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AN HETEROGENEOUS UBIQUITY THEOREM, APPLICATION

TO SELF-SIMILAR MEASURES

Edouard Daviaud, Université Paris-Est, LAMA (UMR 8050) UPEMLV, UPEC,
CNRS, F-94010, Créteil, France

1. Introduction

Estimating the Hausdor� dimension of limsup sets obtained from the contrac-
tions of the elements of a given family of sets is a natural question of metric
approximation theory, which arises in many contexts. In this article, given a se-
quence of balls of Rd, B = (B(xn, rn))n∈N, we investigate in a very general frame
the size properties of the limsup sets obtained from smaller sets, i.e sets of the
form lim supn→+∞ Un, where Un ⊂ Bn.
Let us recall that the historical example of Jarnik-Besicovitch's theorem deals

with the case Un = Bδ
n := B(xn, r

δ
n), where δ > 1, xn is a rational number p

q
and

rn = 1
q2
. More generally in metric number theory, one often aims at computing the

Hausdor� dimension of sets lim supn→∞ Un, where (Un)n∈N has some algebraic or
dynamical meaning. Generalizations of Jarnik-Besicovitch's Theorem often con-
sider a given sequence (xn)n∈N of points in Rd, as well as a sequence of radii (rn)n∈N
for which the associated limsup set E1 = lim supn→+∞ Bn has a controlled size (in
terms of Lebesgue measure or Hausdor� dimension for instance); then, given a
sequence of sets U = (Un)n∈N with, for every n ∈ N, Un ⊂ Bn, one estimates
the Hausdor� dimension of the smaller limsup set E(U) = lim supn→+∞ Un. The
classical case is when the set Un is a shrunk ball B

δ
n, for some δ > 1, that is E(U) is

the limsup set of the δ-contracted balls, but di�erent shapes for Un have also been
considered (rectangles or ellipsoïds rather than balls for instance). Such problems
are studied for instance in [23, 8, 7, 28, 25] among many references.
The same question arises on any topological dynamical system (X,T ) endowed

with some metric, when the sequence (xn)n∈N is the orbit (T n(x))n∈N of a well
chosen point x. Some speci�c cases are for instance treated in [20, 26, 27]. In
probability theory, the famous Dvoretzky covering problem consists in computing,
when it is possible, the Hausdor� dimension of the limsup set associated with a
sequence of random balls drawn independently and uniformly in a compact Baire
space, see for instance [18, 14, 7]. In analysis, the value of the pointwise regularity
exponents of measures and functions at a given point x often relies on the ability
to understand how x is close to remarkable points xn. The reader may refer to
[23, 4, 6].
As mentioned above, in the largest part of the literature, a strong geometric

measure theoretic condition is initially imposed on B to obtain results, for instance
that the Lebesgue measure of lim supn→+∞ B(xn, rn) is full (cf [8]). But there are
many situations in which the Lebesgue measure is not the relevant measure to
work with (cf [5]).
Our purpose in this article is to obtain a general lower bound for the Hausdor�

dimension lim supn→+∞ Un, where the sets (Un) are open sets in some balls (Bn)
satisfying the property called µ-asymptotically covering property, where µ is a
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probability measure on Rd. This property, introduced in [13], is proved to be
almost equivalent to verifying that µ(lim supn→+∞ Bn) = 1 (e.g [13]).
The results presented here extend, for instance, both the results of Koivusalo-

Rams stated in [25] and the result of Barral-Seuret ([7]) which deals with balls and
self-similar measures under the open set condition. It is worth noticing that the
work of Koivusalo and Rams in [25] highlighted the importance of the Hausdor�
content to compute Hausdor� dimension of limsup sets and this article makes
further use of this fact.
An important advantage of the lower bound obtained in the present paper is

that its value is tractable in many cases. For instance, as a �rst application, a
ubiquity theorem is given in the case where µ is a self-similar measure (we do not
require any condition on the possible overlaps associated with such a µ).
Two other applications of our main result are treated in this article as well. The

problem of self-similar shrinking targets is studied when the corresponding iterated
function system (in short IFS) is dimension-regular and has similarity dimension
less than d, meaning in particular that for every self-similar measure, the similarity
dimension and the Hausdor� dimension coincide (see Section 2.15, De�nition 2.9).

Another application in Diophantine approximation is given. Let K
(0)
1/3 the set of

points of [0, 1] such that in their sequence of digits in basis 3, the asymptotic fre-
quency of appearance of the digit 1 is in�nitely many often close to 0 (note that this

set contains the middle-third Cantor set K1/3 and dimH(K
(0)
1/3) = dimH(K1/3)). We

compute the Hausdor� dimension of points of K
(0)
1/3 well approximable by rational

(see Theorem 2.16 for a precise statement).

2. Definitions and main statements

Let us start with some notations
Let d ∈ N. For x ∈ Rd, r > 0, B(x, r) stands for the closed ball of (Rd,|| ||∞)

of center x and radius r. Given a ball B, |B| stands for the diameter of B. For
t ≥ 0, δ ∈ R and B = B(x, r), tB stand for B(x, tr), i.e. the ball with same
center as B and radius multiplied by t, and the δ-contracted ball Bδ is de�ned by
Bδ = B(x, rδ).

Given a set E ⊂ Rd, E̊ stands for the interior of the E, E its closure and ∂E
its boundary, i.e, ∂E = E \ E̊. If E is a Borel subset of Rd, its Borel σ-algebra is
denoted by B(E).

Given a topological space X, the Borel σ-algebra of X is denoted B(X) and the
space of probability measure on B(X) is denoted M(X).

The d-dimensional Lebesgue measure on (Rd,B(Rd)) is denoted by Ld.

For µ ∈ M(Rd), supp(µ) = {x ∈ [0, 1] : ∀r > 0, µ(B(x, r)) > 0} is the topolog-
ical support of µ.

Given E ⊂ Rd, dimH(E) and dimP (E) denote respectively the Hausdor� and
the packing dimension of E.

Now we recall some de�nitions.

De�nition 2.1. Let ζ : R+ 7→ R+. Suppose that ζ is increasing in a neighborhood
of 0 and ζ(0) = 0. The Hausdor� outer measure at scale t ∈ (0,+∞] associated
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with ζ of a set E is de�ned by

(1) Hζ
t (E) = inf

{∑
n∈N

ζ(|Bn|) : |Bn| ≤ t, Bn closed ball and E ⊂
⋃
n∈N

Bn

}
.

The Hausdor� measure associated with ζ of a set E is de�ned by

(2) Hζ(E) = lim
t→0+

Hζ
t (E).

For t ∈ (0,+∞], s ≥ 0 and ζ : x 7→ xs, one simply uses the usual notation

Hζ
t (E) = Hs

t (E) andHζ(E) = Hs(E), and these measures are called s-dimensional
Hausdor� outer measure at scale t ∈ (0,+∞] and s-dimensional Hausdor� measure
respectively. Thus,

(3) Hs
t (E) = inf

{∑
n∈N

|Bn|s : |Bn| ≤ t, Bn closed ball and E ⊂
⋃
n∈N

Bn

}
.

The quantity Hs
∞(E) (obtained for t = +∞) is called the s-dimensional Hausdor�

content of the set E.

De�nition 2.2. Let µ ∈ M(Rd). For x ∈ supp(µ), the lower and upper local
dimensions of µ at x are de�ned as

dimloc(µ, x) = lim inf
r→0+

log(µ(B(x, r)))

log(r)
and dimloc(µ, x) = lim sup

r→0+

log(µ(B(x, r)))

log(r)
.

Then, the lower and upper Hausdor� dimensions of µ are respectively de�ned by

(4) dimH(µ) = ess infµ(dimloc(µ, x)) and dimP (µ) = ess supµ(dimloc(µ, x)).

It is known (for more details see [15]) that

dimH(µ) = inf{dimH(E) : E ∈ B(Rd), µ(E) > 0}
dimP (µ) = inf{dimP (E) : E ∈ B(Rd), µ(E) = 1}.

When dimH(µ) = dimP (µ), this common value is simply denoted by dim(µ) and µ
is said to be exact dimensional.

2.1. The µ-a.c property. We �x a sequence of closed balls B = (Bn)n∈N such
that limn→+∞ |Bn| = 0 (otherwise the situation is trivial for the questions we
consider).

The main property (introduced in [13]) used for the sequence of balls B is meant
to ensure that any set can be covered e�ciently by the limsup of the Bn's, with
respect to a measure µ. This property is a general version of the key covering
property used in the KGB Lemma of Beresnevitch and Velani, stated in [8], using a
Borel probability measure µ. Observe that such properties (like the KGB Lemma)
are usually key (cf [23, 8, 5] for instance) to prove ubiquity or mass transference
results.

De�nition 2.3. Let µ ∈ M(Rd). The sequence B = (Bn)n∈N of balls of Rd is
said to be µ-asymptotically covering (in short, µ-a.c) when there exists a constant
C > 0 such that for every open set Ω ⊂ Rd and g ∈ N, there is an integer NΩ ∈ N
as well as g ≤ n1 ≤ ... ≤ nNΩ

such that:

(i) ∀ 1 ≤ i ≤ NΩ, Bni
⊂ Ω;
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(ii) ∀ 1 ≤ i ̸= j ≤ NΩ, Bni
∩Bnj

= ∅;
(iii) also,

(5) µ
( NΩ⋃

i=1

Bni

)
≥ Cµ(Ω).

