorithm 11, where one checks that Σ1 = B−1Σ0 is a valid choice.

Observe that in practice, c is usually an integer vector (outputted by some hash function with
range in R2) and since B = Bf,g, qB−1 is in R2×2. Hence, we may assume that B−1c is known
exactly. However Σ0 and vectors sampled from N1,K 2

R
have real entries and therefore only ap-

proximations of their values can be known. In the statement below, one may think of the technical
assumptions as analyzing alternative versions of Algorithm 11 which aborts if both the continuous
and discrete Gaussian sampler output a large element. Assuming both these samplers are close to
perfect (which can be done in practice), Gaussian tail bounds tell us that the probability that both
output large elements can be made smaller than 2−λ, where λ is a target security level. Hence, for
suitable parameters and by a hybrid argument, it makes no difference to consider such versions.

Algorithm 11: RingPeikert sampler, variant

Input: A matrix B ∈ K 2×2 such that L = ϕ(BR2) and a target center c ∈ K 2
R .

Result: z ∈ L with distribution negligibly far from DL ,c,Σ .

1 Precomputed: a parameter r > ηε(R
2), and Σ1 ∈ K 2×2

R such that Σ1Σ
∗
1 = B−1ΣB−∗− r2.

2 y← Σ1 · (NKR,1)2

3 x← dB−1c− ycr
4 return z← Bx

Proposition 1. Let r, δ, ε > 0, and let Σ1 as in Algorithm 11. For u ∈ K 2
R with ‖u‖ 6 2

√
d, let

y = Σ1u. Assume that we are given û, Σ̂1 and ŷ = Σ̂1û satisfying

• ‖u− û‖ 6 δ · ‖u‖;
• s1(Σ1 − Σ̂1) 6 δ · s1(Σ1).
• max(‖x− t‖, ‖x− t̂‖) 6 2r

√
πd,

where we let t = B−1c − y, t̂ = B−1c − ŷ. Let ∆ := 15d·δ·s1(Σ1)
r ·

(
1 + ε

2(1−ε)
√
πd

)
, then we

have

exp(−∆) 6
DR2,B−1c−y,r(x)

DR2,B−1c−ŷ,r(x)
6 exp(∆).

We note that requiring a relative error at most δ on each complex embedding of u, that is, |ϕi(uj)−
ϕi(ûj)| 6 δ · |ϕi(uj)| for i 6 2d and j 6 2, implies the first relative error bound.

Proof. Note that by assumptions we also have s1(Σ̂) 6 (1+δ)s1(Σ1). Moreover, we have y−ŷ =
Σ1u− Σ̂1(û− u)− Σ̂1u, which gives us

‖ŷ − y‖ 6 s1(Σ̂1 −Σ1)‖u‖+ s1(Σ̂1)‖û− u‖
6 (2 + δ)δ · s1(Σ1) · ‖u‖. (6)

Lemma 9 states that

exp
(
ψ(x)− Ex←D

R2,t,r
[ψ(x)]

)
6
DR2,t,r(x)

DR2,t̂,r(x)
6 exp

(
ψ(x)− Ex←D

R2,t̂,r
[ψ(x)]

)
.

Let us call A(x) the quantity in the left-hand exponential in the inequality above. Thanks to
Lemma 9, Lemma 8 and Inequality (6), we have

|A(x)| 6 (2 + δ)δ · s1(Σ1) · ‖u‖
r2

·
(
‖x− t̂‖+

r · ε
1− ε

)
6

15 · d · δ · s1(Σ1)

r
·
(

1 +
ε

2(1− ε)
√
πd

)
,

where our assumptions gives that 4
√
π(2 + δ) 6 15, which is used for the second line. The right-

hand side is identical. This gives our claim.

We will now deduce the minimal precision δ needed for our finite precision samplers to be
indistinguishable from the ideal one. The assumptions below reflect the practical situation for the
NTRU lattices we consider. In the statement below, discrete Gaussian tail bounds tell us that only

an exponentially small portion of x’s are outside Ω. For example, the first sampled vector u is
normal, its norm follows a chi-squared law of dimension 2d. Hence the probability that ‖u‖ >
2
√
d is less16 than exp(−d/5). The constant α is defined in Section 3.4 as the quality of the basis

for sampling.

Corollary 1. Let ε, δ such that 0 6 max(ε, δ) 6 2−40. Keep the notation of Theorem 1 withΣ1 =
B−1Σ0. LetΩ = {x ∈ SuppDR2,t,r : ‖x−t̂‖ 6 2r

√
πd}, where r = (1/π)

√
(1/2) log(4d(1 + 1/ε)).

Assume ϕ(BR2) is a lattice of rank 2d > 512 with s1(B) < c
√
q for some constants 1 6 α < 16

and q > 210, and let Σ = (αr)2qI2 ∈ K 2×2
R . Let IP(x) resp. FP(x) be the probability that the

infinite, resp. the finite precision version of Algorithm 11 outputs Bx. Then we have

sup
x∈Ω

∣∣∣∣ IP(x)

FP(x)
− 1

∣∣∣∣ 6 17d · α2 · δ.

Proof. We want an upper bound on∆ defined in the previous proposition. Let s+(B−1), s−(B−1) ∈
KR be the singular values of B−1. They satisfy s+(B−1) · s−(B−1) = 1/q so for each complex
embedding we have |ϕi(s+(B−1))| · |ϕi(s−(B−1))| = 1/q as well. By construction, this means
that there are d pairs of the singular values of ϕ(B−1) with a product equal to 1/q. In particular,
we deduce that

s1(B
−1) · s2d(B−1) = s1(B

−1)s1(B)−1 6
1

q
.

Using properties of the spectral norm of matrices, we then obtain

s1(Σ1) 6 s1(B
−1)s1(Σ0) 6

α · s1(Σ0)√
q

.

By assumptions, the spectrum of ϕ(BB∗) is contained in the interval (1
α2 , α

2)q, Σ − r2BB∗ =
Σ0Σ

∗
0 and Σ and BB∗ commute, so we have s1(Σ0) 6 αr

√
q. With the definition of ∆ and our

assumptions again, we can now write

∆ 6 16d · α2 · δ.

The result follows using that exp(16d · α2δ) 6 1 + 17d · α2δ for our choice of parameters,
Proposition 1 and the definition of the set Ω.

The last corollary follows with Lemma 5.

Corollary 2. For ε 6 2−40 and δ 6 2−51−2 log2(α) (resp. δ 6 2−52−2 log2(α)), Algorithm 11 in
finite precision preserves up to 128 (resp. 256) bits of security if queried less than 264 times over
an NTRU lattice L (B) of rank 1024 (resp. 2048) and with s1(B) = α

√
q.

F Analysis of the hybrid samplers

F.1 Useful results on Gaussian functions

The next lemmata are well-known.

Lemma 7 ([36], implicit in Lemma 4.4). Let L be a rank d lattice, and Σ � 0 such that√
Σ > ηε(L). Then we have ρc,Σ(L) ∈

[
1−ε
1+ε ; 1

]
· ρΣ(L).

16 In practice, it is also less than 2−λ as d > 4λ.

Lemma 8 ([36]). For any d dimensional lattice L , any c and unit vector u in Rd, and for all
0 < ε < 1 and r > 2ηε(L), we have∣∣Ex←DL ,c,r

[〈x− c,u〉]
∣∣ 6 εr

1− ε
.

Gaussian ratios The following results and inequalities can be found in [42], but we rework them
for the sake of diffusion.

Lemma 9 ([42], adapted from Lemma 3.10). Let k ∈ N∗ and r > 0. For fixed t, t̂ ∈ K k
R , let

ψ(x) := 1
2r2

(‖x− t̂‖2 − ‖x− t‖2). For all x ∈ K k
R , we have ρr(x−t)

ρr(x−t̂)
= exp(ψ(x)), and also:

exp
(
− Ex←D

Rk,t,r
[ψ(x)]

)
6
ρr(R

k − t̂)

ρr(Rk − t)
6 exp

(
− Ex←D

R2,t̂,r
[ψ(x)]

)
, (7)

exp
(
ψ(x)− Ex←D

Rk,t,r
[ψ(x)]

)
6
DRk,t,r(x)

DRk,t̂,r(x)
6 exp

(
ψ(x)− Ex←D

Rk,t̂,r
[ψ(x)]

)
. (8)

With v = t−t̂
‖t−t̂‖ , we also have

∣∣ψ(x)− Ex←D
Rk,t,r

[ψ(x)]
∣∣ 6 ‖t̂− t‖

r2
·
(
‖x− t‖+

∣∣Ex←D
Rk,t,r

[〈x− t,v〉]
∣∣),∣∣ψ(x)− Ex←D

Rk,t̂,r
[ψ(x)]

∣∣ 6 ‖t̂− t‖
r2

·
(
‖x− t̂‖+

∣∣Ex←D
Rk,t̂,r

[〈x− t̂,v〉]
∣∣).

Proof. The claimed equality amounts to unrolling the definitions. Since x, t, t̂ have all their co-
ordinates in KR, their Hermitian inner products are all real valued, so that 2r2ψ(x) = ‖t‖2 +
‖t̂‖2 + 2〈x, t− t̂〉. In particular, ψ is an affine function of x, and as such is convex, as well as the
composition exp ◦ψ. The left-hand side of the first inequality comes from

ρr(x− t̂)

ρr(Rk − t)
= exp(−ψ(x))DRk,t,r(x),

summing over all x’s and using Jensen’s inequality. The right-hand side is obtained mutatis mu-
tandis. The discrete Gaussian version of the inequality then amounts to unrolling the definition of
the density function conjointly with Inequality (7) to bound the ratio of the total masses over Rk.
By linearity of the expectation, we then have

r2
(
ψ(x)− Ex←D

Rk,t,r
[ψ(x)]

)
= 〈x− t, t− t̂〉 − ‖t̂− t‖ · Ex←D

Rk,t,r
[〈x− t,v〉] .

Using Cauchy-Schwarz inequality, we thus obtain the next claim, and the other one follows by
observing that the above can also be unrolled for x← DRk,t̂,r.

F.2 Correctness of Algorithm 3, smoothing parameter choice

For the sake of readability of the following proof, let us recall some notations of Algorithm 3.
The target standard deviation of the algorithm is some σ > 0, seen (by abuse of notation) as “the
constant” σ ∈ K ++

R . Steps 4 − 6 and 9 − 11 are actually explicit Peikert’s sampling with target
covariance Σi = σ2

〈b̃i,b̃i〉
∈ K ++

R . When σ > |B|K · ηε(R2) as in Theorem 2’s assumptions, we

let σi =
√
Σi − r2 ∈ K ++

R .

Proof (of Theorem 2, adapted from [42]). Let D(v) the probability that we obtain v = x1b1 +
x2b2 at Step 9, and P (xi) be the probability that the “Peikert steps” outputs xi ∈ R at Steps 4−6
and 9− 11 of Algorithm 3. By construction and Identity (5), we see that

D(v) = P (x1)P (x2) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]
·DR2,d1,Σ1

(x1)DR2,d2,Σ2
(x2).

Our choices for the Σi’s and the Gram-Schmidt decomposition B = B̃U gives us that ρσ(v−
c) = ρΣ1(x1 − d1)ρΣ2(x2 − d2). Note that the sampling covariances Σ1 and Σ2 “are above”
ηε(R), so that using the definitions of discrete Gaussians and Lemma 7, we obtain

D(v) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)4
]
· α ·DBR2,c,Σ(v),

where we let α = ρΣ(BR2−c)
ρΣ1

(R)ρΣ2
(R) . Similarly as for Identity (5), we see that α ∈ [(1−ε1+ε)

4, (1+ε1−ε)
2],

which leads us to

D(v) ∈

[(
1− ε
1 + ε

)6

,

(
1 + ε

1− ε

)6
]
·DBR2,c,Σ(v). (9)

We now differ mildly from [42] for the sake of parameter tuning. With our choice for ε, we see that
6(log(1+ε)− log(1−ε)) 6 13ε, and also that (13ε)2 6 ε and 13ε 6 1/2, so that exp(13ε)−1 6
14ε. This means that

|D(v)−DBR2,c,Σ(v)| 6 14ε ·DBR2,c,Σ(v),

from which we get our claims.