In other words, for any open set Ω and any integer g ≥ 1, there exits a �nite set
of disjoint balls of {Bn}n≥g supporting a �xed proportion of µ(Ω).
This notion of µ-asymptotically covering is related to the way the balls of B are

distributed according to the measure µ. This property is a priori slightly stronger
than having a lim sup of full µ-measure when µ is not doubling, as suggested by
the following lemma proved in [13], and whose second item will be used to apply
our main theorem to self-similar measures. However, it follows from the proof of
[8, Lemma 5] that these properties are equivalent when µ is doubling.

Lemma 2.1. Let µ ∈ M(Rd) and B = (Bn := B(xn, rn))n∈N be a sequence of balls
of Rd with limn→+∞ rn = 0.

(1) If B is µ-a.c, then µ(lim supn→+∞ Bn) = 1.

(2) If there exists v < 1 such that µ
(
lim supn→+∞(vBn)

)
= 1, then B is µ-a.c.

2.2. Essential content and statement of the main result. The key geometric
notion for the ubiquity theorem developed in this paper is the following.

De�nition 2.4. Let µ ∈ M(Rd), and s ≥ 0. The s-dimensional µ-essential
Hausdor� content at scale t ∈ (0,+∞] of a set A ⊂ B(Rd) is de�ned as

(6) Hµ,s
t (A) = inf {Hs

t (E) : E ⊂ A, µ(E) = µ(A)} .

One will almost exclusively look at these contents at scale t = +∞ and one
refers to Hµ,s

∞ (A) as the s-dimensional µ-essential Hausdor� content of A. Basic
properties of those quantities are studied in Section 3.3, and precise estimates of
Hµ,s

∞ (A) are achieved for the Lebesgue measure and self-similar measures in Section
5.
Note that in [25, Theorem 3.1] the key underlying geometric notion used to

handle the variety of shapes of the sets (Un)n∈N is the Hausdor� content. It is easily
seen from (3) that the Hausdor� content also carries some �high scale� geometric
information (because there is no restriction concerning the diameter of the balls
(Bn) in (3)). This will also be the case in this article to handle not only the shape
of the sets (Un)n∈N but also the geometric behavior related to the measure µ at
high scale in the sets (Un)n∈N.

The s-dimensional µ-essential Hausdor� content is now used to associate a criti-
cal exponent to any sequence of open sets (Un)n∈N such that Un ⊂ Bn for all n ∈ N.
This exponent is involved in our lower bound estimate of dimH(lim supn→+∞ Un).

De�nition 2.5. Let µ ∈ M(Rd). If B and U are Borel subsets of Rd, the µ-critical
exponent of (B,U) is de�ned as

(7) sµ(B,U) = sup {s ≥ 0 : Hµ,s
∞ (U) ≥ µ(B)} .

Let B = (Bn)n∈N be a sequence of closed balls, U = (Un)n∈N a sequence of Borel
subsets of Rd, and s ≥ 0.
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Let

Nµ(B,U , s) = {n ∈ N : sµ(Bn, Un) ≥ s} .(8)

Then, de�ne the µ-critical exponent of (B,U) as

s(µ,B,U) = sup
{
s ≥ 0 : (Bn)n∈Nµ(B,U ,s) is µ-a.c.

}
.(9)

It is worth noting that, for s′ ≤ s, one has Nµ(B,U , s) ⊂ Nµ(B,U , s′).

The main result of this paper is the following.

Theorem 2.2. Let B = (Bn)n∈N be a sequence of closed balls of Rd such that
|Bn| → 0 and U = (Un)n∈N a sequence of open sets such that Un ⊂ Bn for all
n ∈ N.
Then, for every µ ∈ M(Rd) such that min {s(µ,B,U), dimH(µ)} > 0 there exists

a gauge function ζ : R+ → R+ such that limr→0+
log ζ(r)
log r

= min {s(µ,B,U), dimH(µ)}
and

Hζ(lim sup
n→+∞

Un) > 0.

In particular, for every µ ∈ M(Rd), one has

(10) dimH

Å
lim sup
n→+∞

Un

ã
≥ min {s(µ,B,U), dimH(µ)} .

Remark 2.3. (1) It is easily veri�ed that the lower-bound in Theorem 2.2 equals
−∞ if the sequence (Bn)n∈N is not assumed to be µ-a.c. Consequently, for the
previous result to give non trivial information one has to assume that (Bn)n∈N is
µ-a.c. The question is then to give more explicit estimates of s(µ,B,U) depending
on the speci�ties of (µ,B,U).

(2) It is proved in Section 3.3 that s(µ,B,U) ≤ dimH(µ). This implies that for
exact dimensional measures, min {s(µ,B,U), dimH(µ)} = s(µ,B,U).

(3) The case where µ satis�es min {s(µ,B,U), dimH(µ)} = 0 could also be
treated, but although (10) is still obviously true, some distinction should further be
made when investigating the existence of the gauge function. If Hµ,s

∞ (Un) = 0 for
any n ∈ N, the set lim supn→+∞ Un could, for instance, be empty. On the other
hand, if (Bn)n∈N is µ-a.c and sµ(Bn, Un) > 0 for any n ∈ N, a gauge function can
be constructed in a similar way than in the proof of Theorem 2.2. However that
the existence of such a gauge function in the case min {s(µ,B,U), dimH(µ)} = 0,
is of little interest for practical applications, and is not treated in this article.

A quite direct, but useful, corollary of Theorem 2.2 is the following:

Corollary 2.4. Let µ ∈ M(Rd) and B = (Bn)n∈N be a µ-a.c. sequence of closed
balls of Rd. Let U = (Un)n∈N be a sequence of open sets such that Un ⊂ Bn for all

n ∈ N, and 0 ≤ s ≤ dimH(µ). If lim supn→+∞
logHµ,s

∞ (Un)
log µ(Bn)

≤ 1, then s(µ,B,U) ≥ s,

so that

dimH(lim sup
n→+∞

Un) ≥ s.

In the classical case where the sets Un are shrunk balls of the form Bδ
n (with

δ ≥ 1), it is convenient to consider the following quantity:
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De�nition 2.6. Let µ ∈ M(Rd), ε > 0 and B = (Bn)n∈N be a sequence of balls of
Rd. For every δ ≥ 1, set

(11) t(µ, δ, ε,B) = lim sup
n→+∞

log(Hµ,dimH(µ)−ε
∞ (B̊δ

n))

log(|Bδ
n|)

.

Then the (µ, δ)-exponent of the sequence B is de�ned as

(12) t(µ, δ,B) = lim
ε→0

t(µ, δ, ε,B).

It follows from the de�nitions that t(µ, δ,B) exists as a limit, since ε 7→ t(µ, δ, ε,B)
is monotonic. Moreover, one has dimH(µ) ≤ t(µ, δ,B) (see the proof of Corol-
lary 2.5).
Next result provides a more explicit lower bound estimate of the Hausdor�

dimension of the limsup of δ-contracted balls; it is a consequence of Corollary 2.4.

Corollary 2.5. Let µ ∈ M(Rd) and B = (Bn)n∈N a µ-a.c sequence of closed balls
of Rd. Suppose that dimH(µ) > 0. For every δ ≥ 1, setting

sδ =
dimH(µ)

δ
· dimH(µ)

t(µ, δ,B)
,

one has
s
(
µ, (Bn)n∈N, (B̊

δ
n)n∈N

)
≥ sδ,

hence
dimH(lim sup

n→+∞
Bδ

n) ≥ dimH(lim sup
n→+∞

B̊δ
n) ≥ sδ.

2.3. Application to self-similar measures. Let us start by recalling the de�-
nition of a self-similar measure.

De�nition 2.7. A self-similar IFS is a family S = {fi}mi=1 of m ≥ 2 contracting
similarities of Rd.
Let (pi)i=1,...,m ∈ (0, 1)m be a positive probability vector, i.e. p1 + · · ·+ pm = 1.
The self-similar measure µ associated with {fi}mi=1 and (pi)

m
i=1 is the unique

probability measure such that

(13) µ =
m∑
i=1

piµ ◦ f−1
i .

The topological support of µ is the attractor of S, that is the unique non-empty
compact set K ⊂ X such that K =

⋃m
i=1 fi(K).

The existence and uniqueness of K and µ are standard results [22]. Recall that
due to a result by Feng and Hu [17] any self-similar measure is exact dimensional.
The essential Hausdor� contents of a self-similar measure µ can be estimated

quite precisely.

Theorem 2.6. Let S be a self-similar IFS of Rd. Let K be the attractor of S.
Let µ be a self-similar measure associated with S. For any 0 ≤ s < dim(µ), there
exists a constant c = c(d, µ, s) > 0 depending on the dimension d, µ and s only,
such that for any ball B = B(x, r) centered on K and r ≤ 1, any open set Ω, one
has

c(d, µ, s)|B|s ≤ Hµ,s
∞ (B̊) ≤ Hµ,s

∞ (B) ≤ |B|s and
c(d, µ, s)Hs

∞(Ω ∩K) ≤ Hµ,s
∞ (Ω) ≤ Hs

∞(Ω ∩K).(14)
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For any s > dim(µ), Hµ,s
∞ (Ω) = 0.

Remark 2.7. (1) The system S is not assumed to verify any separation condition.

(2) In the special case of the Lebesgue measure restricted to [0, 1]d (or some cube
K), (14) implies that for any 0 ≤ s ≤ d, the Lebesgue-essential s dimensional
Hausdor� content is strongly equivalent to the usual s-dimensional Hausdor� con-
tent (it is even possible to take the constant c(d, µ, s) in (14), independent of s),
so that Theorem 2.6 together with Theorem 2.2 in the this special case implies the
main theorem of Koivusalo and Rams, [25, Theorem 3.2], recalled below.

Theorem 2.8 ([25]). Let (Bn)n→+∞ be a sequence of balls of [0, 1]d verifying
|Bn| → 0 and Ld(lim supn→+∞ Bn) = 1.
Let (Un)n∈N be a sequence of open sets satisfying Un ⊂ Bn. For any 0 ≤ s ≤ d

such that, for all n ∈ N large enough, Hs
∞(Un) ≥ Ld(Bn), it holds that

(15) dimH(lim sup
n→+∞

Un) ≥ s.

As a consequence of Theorem 2.6 and Corollary 2.4, one gets

Corollary 2.9. Let µ ∈ M(Rd) be a self-similar measure and B = (Bn)n∈N be a
µ-a.c. sequence of closed balls of Rd centered in supp(µ). Let U = (Un)n∈N be a
sequence of open sets such that Un ⊂ Bn for all n ∈ N, and 0 ≤ s ≤ dim(µ). If,
for n ∈ N large enough, Hµ,s

∞ (Un) ≥ µ(Bn), then

dimH(lim sup
n→+∞

Un) ≥ s.

One also emphasizes that in the case of a self-similar measure, conversely, any
s ≥ 0 such that Hµ,s

∞ (Un) ≤ µ(Bn) for every n large enough is an upper-bound
for dimH(lim supn→+∞ Un) if B veri�es that, for any p ∈ N, the balls Bn with
|Bn| ≈ 2−p does not overlap too much. More precisely, in the companion paper of
the present article, [13], the following result is proved.

Theorem 2.10 ([13]). Let µ ∈ M(Rd) be a self-similar measure, K its support
and (Bn)n→+∞ be a weakly redundant sequence of balls of Rd (see [7, De�nition
1.5] ) verifying |Bn| → 0 and, for any n ∈ N, Bn ∩ K ̸= ∅. Let (Un)n∈N be a
sequence of open sets satisfying Un ⊂ Bn. For any 0 ≤ s < dim(µ) such that, for
all large enough n ∈ N, Hµ,s

∞ (Un) ≤ µ(Bn), it holds that

(16) dimH(lim sup
n→+∞

Un) ≤ s.

Combining Theorem 2.2 and Corollary 2.5 with Theorem 2.6 and Lemma 2.1
yield the following consequence for self-similar measures.

Theorem 2.11. Let S be a self-similar IFS of Rd with attractor K and µ be a
self-similar measure associated with S. Let (Bn)n∈N be a sequence of closed balls
centered on K, such that limn→+∞ |Bn| = 0.

(1) Suppose that (Bn)n∈N is µ-a.c. Then t
(
µ, δ, (Bn)n∈N

)
≤ dim(µ); conse-

quently s
(
µ, (Bn)n∈N, (B̊

δ
n)n∈N

)
≥ dim(µ)

δ
and there exists a gauge function ζ

such that limr→0+
log(ζ(r))
log(r)

≥ dim(µ)
δ

and Hζ(lim supn→∞ B̊δ
n) > 0. In partic-

ular

(17) dimH(lim sup
n→+∞

B̊δ
n) ≥

dim(µ)

δ
.
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(2) Suppose that µ(lim supn→+∞ Bn) = 1. Then, (17) still holds but the exis-
tence of the gauge function is not ensured. Furthermore if µ is doubling,
then (Bn)n∈N is µ-a.c, so that the conclusion of item (1) holds.

Remark 2.12. Since no separation condition is assumed about the system S,
Theorem 2.11 implies [7, Theorem 1.6] in the special case where the sequence of
measures (µp)p∈N is constant and equal to some self-similar measure with open set
condition µ and the sequence of contraction ratio (δp)p∈N is constant as well.

Corollary 2.4 and Theorem 2.6 also make it possible to deal with more general
open sets (Un)n≥1 than the contracted balls (B̊δ

n), if one is able to compare e�-
ciently the s-dimensional Hausdor� contents of the sets Un ∩ K with a power of
|Bn|. It is then convenient to assume that K is the closure of its interior. Here is
an example.
Let 1 ≤ τ1 ≤ ... ≤ τd be d real numbers and τ = (τ1, ..., τd). One starts by

de�ning a family of rectangles of Rd associated with τ .

De�nition 2.8. Let 1 ≤ τ1 ≤ ... ≤ τd and τ = (τ1, ..., τd). For any x = (xi)1≤i≤d ∈
Rd and r > 0, the τ -rectangle centered in x and associated with r is de�ned by

(18) Rτ (x, r) =
d∏

i=1

[xi −
1

2
rτi , xi +

1

2
rτi ].

Theorem 2.13. Let S be a self-similar IFS of Rd such that the attractor K is equal
to the closure of its interior. Let µ be a self-similar measure associated with S.
Let 1 ≤ τ1 ≤ ... ≤ τd, τ = (τ1, ..., τd) and (Bn := B(xn, rn))n∈N be a sequence of

balls of Rd satisfying rn → 0 and µ(lim supn→+∞ Bn) = 1. De�ne Rn = R̊τ (xn, rn).
Then

(19) dimH(lim sup
n→+∞

Rn) ≥ min
1≤i≤d

®
dim(µ) +

∑
1≤j≤i τi − τj

τi

´
.

Remark 2.14. (1) Since (τ1, ..., τd) 7→ min1≤i≤d

{
dim(µ)+

∑
1≤j≤i τi−τj

τi

}
is continu-

ous, the result stands for the sequence of closed rectangles as well.
(2) One may also apply any rotation to the shrunk rectangles, this wouldn't

change the bound (since Hausdor� contents are invariant by rotation).

(3) Theorem 2.13 extends the results of [12], where the measure was quasi-
Bernoulli or verifying the open set condition, and supported on [0, 1]d.

(4) When K is the closure of its interior is that it is easy to computeHs
∞(Rn∩K).

Without this assumption, the conclusion of Theorem 2.13 fails. Indeed, in general,
no formula involving only the dimension of the measure and the contraction ratio
can be accurate. For instance, consider a self-similar measure in R2 carried by a
line D and a sequence (Bn)n∈N of balls centered on the attractor K and verifying
µ(lim supn→+∞ Bn) = 1. Then, consider the sequence of rectangles Rn with side-
length |Bn|τ1 × |Bn|τ2, 1 ≤ τ1 ≤ τ2 and where the largest side (of side-length
|Bn|τ1) is in the direction of D. In this case, Theorem 2.11 yields the lower-bound

dimH(lim supn→+∞ Rn) ≥ dimH(µ)
τ1

. Then if R̂n are the rectangles Rn rotated by
π
2
, Theorem 2.11 gives that dimH(lim supn→+∞ R̂n) ≥ dimH(µ)

τ2
. Moreover, under

additional conditions, these lower bounds are equalities.
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2.4. Application to self-similar shrinking targets. We deal with points well
approximable by orbits under an IFS with no exact overlap and satisfying the
condition introduced by Barral and Feng ([3]) of being dimension regular with
similarity dimension less than than d, after Hochman's work ([21]).

De�nition 2.9. Let S = {f1, ..., fm} be a self-similar IFS of Rd. Denote by
0 < c1, . . . , cm < 1 the contraction ratio of f1, . . . , fm. The system S is said to be
dimension regular if, for any probability vector (p1, ..., pm), the self-similar measure
associated with S and the probability vector (p1, ..., pm) veri�es

dim(µ) = min

®
d,

∑
1≤i≤m pi log(pi)∑
1≤i≤m pi log(ci)

´
.

This in particular, implies that, denoting by dimsim(K) the unique real number s
satisfying

∑m
i=1 c

s
i = 1, one has dimH(K) = min {dimsim(K), d} .

Some notation useful when dealing with IFS are introduced now. Those nota-
tions will be used repeatedly throughout this article.
Let S = {f1, ..., fm} be a self-similar IFS, 0 < c1 . . . , cm < 1 the associated

contraction ratios, and K the attractor of S. Let (p1, ..., pm) be a probability
vector with positive entries, µ the self-similar associated with S and (p1, ..., pm).
Let Λ = {1, ...,m} and Λ∗ =

⋃
k≥0 Λ

k. For k ≥ 0 and i := (i1, ..., ik) ∈ Λk, de�ne

ci = ci1 · · · cik , fi = fi1 ◦ · · · ◦ fik ,
Λ(k) =

{
i = (i1, . . . , is) ∈ Λ∗ : cis2

−k < ci ≤ 2−k
}
.