Using the same method for the Peikert sampler, setting ε 6 2−40, resp. 2−41 preserves up to
λ = 128, resp. 256 bits of security for Q = 264 queries.

Correctness of Algorithm 4 For the sake of completeness, we analyze Algorithm 4. We assume
that we have a perfect routine to sample discrete Gaussians in R inside Algorithm 4.

Theorem 7. Let D be the output distribution of Algorithm 4. If ε 6 2−5 and r > ηε(R), then the
statistical distance between D and DL (U),c,r is bounded by 3ε. Moreover, we have

sup
x∈UR2

∣∣∣∣ D(z)

DL (U),c,r(z)
− 1

∣∣∣∣ 6 6ε.

Proof. Since r > ηε(R), we have by definition of the discrete Gaussian distribution.

D(a) = DR,c2,r(u2)DR,c′1,r
(u1) ∈

[
1,

(
1 + ε

1− ε

)2
]
ρr,c2(u2)ρr,c′1(u1)

ρr(R2)

Calculations give ρr,c2(u2)ρr,c′1(u1)/ρr(R2) = DUR2,c,r(a). Using that (1 + ε)2/(1 − ε)2 6
1 + 6ε, we obtain the claim on the relative error. A routine computation gives the claim on the
statistical distance.

Floating point precision for Algorithm 3 Since the hybrid sampler relies on the ring version of the
Peikert sampler, it is no surprise that the precision analysis is quite similar. As we are interested
in the particular case of NTRU lattices, the situation is a bit simpler than in [42]. Indeed, here
the different sampling centers are known exactly because in practice the starting center c and the
〈b̃i, b̃i〉’s are in K . Also, it is enough to target a scalar covariance matrix. Steps 4 to 6 and 9 to 11
are the explicit steps done in the Peikert sampler; in particular, x2 and x1 are essentially discrete
Gaussians in R with standard deviation parameter σ.

Again, we implicitly consider versions of the algorithm that abort whenever the continuous
Gaussian sampler or the discrete Gaussian sampler within the Peikert sampler output too large
elements.

Proposition 2. Let r, δ, ε > 0, and keep the notation of Algorithm 3. For u1, u2 ∈ KR with
‖ui‖ 6

√
2d, let yi = σiui. Assume that we are given ûi, σ̂i’s and ŷi = σ̂iûi such that for

i = 1, 2:

– ‖ui − ûi‖ 6 δ · ‖ui‖;
– ‖σi − σ̂i‖∞ 6 δ · ‖σi‖∞.

Further, let ti = di − yi and t̂i = di − ŷi. Assume that x1, x2 are such that max(‖xi − ti‖, ‖xi −
t̂i‖) 6 r

√
2πd for i = 1, 2, and let∆ := 15d·δ·max(‖σ1‖∞,‖σ2‖∞)

r ·
(

1 + ε
(1−ε)

√
2πd

)
. Then we have

exp(−∆) 6
D(x)

D̂(x)
6 exp(∆),

where D(x) = DR,t2,r(x2)DR,t1,r(x1), D̂(x) = DR,t̂2,r
(x2)DR,t̂1,r

(x1).

Proof. With our assumptions, we have

‖yi − ŷi‖ 6 ‖σ̂i − σi‖∞‖ui‖+ ‖σi‖∞‖ui − ûi‖
6 δ(2 + δ)‖σi‖∞ · ‖ui‖.

Then the proof amounts to using twice Lemma 9 with k = 1 and our assumptions, in an identical
way as in the proof of Proposition 1.

Corollary 3. Let ε, δ such that 0 6 max(ε, δ) 6 2−40. Keep the notation of Proposition 2. For
r = (1/π)

√
(1/2) log(4d(1 + 1/ε)), let Ωi = {xi ∈ SuppDR,ti,r : ‖xi − t̂i‖ 6 r

√
2πd}.

Assume ϕ(BR2) is a lattice of rank 2d > 512 with |B|K 6 α
√
q for some constants 1 6 α < 16

and q > 210, and let σ = αr
√
q ∈ R. Let IH(x1, x2) resp. FH(x1, x2) be the probability that the

infinite, resp. the finite precision version of Algorithm 3 outputs v = B(x1, x2). Then we have

sup
(x1,x2)∈Ω1×Ω2

∣∣∣∣ IH(x1, x2)

FH(x1, x2)
− 1

∣∣∣∣ 6 17d · α2 · δ.

Proof. By construction and because q2 = 〈b̃1, b̃1〉〈b̃2, b̃〉2, we have ‖σi‖2∞ 6 σ2

q2
|B|2K − r2 6

α4r2. With the definition of ∆ and our assumptions again, we can now write

∆ 6 16d · α2 · δ,

and we conclude as in Corollary 1.

Corollary 4. For ε 6 2−40 (resp. ε 6 2−41) and δ 6 2−50−2 log2(α) (resp. δ 6 2−52−2 log2(α)),
Algorithm 11 in finite precision preserves up to 128 (resp. 256) bits of security if queried less than
264 times over an NTRU lattice L (B) of rank 1024 (resp. 2048) and with |B|K = α

√
q.

F.3 Analysis of the integer friendly sampler

Correctness of Algorithm 6

Lemma 10 ([12], adapted). Assume that A ∈ R2×m is such that AAt = p2(Σ − I), and let
ε 6 2−5 Let D be the probability distribution of outputs from Algorithm 6. If r

√
Σ > ηε(R2) and

r
√
I−Σ−1 > ηε(R2), then the statistical distance between D and DR2,0,r2Σ is bounded by 5ε.

Moreover, we have

sup
p∈R2

∣∣∣∣ D(p)

DR2,r2Σ(p)
− 1

∣∣∣∣ 6 10ε.