Theorem 2.15. Let S = {f1, ..., fm} be a dimension regular self-similar IFS
with contraction ratio 0 < c1, . . . , cm < 1 and such that the attractor K veri�es
dimsim(K) = dimH(K). For any x ∈ K, for any δ ≥ 1,

(20) dimH(lim sup
i∈Λ∗

B(fi(x), c
δ
i )) =

dimH(K)

δ
.

This result extends some of the results obtained in [1] and [2], under the open
set condition.

2.5. A result motivated by a question of Mahler.

Let Q =
¶
B(p

q
, q−2)

©
q∈N∗, 0≤p≤q

. Recall the following result in Diophantine ap-

proximation [24]:

• lim sup
B∈Q

B = [0, 1].

• For any δ ≥ 1, dimH(lim sup
B∈Q

Bδ) =
1

δ
.(21)

Unlike in the case of the points in [0, 1], the approximation by rational numbers
of elements of the middle third Cantor set K1/3 set is not well understood yet.
This question was raised by Mahler, and only some partial results are known (see

[8], [7]). Here we consider the setK
(0)
1/3 of points in [0, 1] having an asymptotic lower

frequency of appearance of the digit 1 in basis 3 equal to 0. This set contains K1/3

and has the same Hausdor� dimension as K1/3. We compute the Hausdor� dimen-

sion of sets of points in K
(0)
1/3 which are well approximable by rational numbers.
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To describe more precisely the problem, let S = {f1, f2, f3} where f1, f2 and f3
are the contracting a�ne maps of R de�ned by f0(x) =

1
3
x, f1(x) =

1
3
x + 1

3
and

f2(x) =
1
3
x+ 2

3
. The attractor of S is [0, 1]. Let Λ = {0, 1, 2}.

The shift operation on the symbolic space ΛN is de�ned by σ. The canonical
projection from ΛN to [0, 1] is the mapping

(22) π : x = (xn)n∈N 7→ lim
n→+∞

f(x1,...,xn)(0).

The set K1/3 is the attractor of {f0, f2} and also the image by canonical projec-
tion of {0, 2}N.

De�nition 2.10. Let ϕ : ΛN → {0, 1} de�ned by

®
ϕ(x) = 1 if x1 = 1

ϕ(x) = 0 if x1 = 0 or 2.
and

K
(0)
1/3 = π

Åß
x ∈ ΛN : lim inf

k→+∞

Skϕ(x)

k
= 0

™ã
,

where (Skϕ)k∈N stands for the sequence of Birkho� sums of ϕ.

It is proved in [16] that dimH K
(0)
1/3 =

log 2
log 3

(= dimH K1/3). Let us state the main
results of this subsection.

Theorem 2.16. For every δ ≥ 1,

(23) dimH

(
lim sup

B∈Q
Bδ ∩K

(0)
1/3

)
= min

ß
log 2

log 3
,
1

δ

™
.

Observe that a saturation phenomenon occurs : dimH(lim supB∈Q Bδ ∩K
(0)
1/3) =

log 2
log 3

for 1 ≤ δ ≤ log 3
log 2

.

In Section 3, the general ubiquity theorem, Theorem 2.2, is proved as well as
Corollary 2.5. Section 4 gives estimations of essential contents in the self-similar
case and Theorem 2.6 is proved.
Section 5 gives three applications to the main result, Theorem 2.2. More pre-

cisely, the ubiquity theorems for self-similar measures, Theorem 2.11 and Theorem
2.13, are proved in the �rst sub-section. The second sub-section treats the case of
self-similar shrinking targets for dimension regular IFS with similarity dimension
less than d, e.g, Theorem 2.15 is proved. In the last sub-section, one gives an
application in Diophantine approximation, Theorem 2.16 is proved.

3. Proof of Theorem 2.2

3.1. Preliminary facts. We gather in this subsection a series of results on which
we will base the proof of Theorem 2.2.
The following lemma, which is a version of Besicovitch covering Lemma, as well

as the subsequent one, both established in [13], will be used several times.

Lemma 3.1. For any 0 < v ≤ 1 there exists Qd,v ∈ N⋆, a constant depending only
on the dimension d and v, such that for every bounded subset E ⊂ Rd, for every
set F =

{
B(x, r(x)) : x ∈ E, r(x) > 0

}
, there exists F1, ...,FQd,v

�nite or countable
sub-families of F such that:



AN HETEROGENEOUS UBIQUITY THEOREM, APPLICATION TO SELF-SIMILAR MEASURES11

• ∀1 ≤ i ≤ Qd,v, L ̸= L′ ∈ Fi, one has 1
v
L ∩ 1

v
L′ = ∅.

• E is covered by the families Fi, i.e.

(24) E ⊂
⋃

1≤i≤Qd,v

⋃
L∈Fi

L.

Lemma 3.2 ([13]). Let 0 < v ≤ 1, B = (Bn)n∈N a family of balls, and B a ball
such that

(i) ∀ n ≥ 1, |Bn| ≥ 1
2
|B|,

(ii) ∀ n1 ̸= n2 ≥ 1, vBn1 ∩ vBn2 = ∅.
Then B intersects less than Qd,v elements of B, where Qd,v can be taken equal to
the constant considered in Lemma 3.1.

The following lemma will also be useful later on and is also proved in [13].

Lemma 3.3. Let L be a family of pairwise disjoint balls satisfying supL∈L |L| <
+∞. Then, for any v ≥ 1, there exists sub-families L1, ...,LQd,v

(where Qd,v is the
constant of the same name in Lemma 3.1) of L such that L =

⋃
1≤i≤Qd,v

Fi and

for any L ̸= L′ ∈ Li, vL ∩ vL′ = ∅.
Recall the following version of Frostman Lemma, due to Carleson.

Proposition 3.4 ([10]). Let s ≥ 0. There is a constant κd > 0 depending only
on the dimension d such that for any bounded set E ⊂ Rd with Hs

∞(E) > 0, there
exists a probability measure supported by E, that we denote by ms

E, such that

(25) for every ball B(x, r), ms
E(B(x, r)) ≤ κd

rs

Hs
∞(E)

.

For s ≥ 0 and E ⊂ Rd, a bounded subset such that Hs
∞(E) > 0, ms

E will always
denote such a measure associated with a (�xed) constant κd.

In the next two lemmas, the choice of the interval [5, 6] is convenient to take
enough space between the shrunk balls involved in the construction elaborated in
Section 3.2.

Lemma 3.5. Let t ∈ (5, 6), m ∈ M(Rd), and ε > 0. Let x ∈ Rd be such that

dimloc(m,x) ≤ β. Let Cβ,ε =
1
2
6−

β
2ε . There exists an integer nx such that for every

n ≥ nx,

(26)
#
{
0 ≤ k ≤ n− 1 : m(B(x, t−k−1)) ≥ Cβ,εm(B(x, t−k))

}
n

≥ 1− ε.

Previous lemma is a slight extension of result by Käenmäki [11, Lemma 2.2],
which shows such a property at m-almost every point (where one has necessarily
dimloc(m,x) ≤ d), and uses t integer (a choice that we could make).
Thus, points with a given local dimension with respect to a measure m are for

most scales �locally doubling�.

Proof. Observe �rst that if for a constant 0 < C ≤ 1 and some integer n ∈ N one
has

#
{
1 ≤ k ≤ n : m(B(x, t−k−1)) ≥ Cm(B(x, t−k))

}
n

≤ 1− ε,

then there necessarily exist N = ⌊(n− 1)ε⌋ integers 0 < k1 < · · · < Wn < n such
that for every 1 ≤ i ≤ N , m(B(x, t−ki−1)) ≤ Cm(B(x, t−ki)).
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In particular, writing kN+1 = n and k0 = 0, this implies that

m(B(x, t−n)) =
N∏
i=0

m(B(x, t−ki+1))

m(B(x, t−ki))
≤

N∏
i=0

m(B(x, t−ki−1))

m(B(x, t−ki))
≤ CN

≤ C(n−1)ε ≤ Cnε/2 = (t−n)ε
− log(C)
2 log(t) .

The inequality C(n−1)ε ≤ Cnε/2 occurs when n is large enough. Recalling that
dimloc(m,x) ≤ β, if this happens for in�nitely many n, one should have

β ≥ lim sup
r→0+

logm(B(x, r))

log r
≥ ε

− log(C)

2 log(t)
,

which is equivalent to C ≥ t−
β
2ε .

Setting Cε,β = 1
2
6−

β
2ε , one concludes that there exists nx such that for every

n ≥ nx, one necessarily has

#
{
0 ≤ k ≤ n− 1 : m(B(x, t−k−1)) ≥ Cε,βm(B(x, t−k))

}
n

≥ 1− ε,

hence the result. □

Lemma 3.6. Let m and µ be two elements of M([0, 1]), β ≥ 0 and ε > 0. For
every x ∈ Rd verifying dimloc(m,x) ≤ β, there exists ρx > 0 and tx ∈ (5, 6) so that
for all 0 < r ≤ ρx there exists r ≤ r′ ≤ r1−ε such that

(27) m(B(x, r′/tx)) ≥ Cβ, ε
2
m(B(x, r′)) and µ(∂B(x, r′/tx)) = 0.