Proof. Inspecting the proof of [12], we see that the probability to obtain p′ at Step 3 is in [1−ε1+ε ,
1+ε
1−ε]·

D(1/pL)R2,0,r2(Σ−I)(p
′). This means that the probability D(p) to output p satisfies

D(p) ∈
[

1− ε
1 + ε

,
1 + ε

1− ε

]
·
∑

p′∈R2

D(1/pL)R2,0,r2(Σ−I)(p
′)DR2,p′,r2(p).

By Lemma 6 one gets that D(p) is proportional to a quantity in the interval

[
1− ε
1 + ε

,
1 + ε

1− ε
] ·
∑

p′∈R2

ρr2Σ(p)ρΣ′(p
′ −Σ′p− p),

where an exact expression of Σ′ is not needed for the rest of the proof. Using that both r
√
Σ and√

Σ′ are greater than ηε(R2), and handling proportionality constants as in the previous sections,
we may rewrite with Lemma 7 that

D(p) ∈

[(
1− ε
1 + ε

)4

,

(
1 + ε

1− ε

)4
]
·DR2,r2Σ(p). (10)

Our claims follow.

Correctness of Algorithm 5

Proof. We first show that our assumption on s implies that Σp− I = (s2− 1)I− B̂B̂t is positive-
definite. Thanks to Lemma 1, note that |Bf,g|K = ‖B̃‖2 so that we have s1(B̂) = ‖B̂‖2 6
‖B̃‖2‖V‖2 = |Bf,g|K s1(V), where V = Uû−u. Let v = û − u, so that the positive definite
matrix V∗V ∈ K 2×2 has for characteristic polynomial χ = X2 − (2 + vv∗)X + 1, with totally
positive discriminant ∆ = vv∗(vv∗ + 4). Let λ+ � λ− ∈ K ++

R its two eigenvalues, and we find
that λ+ = 1 + (vv∗ +

√
∆)/2. The coefficient of v (as a polynomial) are between −1/(2p) and

1/(2p), so that ‖ϕ(v)‖∞ 6 d/(2p). Using ‖ϕ(v)‖2∞ = ‖ϕ(vv∗)‖∞, one finds the upper bounds
‖
√
∆‖∞ 6 ‖ϕ(v)‖∞

√
4 + ‖ϕ(v)‖2∞ and ‖ϕ(vv∗)‖∞ 6 d2/(4p2). Using

√
1 + a2 6 1 + a and

p > d, this gives us

s1(V) =
√
‖λ+‖∞ 6 1 +

d

2p

√
1 +

√
1 +

16p2

d2

6 1 +
d

2p

√
2 +

4p

d

6 1 +

√
2d

p
,

Table 5. Parameters for Algorithm 5, for the power-of-two cyclotomic case.

d ε r α
√
q s′ s p b L

512 2−43 1.39 227.3 233 256 221 8192 235

1024 2−43 1.39 260.5 265 292 223 16384 235

so that Σp − I is indeed positive definite.
Let D(z) the probability that Algorithm 5 outputs a vector z, and OFF(p) that the offline

sampling outputs p. We will again make use of Lemma 6. For the sake of clarity, we now explicit
the parameters that will be used. Let Σ1 = r2B̂B̂t, Σ2 = r2Σp and Σ′ = Σ2(Σ1 + Σ2)

−1Σ1.
One checks that Σ′−1 = Σ−11 + Σ−12 = (1/r2)((B̂B̂t)−1 + (s2I − B̂B̂t)−1). Combining our
analysis of Algorithm 4 with Equation (10), we have

D(z) ∈

[(
1− ε
1 + ε

)2

,

(
1 + ε

1− ε

)2
]∑

p

OFF(p) ·DU−ûR2,ĉ,r(z
′)

∈

[(
1− ε
1 + ε

)6

,

(
1 + ε

1− ε

)6
]∑

p

DR2,Σ2
(p) ·DBR2,c−p,Σ1

(z).

As det(B̂B̂t)−1 = q−2d, we see that (B̂B̂t)−1 ≺ (1/q)I. With our choice of s, we also have
Σ−1p ≺ (1/4)I. We obtain that

√
Σ′ > ηε(R2), and rB̂ > ηε(L (B)) as well thanks to B̂−1Bf,g

being an upper triangular matrix. Hence, using Lemma 6 and Lemma 7, we find that D(z) is
proportional to a quantity in [(1−ε1+ε)

7, (1+ε1−ε)
7] · ρ(rs)2(c− z). Dealing with the constant, one finds

for all z ∈ R2 that

D(z) ∈

[(
1− ε
1 + ε

)14

,

(
1 + ε

1− ε

)14
]
·DL (B),c,rs(z).

Our claims follow from the same routine computations as usual.

With the discussion of Appendix D, we preserve λ bits of security if 2λ(30ε)2 6 2−66. In
particular, setting ε = 2−43 preserves both 128 and 256 bits of security in Algorithm 5

Parameter analysis for Gram root decomposition in the NTRU case It is worth recalling some
notation. Recall that B̂ = Bf,gUû, and fix some integer p > 6d. Let s′ > |Bf,g|K (1+

√
2d/p) >

s1(B̂) and let B = ps′. Note that |Bf,g|K = α
√
q, where α is deduced from Table 1. To set

parameters, we allow ourselves some slack s = 1.1s′ for the target standard deviation. From the
requirements of [12, Algorithm 6] using their eigenvalue reduction technique, the integral Gram
root is correctly computed for integers b (the gadget decomposition base), p such that

b3 > dB
√
d(d+ 1) +

d(d+ 1)

8
e+ 3(2d− 1)b2

p2(s2 − 1) > (b4 + b2 + 1) log2(d) + b3 +B2 + 1.

This leads to the parameters in Table 5.

G On the security of MITAKA

In all of the following, we follow the so-called Geometric series assumption (GSA), asserting that a
reduced basis sees its Gram-Schmidt vectors’ norm decrease with geometric decay. More formally,
it can be instantiated as follows for self-dual BKZ (DBKZ) reduction algorithm of Micciancio and
Walter [37]: an output basis (b1, . . . ,bn) yielded by DBKZ algorithm with block size β on a
lattice L of rank n satisfies

‖b̃i‖ = δ
n−2(i−1)
β covol(L)

1
n , where δβ =

(
(πβ)

1
β · β

2πe

) 1
2(β−1)

.