Proof. Consider x ∈ Rd such that dimloc(m,x) ≤ β.
We apply Lemma 3.5 to x and the measure m, and for an arbitrary t ∈ [5, 6]

and ε′ = ε
2
: for n ≥ nx, there must be an integer n′ such that n(1 − ε) ≤ n′ ≤ n

and m(B(x, t−n′−1)) ≥ Cβ, ε
2
m(B(x, t−n′

)).

Let ρx = min
¶
t−nx−1, t−

1
ε

©
. For r ∈ (0, ρx], let n be the integer such that

t−n−1 < r ≤ t−n. The previous claim yields an integer n′ ∈ [n(1− ε
2
), n] such that

m(B(x, t−n′
)) ≥ Cβ, ε

2
m(B(x, t−n′+1)). Also,

r ≤ r′ = t−n′+1 ≤ t1−(1− ε
2
)n = t2 · t−n−1 · t

ε
2
n ≤ t2 · r · r−

ε
2 ≤ r1−ε.

Consequently,

m(B(x, r′/t)) ≥ Cβ, ε
2
m(B(x, r′)).

The desired conclusion holds if we choose tx ∈ (5, t) such that µ(∂B(x, r′/tx)) =
0. □

The previous lemma will be used in the case β = d in our proof the main theorem
(see step 2 of the construction in Section 3.2).

Next, we introduce some some sets associated to a given element of M(Rd),
which will play a natural role in our construction.

De�nition 3.1. Let β ≥ α ≥ 0 be real numbers, m ∈ M(Rd), and ε, ρ > 0 two
positive real numbers. Then de�ne
(28)‹E[α,β],ρ,ε

m =
¶
x ∈ Rd : dimloc(m,x) ∈ [α, β] and ∀r ≤ ρ, m(B(x, r)) ≤ rdimloc(m,x)−ε

©
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and

(29) E[α,β],ρ,ε
m =

ß
x ∈ ‹E[α,β],ρ,ε

m : ∀r ≤ ρ,
3

4
m(B(x, r)) ≤ m(B(x, r) ∩ ‹E[α,β],ρ,ε

m )

™
Notice that, for every 0 < ρ < ρ′, one has E

[α,β],ρ′,ε
m ⊂ E

[α,β],ρ,ε
m .

De�nition 3.2. Let β ≥ α ≥ 0 be real numbers, m ∈ M(Rd), and ε > 0. De�ne

(30) E[α,β],ε
m =

⋃
n≥1

E
[α,β], 1

n
,ε

m .

Proposition 3.7. For every m ∈ M(Rd), every β ≥ α ≥ 0 and ε > 0,

(31) m(E[α,β],ε
m ) = m({x : dimloc(m,x) ∈ [α, β]}).

Notice that, for every 0 < ρ′ < ρ, one has E
[α,β],ρ,ε
m ⊂ E

[α,β],ρ′,ε
m .

These sets play a key role in the proofs of Theorem 2.2 .

Proof. One �rst recalls the following result.

Lemma 3.8. [9] Let m ∈ M(Rd) and A be a Borel set with m(A) > 0. For every
r > 0, set

(32) A(r) =

ß
x ∈ A : ∀r̃ ≤ r, m(B(x, r̃) ∩ A) ≥ 3

4
m(B(x, r̃))

™
Then

(33) m

(⋃
r>0

A(r)

)
= m(A).

Note that it is clear from De�nition 2.2 that

{x : dimloc(m,x) ∈ [α, β]} =
⋃
ρ>0

‹E[α,β],ρ,ε
m .

Let ε′ > 0. By De�nition 2.2, there exists ρε′ small enough so that

(34) m(‹E[α,β],ρε′ ,ε
m ) ≥ (1− ε′)m({x : dimloc(m,x) ∈ [α, β]}).

By Lemma 3.8 (and the notations therein) applied to ‹E[α,β],ρε′ ,ε
m , there exists ρ̃ε′

such that

(35) m(‹E[α,β],ρε′ ,ε
m (ρ̃ε′)) ≥ (1− ε′)m(‹E[α,β],ρε′ ,ε

m ).

Finally for ρ = min {ρε′ , ρ̃ε′}, by De�nition 3.1 and (32), one has (‹E[α,β],ρε′ ,ε
m )ρ̃ε′ ⊂

E
[α,β],ρ,ε
m , so that, by (34) and (35)

m(E[α,β],ρ,ε
m ) ≥ m((‹E[α,β],ρε′ ,ε

m (ρ̃ε′)) ≥ (1− ε′)m(E[α,β],ε
m )

≥ (1− ε′)2m({x : dimloc(m,x) ∈ [α, β]}).
In particular

m({x : dimloc(m,x) ∈ [α, β]}) ≥ m(E[α,β],ε
m ) ≥ (1−ε′)2m({x : dimloc(m,x) ∈ [α, β]}).

Letting ε′ → 0 proves the result. □

Corollary 3.9. For every m ∈ M(Rd), for α = dimH(m) and β = dimH(m), for
any ε > 0, one has

(36) m(E[α,β],ε
m ) = 1.
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3.2. Construction of the Cantor set and the measure. Recall that µ is a
probability measure on Rd, and that B = (Bn := B(xn, rn))n∈N is a µ-a.c sequence
of balls of Rd with limn→+∞ rn = 0. Fix U = (Un)n∈N a sequence of open sets
satisfying Un ⊂ Bn for every n ∈ N.
Set α = dimH(µ), and assume that min {s(µ,B,U), α} > 0.

Our goal is to construct a gauge function ζ : R+ → R+ such that limr→0+
log ζ(r)
log r

=

min {s(µ,B,U), dimH(µ)} as well as η ∈ M(Rd) supported on lim supn→∞ Un such
that for all r ∈ (0, 1] and x ∈ Rd one has η(B(x, r)) ≤ ζ(2r).
Let (εk)k∈N be a sequence decreasing to 0 and such that ε1 < s(µ,B,U). For

k ≥ 0, set

(37) sk = min {s(µ,B,U), α} − εk.

Along the construction of ζ, we only use that sk < s(µ,B,U) and the fact that
sk < α is used at the end of our analysis (see equation (73)).

Step 1. We need the following lemma.

Lemma 3.10 ([13]). Let µ ∈ M(Rd) and B = (Bn := B(xn, rn))n∈N be a µ-a.c
sequence of balls of Rd with limn→+∞ rn = 0.
Then for every open set Ω and every integer g ∈ N, there exists a subsequence

(B
(Ω)
(n) ) ⊂ {Bn}n≥g such that:

(1) ∀n ∈ N, B(Ω)
(n) ⊂ Ω,

(2) ∀ 1 ≤ n1 ̸= n2, B
(Ω)
(n1)

∩B
(Ω)
(n2)

= ∅,

(3) µ
Ä⋃

n≥1B
(Ω)
(n)

ä
= µ(Ω).

In addition, there exists an integer NΩ such that for the balls (B
(Ω)
(n) )n=1,...,NΩ

, the

conditions (1) and (2) are realized, and (3) is replaced by µ
Ä⋃NΩ

n=1 B
(Ω)
(n)

ä
≥ 3

4
µ(Ω).

The last part of Lemma 3.10 simply follows from item (3) and the σ-additivity
of µ.
Using Lemma 3.10 with, (Bn)n∈Nµ(B,U ,s1) (which is µ-a.c since s1 < s(µ,B,U)),

g = 0 and Ω = Rd, one �nds integers N1 and n1 < ... < nN1 ∈ Nµ(B,U , s1) such
that :

(i) : ∀ 1 ≤ i ≤ N1, Bni
∩Bnj

= ∅,
(ii) : µ(

⋃
1≤i≤N1

Bni
) ≥ 1

2
.

By Lemma 3.3 applied to {Bni
}1≤i≤N1

and v = 4, the balls {Bni
}1≤i≤N1

can be
sorted in Qd,4 families of balls L1, ...,LQd,4

such that

� for any 1 ≤ i ≤ Qd,4, any L ̸= L′ ∈ Li, 4L ∩ 4L′ = ∅,

�

⋃
1≤i≤Qd,4

Li = {Bni
}1≤1≤N1

.

At least one of these families, Li0 , must satisfy

µ
( ⋃
L∈Li0

L
)
≥ 1

2Qd,4

.

In particular, if one must rename the balls of the family Li0 , we can assume that
the family {Bni

}1≤i≤N1
satis�es
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(i
′
) : for any 1 ≤ i < j ≤ N1, 4Bni

∩ 4Bnj
= ∅

(ii′) : and

(38) µ
( ⋃
1≤i≤N1

Bni

)
≥ 1

2Qd,4

.

Set
W1 = {Uni

}1≤i≤N1
and W1 =

⋃
1≤i≤N1

Uni
.

Along the construction of the Cantor set, for every U ∈ U , the ball of B naturally
associated with U will be denoted B[U ] (that is B[Un] = Bn).
The pre-measure η on the σ-algebra generated by the sets of W1 is de�ned by

(39) for every U ∈ W1, η(U) =
µ(B[U ])∑‹U∈W1

µ(B[‹U ])
.

It is obvious that η(Rd) = η(W1) = 1.
Recalling (8) and (9), since s1 < s(µ,B,U), the sub-sequence (Bn)n∈Nµ(B,U ,s1) is

µ-a.-c. Recall also that limn→+∞ rn = 0 and for every n ∈ N, |Un| ≤ rn.
So, for every n ∈ Nµ(B,U , s1),

(40) Hµ,s1
∞ (Un) ≥ µ(Bn) and |Un| ≤ rn.

In particular, by De�nition 2.4, for every n ∈ Nµ(B,U , s1) for any set En ⊂ Un

with µ(En) = µ(Un),
µ(Bn) ≤ Hµ,s1

∞ (Un) ≤ Hs1
∞(En).

By Lemma 3.4, and the notations therein, one has

ms1
En
(Un) = 1 ≤ κd|Un|s1

Hs1∞(En)
≤ κd|Un|s1

µ(Bn)
.

This implies that

(41) µ(Bn) ≤ κd|Un|s1 .
By equation (41), recalling the fact that the sets W1 ⊂ {Un}n∈N , one has for

every U ∈ W1,

(42) η(U) ≤ µ(B[U ])
1

2Qd,4

≤ 2Qd,4κd|U |s1 .

Step 2. This step (and all the following steps) is split into two sub-steps. First,
into each open set U of W1, smaller intermediary balls are selected according to
the µ-essential content of U . Then in a second time, each intermediary ball will
be covered by balls of the sequence (Bn)n∈N according to the measure µ and, as in
step 1, the sets Un associated with this covering will form the generation W2.

Let g ∈ N be such that for every n ≥ g, rn ≤ 1
3
min(|U | : U ∈ W1).

As above, since s2 < s(µ,B,U), the sub-sequence (Bn)n∈Nµ(B,U ,s2),n≥g is µ-a.c.
The same arguments as above yield for every n ∈ Nµ(B,U , s2),
(43) Hµ,s2

∞ (Un) ≥ µ(Bn) and |Un| ≤ rn

and

(44) µ(Bn) ≤ κd|Un|s2 .
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Covering with respect to the µ-essential content. Consider U ∈ W1. Set β =
dimH(µ). For 0 ≤ k ≤ ⌊β−α

ε2
⌋+ 1, de�ne θk = α + kε2. Write

(45) EU = U ∩ E[α,β],ε2
µ ∩ lim sup

n→+∞
Bn.

Notice that by Proposition 3.7 and by item (1) of Lemma 2.1, one has µ(EU) =
µ(U).
In addition, using the de�nition (6) of Hµ,s2

∞ , the fact that EU ⊂ U and µ(EU) =
µ(U), and �nally (7) applied with Bn = B[U ], one gets

(46) Hs2
∞(EU) ≥ Hµ,s2

∞ (U) ≥ µ(B[U ]) > 0.

This allows us to apply Proposition 3.4: there exists a Borel probability measure
ms2

EU
supported on EU such that for every ball B := B(x, r), one has

ms2
EU

(B) ≤ κd
rs2

Hs2∞(EU)
.

Also, since ms2
EU

(EU) = 1 and EU ⊂ E
[α,β],ε2
µ , and recalling (30), for any 0 ≤ k ≤

⌊β−α
ε2

⌋+ 1, there exists ρk,ε2 such that

ms2
EU

(E
[θk,θk+1],ρk,ε2 ,ε2
µ ) ≥ 1

2
ms2

EU
(E[θk,θk+1],ε

µ ).

Setting ρU = min0≤k≤⌊β−α
ε2

⌋+1 ρk,ε2 one has, for any 0 ≤ k ≤ ⌊β−α
ε2

⌋+ 1,

(47) ms2
EU

(E[θk,θk+1],ρU ,ε2
µ ) ≥ 1

2
ms2

EU
(E[θk,θk+1],ε

µ ).

In particular,

(48) ms2
EU

(E[α,β],ρU ,ε2
µ ) ≥ 1

2

Let

(49) SU :=
⋃

0≤k≤⌊β−α
ε2

⌋+1

E[θk,θk+1],ρU ,ε2
µ ∩ EU ∩

{
x ∈ Rd : dimloc(m

s2
EU

, x) ≤ d
}
.

Recalling that for every probability measure m, m({x = dimloc(m,x) ≤ d}) = 1,
one necessarily has ms2

EU
(SU) ≥ 1/2.

Let x ∈ SU ; consider 0 ≤ kx ≤ ⌊β−α
ε2

⌋+1 such that x ∈ E
[θkx ,θkx+1],ρU ,ε2
µ . Applying

Lemma 3.6, there exists 0 < rx < min
(
ρx,

1
3
min {|V | : V ∈ W1}

)
and tx ∈ (5, 6)

such that:

10 rx < ρU ;(50)

B(x, rx) ⊂ U and µ(∂B(x, rx/tx)) = 0;(51)

r−ε2
x ≥ 5d

4Qd,1

Cε3,d

η(U)

µ(B[U ])
≥ 5s2

4Qd,1

Cε2,d

η(U)

µ(B[U ])
;(52)

rθkx+2ε2
x ≤ µ(B(x, rx)) ≤ rθkx−2ε2

x ;(53)

ms2
EU

(B(x, rx/tx)) ≥ Cε2,d ·ms2
EU

(B(x, rx)).(54)

Note that in (52) the second inequality follows automatically from the �rst one
since s2 ≤ α ≤ d and the constant Cε,d is an increasing function of ε.
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The family {B(x, rx) : x ∈ SU} forms a covering of SU . We apply Lemma 3.1
with v = 1 (i.e., the standard Besicovich covering Theorem) to this family to
extract Qd,1 subfamilies of balls, GU

1 , ...,GU
Qd,1

such that:

• ∀1 ≤ i ≤ Qd,1, ∀B ̸= B′ ∈ GU
i , one has B ∩B′ = ∅,

• SU ⊂
⋃Qd,1

i=1

⋃
B∈GU

i
B.

In particular, ms2
EU

Ä⋃Qd,1

i=1

⋃
B∈GU

i
B
ä
≥ ms2

EU
(SU) ≥ 1/2.

At least one of these families, say GU
i0
, veri�es that

ms2
EU

Ö ⋃
B∈GU

i0

B

è
≥

ms2
EU

(SU)

Qd,1

≥ 1

2Qd,1

.

Writing GU
i0
=
{
BU

i0,k

}
k∈N, one can �nd an integer NU so large that

ms2
EU

( ⋃
1≤k≤NU

BU
i0,k

)
≥ 1

4Qd,1

.

Remind that each BU
i0,k

is a ball B(x, rx) satisfying (51), (52) and (54).

Finally, setting GU =
{
B(x, rx/tx) : B(x, rx) ∈ FU

i0

}
, one has by construction

(55) ms2
EU

( ⋃
B∈GU

B

)
=
∑
B∈GU

ms2
EU

(B) ≥ Cε2,d

4Qd,1

.

One then extends the pre-measure η to the Borel σ-algebra generated by the
balls of GU , by the formula

(56) for every B ∈ GU , η(B) = η(U)×
ms2

EU
(B)∑

B′∈GU ms2
EU

(B′)
.

By construction, this formula is consistent since η(U) =
∑

B∈GU η(B).

Observe that by (25), (55) and (46), one has for every B ∈ GU ,

η(B) ≤ η(U)κd
|B|s2

Hs2∞(EU)

4Qd,1

Cε2,d

≤ 4Qd,1κd

Cε2,d

η(U)

µ(B[U ])
|B|s2 ≤ |B|s2−ε2 ,(57)

where the second inequality of (52) was used.

This is achieved simultaneously for all U ∈ W1.

Covering with respect to µ. Now, in order to build the second generation of the
Cantor set K, we select balls of B that lie in the interior of these intermediate
balls B ∈ GU .
Let U ∈ W1 and B ∈ GU be one of these intermediary balls. Since B is µ-a.c., the

last part of Lemma 3.10 proves the existence of a �nite family FB = {Uni
}1≤i≤NB

such that

(i1) for every 1 ≤ i ≤ NB, one has Bni
⊂ B̊ and

(58) max

ß
2Qd,4

η(B)

µ(B)
,
5d4Qd,1κd

Cε3,d

™
≤ r−ε2

ni
,

(i2) for every 1 ≤ i ̸= j ≤ NB, one has Bni
∩Bnj

= ∅.
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In addition, recalling that µ(∂B) = 0 by (51), one has

µ(Bni
) > 0 and µ

( ⋃
1≤i≤NB

Bni

)
≥ 3µ(B̊)

4
=

3µ(B)

4
.