G.1 Key recovery attack

The key recovery consists in finding the private secret key (i.e. f, g ∈ R2) from the sole data of
the public elements q and h. The most powerful attacks are up-to-our-knowledge realized through
lattice reduction. It consists in constructing the algebraic lattice over R spanned by the vectors
(q, 0) and (h, 1) (i.e. the public basis of the NTRU key) and retrieve the lattice vector s = (g, f)
among all possible lattice vectors of norm bounded by ‖s‖ =

√
2nσ (or a functionally equivalent

vector, for instance (µg, µf) for any unit µ of the number field).
We make use of the so-called projection trick to avoid enumerating over all the sphere of

radius
√

2nσ (which contains around
(
2nσ2

q

)n
vectors under the Gaussian heuristic). More pre-

cisely we proceed as follows. Set β to be the block size parameter of the DBKZ algorithm and
start by reducing the public basis with this latter algorithm. Call [b1, . . . ,b2n] the resulting vec-
tors. Then if we can recover the projection of the secret key onto P , the orthogonal space to
Span(b1, . . . ,b2n−β−1), then we can retrieve in polynomial time the full key by Babai nearest
plane algorithm to lift it to a lattice vector of the desired norm. Hence it suffices to be able find
the projection of the secret key among the shortest vector of the lattice generated by the last β
vectors projected onto P . Classically, sieving on this projected lattice will recover all vectors of

norm smaller than
√

4
3`, where ` is the norm of the 2n− β-th Gram-Schmidt vector b̃2m−β of the

reduced basis. Under the GSA assumption we have:

` =
√
qδ−2n+2β+2
β ≈

(
β

2πe

)1−n
β

.

Moreover, considering that s behaves as a random vector of norm
√

2nσ, and using the GSA to
bound the norm of the Gram-Schmidt vectors [b̃1, . . . , b̃2n−β], that the norm of its projection over
P is roughly √

β

2n
‖s‖ = β

1
2σ.

Hence, we will retrieve the projection among the sieved vectors if β
1
2σ 6

√
4
3`, that is if the

following condition is fulfilled:

σ2 6
4q

3β
δ
4(β+1−n)
β (11)

G.2 Signature forgery by ApproxCVP reduction.

As a Hash-and-Sign paradigm signature, forging a signature stems to feeding a lattice point v at a
bounded distance from a random space point x. This ApproxCVP problem can be solved using the
so-called Nearest-Cospace framework developed in [17]. Under the Geometric Series assumption,
Theorem 3.3 of [17] states that under the condition: ‖x − v‖ 6

(
δ2nβ q

1
2

)
, the decoding can be

done in time Poly(n) calls to a CVP oracle in dimension β.
As mentioned in [8] a standard optimization of this attack consists only considering the lat-

tice spanned by a subset of the vectors of the public basis and perform the decoding within this
sublattice. The only interesting subset seems to consists in forgetting the k 6 n first vectors.
The dimension is of course reduced by k, at the cost of working with a lattice with covolume

q
k

2(2n−k) bigger. Henceforth the global condition of decoding becomes the (slightly more general)
inequality ‖x− v‖ 6 mink6n

(
δ2n−kβ q

n
2n−k

)
As such, we need to enforce the condtion:

γ > min
k6n

(
δ2n−kβ q

n
2n−k

)
(12)

G.3 On the other attacks on MITAKA

In this section, we list the other possible type of attacks on the signature, which are nonetheless
irrelevant for the set of parameters we are using.

G.3.1 Algebraic attacks As remarked in the design of NTRU-based schemes (such as for in-
stance FALCON or MODFALCON signatures), there exists a rich algebraic structure in the modules
over the convolution ring R used in MITAKA. However, there is no known way to improve all
the algorithms previously mentioned with respect to their general lattice equivalent by more than
polynomial factors (see for instance the speedup on lattice reduction of [28]).

G.3.2 Overstretched NTRU-type As observed in [29], when the modulus q is significantly
larger than the magnitudes of the NTRU secret key coefficients, the attack on the key based on
lattice reduction recovers the secret key better than the results presented above. This so-called
“overstretched NTRU” parameters occurs when q > n2.83 for binary secrets, implying that, as it
is the case for Falcon and other NTRU based NIST candidates, that even very significant improve-
ments of this attack would still be irrelevant for the security of the scheme.

G.3.3 Hybrid attacks Odlyzko’s meet on the middle attack, or more recently the hybrid attack
of Howgrave-Graham [25] which combines a meet-in-the-middle algorithm with a key recovery
by lattice reduction were used effectively against NTRU, mainly due to its design using sparse
polynomials. As it is not the case (secrets are dense elements in the ring R), their impact is not
sufficient to be a problem on the parameter selection of MITAKA.

H More explicit steps to compute samplers

See Algorithm 12 and 13 for more explicit procedures to compute the RingPeikert and Hybrid
samplers, respectively. Note that sampling from a continuous Gaussian distribution can be prepro-
cessed since these operations are independent of the input center c. We also specify where the FFT
or NTT-based polynomial multiplications happen.

Algorithm 12: RingPeikert with explicit FFT/NTT

Input: A target center c ∈ K 2
R ; a matrix B ∈ K 2×2 such that L = ϕ(BR2); a parameter

r > ηε(R
2); canonical embeddings B̂ = FFT(B), B̂−1 = FFT(B−1) and

Σ̂0 = FFT(Σ0), where Σ0 ∈ K 2×2
R is precomputed such that Σ0Σ

∗
0 = Σ − r2BB∗;

NTT representation B′ = NTT(B).
Result: z ∈ L with distribution negligibly far from DL ,c,Σ .

Offline
1 for i ∈ [0, d− 1] do
2 y1,i ← N1/

√
d

3 y2,i ← N1/
√
d

4 end for
5 y := (y1,0, . . . , y1,d−1, y2,0, . . . , y2,d−1)
6 ŷ← FFT(y)

7 x̂← Σ̂0 � ŷ
Online

8 ĉ← FFT(c)

9 z← biFFT(B̂−1 � (ĉ− x̂))er
10 z′ ← NTT(z)
11 return iNTT(B′ � z′ mod q)

I Masking

I.1 Extra masked algorithms

We present the masked online and offline parts of Algorithm 10 in Algorithms 14 and 15. The
masked polynomial multiplication routine SecNTTMult is also described in Algorithm 16.