Recall the de�nitions (29) and (49) of the sets E
[a,b],ρU ,ε2
µ and SU . By equations

(50)-(54), there exists α ≤ a ≤ β such that the center of B belongs to SU ⊂
E

[a,a+ε2],ρUε2,
µ and |B| ≤ ρU , hence one has

µ(B ∩ ‹E[a,a+ε2],ρU ,ε2
µ ) ≥ 3

4
µ(B).

By (i2), and recalling (29), one has

µ
( ⋃

Bni :Bni∩‹E[a,a+ε2],ρU ,ε2
µ ̸=∅

Bni

)
≥ µ

( ⋃
1≤i≤NB

Bni
∩ ‹E[a,a+ε2],ρU ,ε2

µ

)

= µ

( ⋃
1≤i≤NB

Bni

)
+ µ
Ä‹E[a,a+ε2],ρU ,ε2

µ

ä
− µ

(‹E[a,a+ε2],ρU ,ε2
µ

⋃ ⋃
1≤i≤NB

Bni

)

≥ 3

4
µ(B) +

3

4
µ(B)− µ(B) =

1

2
µ(B).

By a slight abuse of notations, up to an extraction, we still denote by {Bni
}1≤i≤NB

the balls Bni
such that Bni

∩ ‹E[a,a+ε2],ε2,ρU
µ ̸= ∅. The last inequality implies that

the family of balls {Bni
}1≤i≤NB

can be chosen so that it veri�es conditions (i1) and
(i2), as well as the two following additional conditions:

(i3) µ(Bni
) > 0 and µ

( ⋃
1≤i≤NB

Bni

)
≥ µ(B̊)

2
=

µ(B)

2
,

(i4) for every 1 ≤ i ≤ NB, Bni
∩ ‹E[a,a+ε2],ρU ,ε2

µ ̸= ∅.

The obtained family is still denoted by FB.
Applying again Lemma 3.3 to FB with v = 4, as in step one (see (38), (i′) and

(ii′)), if one must consider a subfamily, one can assume that the family FB satis�es
(i1) and (i4) as well as the following condition (i′2) and (i′3):

(i′2) : for every 1 ≤ i ̸= j ≤ NB, one has 4Bni
∩ 4Bnj

= ∅.

(i′3) : µ(Bni
) > 0 and µ

(⋃
1≤i≤NB

Bni

)
≥ µ(B̊)

2Qd,4
= µ(B)

2Qd,4
,

Finally one de�nes

W2 =
⋃

U∈W1

⋃
B∈F1,U

FB and W2 =
⋃

L∈W2

L.

The pre-measure η is then extended to the σ-algebra generated by the elements
of W2 by setting for every U ∈ W1, every B ∈ GU and V ∈ FB,

(59) η(V ) = η(B)× µ(B[V ])∑
V ′∈FB µ(B[V ′])

.
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By construction, one has
∑

V ∈FB η(V ) = η(B). Also, (58),(59), and (i′3) imply

(60)
η(V )

µ(B[V ])
≤ 2Qd,4

η(B)

µ(B)
≤ |V |−ε2 ,

so that by (44) and (60) one has

η(V ) ≤ 2Qd,4
η(B)

µ(B)
× µ(B[V ]) ≤ |B[V ]|−ε2|V |s2 ≤ |V |s2−ε2 .(61)

3.2.1. Recurrence scheme and end of the construction. Let p ∈ N∗ be an integer,
and set W0 = Rd. Suppose that sets of balls W1, ..., Wp as well as the measure η
are constructed such that :

(1) for every 1 ≤ q ≤ p, Wq ⊂ {Un}n≥q, Wq ⊂ Wq−1, and η is de�ned on the
σ-algebra generated by the elements of

⋃p
q=1 Wq.

(2) For every 1 ≤ q ≤ p − 1, for every U ∈ Wq, setting, as in step 2, EU =

lim supn∈Nµ(B,U ,sq)Bn ∩ U ∩ E
[α,β],εq
µ , then Hsq

∞(EU) > 0. If m
sq
EU

stands for
the measure associated with EU provided by Proposition 3.4, there exists

ρU > 0 such that, for every 0 ≤ k ≤ ⌊β−α
εq

⌋+1, setting θk = θ
(q)
k = α+ kεq,

one has

m
sq
EU

(EU ∩ E[θk,θk+1],ρU ,εq
µ ) ≥ 1

2
m

sq
EU

(EU ∩ E[θk,θk+1],εq
µ ).

In particular,

m
sq
EU

(EU ∩
⋃

0≤k≤⌊β−α
εq

⌋+1

E[θk,θk+1],ρU ,εq
µ ) ≥ 1

2
.

(3) For every 1 ≤ q ≤ p − 1, for every U ∈ Wq, there exists a �nite family

GU of balls B(x, rx/tx), where x, rx < 1
3
min
¶
|Ũ | : Ũ ∈ Wq

©
and tx satisfy

(50), (51), (52), (54) and (55). Also, if B ̸= B′ ∈ GU , 3B ∩ 3B′ = ∅.
Also, for every B ∈ GU , (56) and (57) hold true. Moreover Wq+1 ⊂⋃
U∈Wq

GU .

(4) For every 1 ≤ q ≤ p− 1, for every U ∈ Wq, for every B ∈ GU there exists
a family FB ⊂ {Un}n≥q of pairwise disjoint open sets such that :

• for every Ũ ̸= Û ∈ FB, one has

(62) 4B[‹U ] ∩ 4B[“U ] = ∅;

• for every Ũ ∈ FB, Ũ ⊂ B̊, (59) and (61) hold true, as well as

(63) 2Qd,4
η(B)

µ(B)
≤ |B[‹U ]|−εq+1

and

(64) B[‹U ] ∩ ‹E[θkB ,θkB+1],ρU ,εq+1

µ ̸= ∅;
• the following inequality also holds true:

(65) µ

Ñ ⋃‹U∈FB

B[‹U ]

é
≥ µ(B)

2Qd,4

.
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In item (3), the fact that 3B∩3B′ = ∅ just follows from the choice of B(x, rx/tx)
instead of simply B(x, rx).
The proof follows then exactly and rigorously the same lines as those of Step

2. We do not reproduce it here, the only di�erences are that W1, W2 and s2 are
replaced by Wp, Wp+1 and sp+1.

Finally, de�ne the Cantor set

K =
⋂
p≥1

Wp =
⋂
p≥1

⋃
V ∈Wp

B[V ].

Applying Caratheodory's extension Theorem to the pre-measure η yields a prob-
ability outer-measure on Rd that we still denote by η, which is metric, so that
Borel sets are η-measurable and its restriction to Borel sets belongs to M(Rd).
The so obtained measure η is fully supported on K. Also, for every p ≥ 2, for
any U ∈ Wp, B ∈ GU , and Ũ ∈ FB, the inequalities (56), (57),(59) and (61) holds
with sp and εp instead of s2 and ε2.

3.2.2. Upper-bound for the mass of a ball. One �rst recall the following lemma
(see, e.g., [8]).

Lemma 3.11. Let A = B(x, r) and B = B(x′, r′) be two closed balls, q ≥ 3 such
that A ∩B ̸= ∅ and A \ (qB) ̸= ∅. Then r′ ≤ r and qB ⊂ 5A.

De�ne the gauge function ζ : R+ 7→ R+ as follows:

• if for some p ≥ 1, 1
3
min {|U | : U ∈ Wp+1} ≤ r < 1

3
min {|U | : U ∈ Wp},

then ζ(r) = 2Qd,410
drsp−5εp ,

• if r ≥ 1
3
min {|U | : U ∈ W1}, ζ(r) = 1,

• ζ(0) = 0.

Since εp → 0, one checks that limr→0+
log(ζ(r))
log(r)

= min {s(µ,B,U), dimH(µ)}.

Let A be a ball of radius r. If there exists n ∈ N such that A does not intersect
Kn then η(A) = η(A ∩Kn) = 0. Suppose that for every n ∈ N, A intersects Kn.
The goal is to prove that η(A) ≤ ζ(|A|) when |A| is small.

Some cases must be distinguished.
First if for every n ∈ N, A intersects only one contracted set Vn of Kn, then by

(57)

η(A) ≤ η(Vn) ≤ |Vn|sn−εn →
n→+∞

0.

In the other case, there exists p ∈ N such that A intersects only one element of
Wp, and at least two elements of Wp+1. Denote by U the unique element of Wp

intersecting A.

(1) Case 1: If |A| ≥ |U |, then by (61)

(66) η(A) ≤ η(U) ≤ |U |sp−εp ≤ ζ(|A|).

(2) Case 2: If |A| < |U | and A intersects at least two balls of GU : Observe
that when A intersects two balls B and B′ of GU , since by item (3) of the
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recurrence scheme 3B ∩ 3B′ = ∅, one necessarily has (by Lemma 3.11)
B ∪B′ ⊂ 5A. Hence,

⋃
B∈GU :B∩A ̸=∅B ⊂ 5A and by (56) and (55),

η(A) = η(U)×
∑

B∈GU :B∩A ̸=∅m
sp+1

EU
(B)∑

B′∈GU m
sp+1

EU
(B′)

≤ 4Qd,1

Cεp+1,d

η(U)m
sp+1

EU
(5A).