I.2 Proof of Theorem 4

Proof. Only a proof for each line of Algorithm 10 is necessary. Line 2 is a linear operation thus it is
t-NI. Lines 3 and 5 are proved t-NI in 7.2. Line 6 does not manipulate any sensitive value. So it re-
mains to prove that the algorithms MaskedOnlineSampling (Alg. 14) and MaskedOfflineSampling
(Alg. 15) are t-NI. First, Alg. 15 is directly t-NI because it is a linear succession of t-NI gadgets.
Secondly, let us prove the t-NI security of Alg. 14. We consider that the attacker made δ ≤ t
observations during the execution of MaskedOnlineSampling. In the following, we prove that all
these δ observations can be perfectly simulated with at most δ shares of JṽK, Jc1K and Jc2K.
We consider the following distribution of the attacker’s δ observations: δ1 made during the first call
to GaussShareByShare, δ2 made during the call to SecNTTMult, δ3 made during the subtraction,
δ4 made during the second call to GaussShareByShare, and δ5 made during the final addition. We
have

5∑
i=1

δi ≤ δ ≤ t.

We build the proof classically from right to left. Since the addition is linear with respect to
the arithmetic masking type, the final step is t-NI. It is also an affine gadget. In other words, each
observation can be simulated with exactly either one share of JxK or one share of Ju1K. Thus, all
the observations from its call can be simulated with at most δ5 shares among all the shares of JxK
and Ju1K. More precisely, all the observations from its call can be simulated with δ15 shares of

Algorithm 13: Hybrid Gaussian sampler with explicit FFT/NTT

Input: A target center c ∈ K 2
R ; a matrix B = [b1,b2] such that L = ϕ(BR2) and its GSO

[b̃1, b̃2] over K ; a parameter r > ηε(R); a parameter σ > 0 (corresponding to
(σ, . . . , σ) ∈ KR); σi :=

√
σ2

〈b̃i,b̃i〉
− r2 ∈ K ++

R ; precomputed canonical embeddings

σ̂i = FFT(σi), b̂i = FFT(bi), and β̂i = FFT(
b̃∗
i

〈b̃i,b̃i〉K
) for i = 1, 2.

Result: z with distribution negligibly far from DL ,c,σ2I2d
.

Offline
1 for i = 1, 2 do
2 for j ∈ [0, d− 1] do
3 ui,j ← N1

4 end for
5 ui := (ui,0, . . . , ui,d−1)
6 ûi ← FFT(ui) /* Can be omitted by scaling the N. */
7 ŷi ← σ̂i � ûi
8 end for

Online
/* first nearest plane */

9 ĉ2 ← FFT(c), v̂2 ← 0

10 d̂2 ← β̂2,1 � ĉ2,1 + β̂2,2 � ĉ2,2
11 x2 ← biFFT(d̂2 − ŷ2)er

/* second nearest plane */
12 x̂2 ← FFT(x2)

13 v̂1 ← x̂2 � b̂2

14 ĉ1 ← ĉ2 − v̂1

15 d̂1 ← β̂1,1 � ĉ1,1 + β̂1,2 � ĉ1,2
16 x1 ← biFFT(d̂1 − ŷ1)er
17 x̂1 ← FFT(x1)

18 v̂0 ← v̂1 + x̂1 � b̂1

19 return iFFT(v0) mod q

JxK and δ25 shares of Ju1K such that δ15 + δ25 = δ5. By Table 4 properties, GaussShareByShare is
t-NI. Hence, all the observations from its call can be simulated with δ15 + δ4 shares of Jc′1K and
δ25 shared of JxK. Next, the subtraction is also a linear operation (we can ignore its affine property
here). Thus, all the observations from its call can be simulated with δ15 + δ4 + δ3 shares of Jc1K and
δ15 + δ25 + δ4 + δ3 = δ5 + δ4 + δ3 shares of JxK. Still by Table 4 properties, SecNTTMult is t-NI.
Hence, the observations from its call can be simulated with δ5 + δ4 + δ3 + δ2 shares of Ju′2K and
JṽK (and still δ15 + δ4 + δ3 shares of Jc1K). Finally, by the t-NI property of GaussShareByShare,
the observations from the whole algorithm can be simulated with

– δ5 + δ4 + δ3 + δ2 + δ1 ≤ t shares of Jc2K;
– δ5 + δ4 + δ3 + δ2 ≤ t shares of JṽK;
– δ15 + δ4 + δ3 ≤ δ5 + δ4 + δ3 ≤ t shares of Jc1K;

which concludes the proof.

I.3 Masking Peikert’s sampler

See Alg. 17 for our masked version of the RingPeikert sampler (see Alg. 1 and 12). Although it
relies on MaskedCDT, one could instantiate the offline sampling in a different manner, depending

Algorithm 14: MaskedOnlineSampling

Input: Two arithmetically masked mod Qmask values JṽK and JcpertK =

(
Jc1K
Jc2K

)
.

Result: An arithmetically masked JuK.

1 Ju′2K← GaussShareByShare(Jc2K)
2 JxK← SecNTTMult(Ju′2K, JṽK)
3 Jc′1K← Jc1K− JxK
4 Ju′1K← GaussShareByShare(Jc′1K)

5 JuK←
(

Ju′1K + JxK
Ju′2K

)
6 return JuK

Algorithm 15: MaskedOfflineSampling

Input: An arithmetically masked mod Qmask matrix JAK.
Result: An arithmetically masked JpK for p ∈ R2.

1 Jp′K← MaskedCDTLr,0

2 Jp′K← 1
pL

SecNTTMult(J ~AK, Jp′K)
3 JpK← GaussShareByShare(r, Jp′K)
4 return JpK

on the required precision of samples. One plausible option would be to employ a secure gadget
computing the Box–Muller transform [7]. Since masking the Box–Muller transform amounts to
evaluating a few non-linear functions (i.e. cos, sin, log,

√
·) on random Boolean shares represent-

ing values in R ∩ [0, 1], one could easily achieve such a gadget using the existing polynomial
approximation techniques [4]. The same remark applies to the MaskedHybrid sampler.

I.3.1 Security Proof

Theorem 8. Assuming t-NI security of GaussShareByShare,
SecNTTMult and MaskedCDT, and t-NIo security of Unmask, the MaskedRingPeikert sampler
(Alg. 17) is t-NIo secure with public output z.

Proof. Let us assume that an attacker has access to δ 6 t observations on the whole sampler.
Our goal is to prove that all these δ observations can be perfectly simulated with at most δ shares
of each secret among JBKq, JqkB−1K, and Jqk2Σ1K. We consider an attacker who peeks at in-
ternal computations as follows: δ1 observations during line 15; δ2 observations during line 14;
δ3 observations during line 9-12; δ4 observations during line 8; δ5 observations during line 7; δ6
observations during line 6; δ7 observations during line 1-4. Suppose

∑
i δi 6 δ.

– Since Unmask is t-NIo secure with public output z, all the observations at line 15 can be
simulated with at most δ1 shares of JzKq and z.

– Since SecNTTMult is t-NI secure, all the observations at line 14 can be simulated with at
most δ1 + δ2 shares of JzKq and JBKq.

– Since line 9-12 consists of independent local operations on each share of JqkvK and GaussShareByShare
is t-NI secure, all the observations during line 9-12 can be simulated with at most δ1 + δ2 + δ3
shares of JqkvK.

Algorithm 16: SecNTTMult

Input: Arithmetic maskings JaK and JbK of a, b ∈ ZQmask [x]/(xd + 1).
Result: An arithmetic masking JcK of c ∈ ZQmask [x]/(xd + 1) such that c = a · b.

1 JâK← NTT(JaK) /* Apply NTT on each share independently */

2 Jb̂K← NTT(JbK)
3 for j := 1 to d do
4 JĉK← SecMult(Jâ[j]K, Jb̂[j]K)
5 end for
6 JcK← NTT−1(JĉK)
7 return JcK

– Since line 8 consists of linear operations on input shares, all the observations during line 8 can
be simulated with at most δ1 + δ2 + δ3 + δ4 shares of JqkB−1cK and JqkxK.

– Since SecNTTMult is t-NI secure, all the observations at line 7 can be simulated with at most
δ1 + δ2 + δ3 + δ4 + δ5 shares of JqkB−1K.

– Since SecNTTMult is t-NI secure, all the observations at line 6 can be simulated with at most
δ1 + δ2 + δ3 + δ4 + δ6 shares of Jqk2Σ1K and Jqk1yK.

– Since MaskedCDT is t-NI secure, all the observations during line 1-4 can be simulated with
at most δ1 + δ2 + δ3 + δ4 + δ6 + δ7 shares of randomness as input to MaskedCDT.

Clearly, the number of total observations for each sensitive input does not exceed δ.

I.4 Masking Ducas & Prest’s hybrid sampler

See Alg. 18 for our masked variant of the hybrid sampler (see Alg. 3 and 13), which can be seen
as a straightforward extension of the masked RingPeikert sampler. Notice that the only variable
used more than once is v1, so by applying the SNI-secure Refresh gadget [2] to its shares we can
prove NIo-security of the algorithm.

I.4.1 Proof of Theorem 5 Following Table 4, the proof below relies on t-NI security of GaussShareByShare,
SecNTTMult and MaskedCDT, t-SNI security of Refresh, and t-NIo security of Unmask.

Proof. Below we omit the subscripts of masked variables denoting modulus for the sake of read-
ability. Let us assume that an attacker has access to δ 6 t observations on the whole sampler. Our
goal is to prove that all these δ observations can be perfectly simulated with at most δ shares of
each secret among Jb1K, Jb2K, Jqk2σ1K, Jqk2σ2K, Jqkβ1K and Jqkβ2K. We consider an attacker who
peeks at internal computations as follows: δ1 at line 25; δ2 during addition at line 24; δ3 during
SecNTTMult at line 24; δ4 at line 23; δ5 during line 19-21; δ6 at line 18; δ7 during addition at
line 17; δ8 during first SecNTTMult at line 17; δ9 during second SecNTTMult at line 17; δ10
at line 15; δ11 during line 12-14; δ12 at line 11; δ13 during addition at line 10; δ14 during first
SecNTTMult at line 10; δ15 during second SecNTTMult at line 10; δ16 at line 7; δ17 at line 8; δ18
during line 1-4; Suppose

∑
i δi 6 δ.

– Since Unmask is t-NIo secure with public output v0, the observations during line 25 can be
simulated with at most δ1 shares of Jv0K and v0.

– Due to the linear operations, the observations during addition at line 24 can be simulated with
at most δ1 + δ2 shares of Jv′1K and Jx1b1K.

Algorithm 17: MaskedRingPeikert sampler

Input: An arithmetic masking modulus Qmask = qk+` such that k = k1 + k2 and ` > 0; a
masked secret bases JBKq, JqkB−1K such that B ∈ K 2×2, L = ϕ(BR2); a target
center c ∈ R; a precomputed parameter r > ηε(R

2) and masked matrix Jqk2Σ1K
such that Σ1 = B−1Σ0, where Σ0 ∈ K 2×2

R is such that Σ0Σ
∗
0 = Σ − r2BB∗.

Result: z ∈ L with distribution negligibly far from DL (B),c,Σ .

Offline
1 for j ∈ [0, d− 1] do
2 Jqk1y1,jK← MaskedCDT(t,Qmask)

3 Jqk1y2,jK← MaskedCDT(t,Qmask)

4 end for
5 Jqk1yK := ((Jqk1y1,jK)j∈[0,d−1], (Jqk1y2,jK)j∈[0,d−1])

6 JqkxK← SecNTTMult(Jqk2Σ1K, Jqk1yK)

Online
7 JqkB−1cK← SecNTTMult(JqkB−1K, c)a

8 JqkvK← JqkB−1cK− JqkxK
9 for j ∈ [1, d] do

10 Jz1,jKq` ← GaussShareByShare(
Jqkv1,jK
qk

)

11 Jz2,jKq` ← GaussShareByShare(
Jqkv2,jK
qk

)

12 end for
13 JzKq := JzKq` /* compute every share mod q */
14 JzKq ← SecNTTMult(JBKq, JzKq)
15 z← Unmask(JzKq)
16 return z

a As the input center is not sensitive this is in practice a simpler variant of SecNTTMult where the second
input is unmasked.

– Since SecNTTMult is t-NI secure, the observations during SecNTTMult at line 24 can be
simulated with at most δ1 + δ2 + δ3 shares of Jx1K and Jb1K.

– Since Refresh is t-SNI secure, the observations during line 23 can be simulated with at most
δ4 shares of Jv1K.

– Since line 19-21 consists of independent local operations on each share of Jqkz1K and GaussShareByShare
is t-NI secure, all the observations during line 19-21 can be simulated with at most δ1 + δ2 +
δ3 + δ5 shares of Jqkz1K.

– Due to the linear operations, the observations during addition at line 18 can be simulated with
at most δ1 + δ2 + δ3 + δ5 + δ6 shares of Jqkd1K and Jqky1K.

– Due to the combination of linear operations and t-NI secure SecNTTMult, the observations
during line 17 can be simulated with at most δ1 +δ2 +δ3 +δ5 +δ6 +δ7 +δ8 shares of Jqkβ1,1K
and Jc1,1K, and δ1 + δ2 + δ3 + δ5 + δ6 + δ7 + δ9 shares of Jqkβ1,2K and Jc1,2K.

– Since SecNTTMult is t-NI secure, the observations at line 15 can be simulated with at most∑
i∈[1,10] δi shares of Jx2K and Jb2K.

– Since line 12-14 consists of independent local operations on each share of Jqkz2K and GaussShareByShare
is t-NI secure, all the observations during line 12-14 can be simulated with at most

∑
i∈[1,11] δi

shares of Jqkz2K.
– Due to the linear operations, the observations during addition at line 11 can be simulated with

at most
∑

i∈[1,12] δi shares of Jqkd2K and Jqky2K.

– Due to the combination of linear operations and t-NI secure SecNTTMult, the observations
during line 10 can be simulated with at most

∑
i∈[1,14] δi shares of Jqkβ2,1K, and

∑
i∈[1,13] δi+

δ15 shares of Jqkβ2,2K.
– Since SecNTTMult is t-NI secure, the observations during SecNTTMult at line 7 (resp. line

8) can be simulated with at most δ1 + δ2 + δ3 + δ5 + δ6 + δ16 shares of Jqk2σ1K and Jqk1u1K
(resp.

∑
i∈[1,12] δi + δ17 shares of Jqk2σ2K and Jqk1u2K).

– Since MaskedCDT is t-NI secure, all the observations during line 1-4 can be simulated with
at most

∑
i∈[1,12] δi + δ16 + δ17 + δ18 shares of randomness as input to MaskedCDT.

Clearly, the number of total observations for each sensitive input does not exceed δ.

Algorithm 18: MaskedHybrid Gaussian sampler

Input: An arithmetic masking modulus Qmask = q2k+` such that k = k1 + k2 and ` > 0; a target
center c ∈ R2; a masked secret matrix [Jb1Kq, Jb2Kq`+k] such that L = ϕ(BR2); a masked

covariance Jqk2σ1Kq`+k and Jqk2σ2K such that σi :=
√

σ2

〈b̃i,b̃i〉
− r2 ∈ K ++

R ; a masked

precomputed elements Jqkβ1Kq`+k and Jqkβ2K such that βi =
b̃∗
i

〈b̃i,b̃i〉K
, where [b̃1, b̃2] is

GSO of B over K .
Result: z with distribution negligibly far from DL ,c,σ2I2d

.

Offline
1 for j ∈ [0, d− 1] do
2 Jqk1u1,jKq`+k ← MaskedCDT(t, q`)

3 Jqk1u2,jK← MaskedCDT(t,Qmask)

4 end for
5 Jqk1u1Kq`+k := (Jqk1u1,jKq`+k)j∈[0,d−1]

6 Jqk1u2K := (Jqk1u2,jK)j∈[0,d−1]

7 Jqky1Kq`+k ← SecNTTMult(Jqk2σ1Kq`+k , Jqk1u1Kq`+k)

8 Jqky2K← SecNTTMult(Jqk2σ2K, Jqk1u2K)
Online
/* first nearest plane */

9 c2 ← c,v2 ← 0

10 Jqkd2K← SecNTTMult(Jqkβ2,1K, c2,1) + SecNTTMult(Jqkβ2,2K, c2,2)

11 Jqkz2K← Jqkd2K− Jqky2K
12 for j ∈ [0, d− 1] do

13 Jx2,jKq`+k ← GaussShareByShare(
Jqkz2,jK
qk

)

14 end for
/* second nearest plane */

15 Jv1Kq`+k ← SecNTTMult(Jx2Kq`+k , Jb2Kq`+k)
16 Jc1Kq`+k ← c2 − Jv1Kq`+k

17 Jqkd1Kq`+k ← SecNTTMult(Jqkβ1,1Kq`+k , Jc1,1Kq`+k) + SecNTTMult(Jqkβ1,2Kq`+k , Jc1,2Kq`+k)

18 Jqkz1Kq`+k ← Jqkd1Kq`+k − Jqky1Kq`+k

19 for j ∈ [0, d− 1] do

20 Jx1,jKq` ← GaussShareByShare(
Jqkz1,jK

q`+k

qk
)

21 end for
22 Jx1Kq := Jx1Kq` , Jv1Kq := Jv1Kq`+k /* compute every share mod q */
23 Jv′1Kq ← Refresh(Jv1Kq)
24 Jv0Kq ← Jv′1Kq + SecNTTMult(Jx1Kq, Jb1Kq)
25 v0 ← Unmask(Jv0Kq)
26 return v0

	Mitaka: A Simpler, Parallelizable, Maskable Variant of Falcon