Then, by (25), (46), (58) and (60)

η(A) ≤ 4Qd,1

Cεp+1,d

η(U)κd
(5|A|)sp+1

Hµ,sp+1
∞ (EU)

≤ 5sp+1
4Qd,1κd

Cεp+1,d

η(U)

µ(B[U ])
|A|sp+1

≤ |A|sp+1|U |−2εp ≤ |A|sp+1−2εp+1 ≤ ζ(|A|),(67)

where we used that|A| < |U |, and the mappings x 7→ |U |−x and x 7→ x−εp+1

are decreasing.

(3) Case 3: If A intersects only one ball of GU : calling B this particular ball
and rB its radius (at this stage there should be no confusion with the radii of
the terms of the sequence (Bn)n≥1), two cases must again be distinguished:

(a) Subcase 3.1: |B| ≤ |A|: by (57),

η(A) ≤ η(B) ≤ |B|sp+1−εp+1 ≤ |A|sp+1−εp+1 ≤ ζ(|A|).(68)

(b) Subcase 3.2: |A| ≤ |B|: Denote by kB the integer such that its

center belongs to E
[θkB ,θkB+1],ρU ,εp+1

µ .
The ball A must intersect at least two elements V ̸= V ′ of Wp+1 (by
de�nition of p). Note that those sets must belong to FB (because A
intersects only B). Applying Lemma 3.11 to the ball A with any of
those ball V ∈ Fp+1 , since A ∩ V ̸= ∅ and A \ B[V ] ̸= ∅ (because A
intersects an other dilated ball, B[V ′] by hypothesis and two such balls
veri�es (62)), one has

(69)
⋃

V ∩A ̸=∅

B[V ] ⊂ 5A.

Then, (59) and (65) imply that

η(A) = η(B) ·
∑

V ∈Wp+1:V ∩A ̸=∅ µ(B
[V ])∑

V ′∈FB µ(B[V ′])
≤ 2Qd,4

η(B)

µ(B)
µ(5A).(70)

Recalling (69), the ball 5A contains some of the balls of FB: Hence,

by (64), ‹E[θkB ,θkB+1],ρU ,εp+1

µ ∩ 5A ̸= ∅. Since |A| ≤ |B|, by (50), since

rB < 1
10
ρU , for any x ∈ ‹E[θkB ,θkB+1],ρU ,εp+1

µ ∩ 5A one has

(71) µ(5A) ≤ µ(B(x, 10r)) ≤ (10r)θkB−2εp+1 .

Recalling (53) (applied to the ball B), one has

(72) µ(B) ≥ (rB)
θkB+2εp+1 .
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Using (57) (applied to B) (70), (71) and (72), one obtains

η(A) ≤ 2Qd,4r
sp+1−εp+1

B

(
10r
)θkB−2εp+1

r
θkB+2εp+1

B

= 2Qd,410
θkB−2εp+1

r
sp+1−θkB−

εp+1
δ

−2εp+1

B

rsp+1−θkB−εp+1−2εp+1
rsp+1−θkB−εp+1−4εp+1

≤ 2Qd,410
θkB−2εp+1rsp+1−5εp+1 .

Finally, recalling (37), sp+1 − 5εp+1 ≤ α ≤ θk, and since rB ≥ r and
sp ≤ sp+1, one gets

η(A) ≤ 2Qd,410
θk−εp+1

(
r
)sp+1−5εp+1 ≤ 2Qd,410

d−εp+1|A|sp−5εp ≤ 2Qd,410
d−εp+1 |A|sp−5εp ,

hence

(73) η(A) ≤ ζ(|A|).
Since for any p ∈ N and any ball A satisfying |A| ≤ 1

3
min {|U | : U ∈ Wp}, if A

intersects at most one element of Wp, the inequalities (66), (67), (68), (73) proves
that for any such ball, one has η(A) ≤ ζ(|A|).
Hence recalling De�nition 2.1, by the mass distribution principle, one deduces

that Hζ(K) ≥ 1, which concludes the proof of Theorem 2.2.

3.3. Proof of Corollary 2.5.

3.3.1. Some basic properties about the µ-essential Hausdor� content. In this sub-
section, basic properties of the µ-essential content are established.

First, we work in this article with the || · ||∞ norm for convenience. Any other
norm could have been chosen, the corresponding quantities would have been equiv-
alent.

In (3), only closed balls are considered. Choosing open balls does not change
the value of (6) in De�nition 2.4.
The following propositions are directly derived from the properties of the stan-

dard Hausdor� measures.

Proposition 3.12. Let µ ∈ M(Rd), s ≥ 0 and A ⊂ Rd be a Borel set. The
s-dimensional Hµ,s

∞ (·) outer measure satis�es the following properties:

(1) If |A| ≤ 1, the mapping s ≥ 0 7→ Hµ,s
∞ (A) is decreasing from Hµ,0

∞ (A) = 1
to limt→+∞ Hµ,t

∞ (A) = 0.

(2) 0 ≤ Hµ,s
∞ (A) ≤ min {|A|s,Hs

∞(A)}.
(3) For every subset B ⊂ A with µ(A) = µ(B), Hµ,s

∞ (A) = Hµ,s
∞ (B).

(4) For every δ ≥ 1, Hµ, s
δ∞ (A) ≥ (Hµ,s

∞ (A))
1
δ .

(5) For every s > dimH(µ), Hµ,s
∞ (A) = 0.

Proof. Items (1), (2), (3) directly follow from the de�nition. Item (4) is obtained
by concavity of the mapping x 7→ |x|1/δ.
(5) By De�nition 2.2, for any s > dimH(µ), there exists a set E with dimH(E) <

s and µ(E) = 1. Using item (2), one has then 0 ≤ Hµ,s
∞ (A) = Hµ,s

∞ (A ∩ E) ≤
Hs

∞(A ∩ E) ≤ Hs(E) = 0.
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□

3.3.2. Proof of Corollary 2.5. One starts with a lemma, the proof of which can be
found in [13].

Lemma 3.13. Let µ ∈ M(Rd). Let B = (Bn := B(xn, rn))n∈N be a µ-a.c sequence
of balls of Rd. Then for every ε > 0, there exists a µ-a.c sub-sequence (Bϕ(n))n∈N
of B such that for every n ∈ N, µ(Bϕ(n)) ≤ (rϕ(n))

dimH(µ)−ε.

Proof of Corollary 2.5. (1) Observe that item (2) of Proposition 3.12 implies that
t(µ, δ, ε,B) ≥ dimH(µ)− ε, and t(µ, δ,B) ≥ dimH(µ).

Now choose ε > 0 so small that (1−ε)dimH(µ)

δ·t(µ,δ,ε,B) ≤ 1. Recalling Lemma 3.13, up to

an extraction, one can assume that for any n ∈ N,

µ(Bn) ≤ |Bn|(1−ε2).dimH(µ).

Due to (11), there exists Nε ∈ N such that for any n ≥ Nε,

Hµ,dimH(µ)−ε
∞ (B̊δ

n) ≥ |Bδ
n|(1+ε).t(µ,δ,ε,B).

Then, Proposition 3.12 (4) implies that for every n ≥ Nε,

H
µ,

(1−ε)dimH (µ)×(dimH (µ)−ε)

δ·t(µ,δ,ε,B)
∞ (B̊δ

n) ≥ (Hµ,dimH(µ)−ε
∞ (Bδ

n))
(1−ε)dimH (µ)

δ·t(µ,δ,ε,B)

≥ |Bδ
n|

(1+ε)t(µ,δ,ε,B)
δ·t(µ,δ,ε,B)

(1−ε).dimH(µ)

≥ |Bn|(1+ε)(1−ε)dimH(µ) ≥ µ(Bn).

Thus, setting sδ,ε =
(1−ε)dimH(µ)×(dimH(µ)−ε)

δ·t(µ,δ,ε,B) , Corollary 2.4 yields

dimH(lim sup
n→+∞

B̊δ
n) ≥ sδ,ε.

Since the result holds for any ε > 0, one gets the desired conclusion. □

4. Estimation of essential content for self-similar measures

In this section one computes the Hausdor� content of balls in the case of the
Lebesgue measure, and estimates it for any self-similar measure.

4.1. Computation of essential content for the Lebesgue measure. When
the measure µ is the Lebesgue measure, the computations are quite easy.

Proposition 4.1. Let B = B(x, r) be a ball in Rd, and Ld be the d−dimensional

Lebesgue measure. Then for any 0 ≤ s ≤ d, HLd,s
∞ (B) = HLd,s

∞ (B̊) = rs.

Proof. One starts �rst by computing HLd,d
∞ (B).

Let ε > 0, and let E ⊂ B be a Borel set with Ld(E) = Ld(B). Notice �rst that
since B covers E, recalling that Rd is endowed with || · ||∞ one has

HLd,d
∞ (E) ≤ Hd

∞(B) ≤ |B|d.

Consider a sequence of balls (Ln)n∈N such that

Hd
∞(E) ≤

∑
n≥0

|Ln|d ≤ (1 + ε)Hd
∞(E).
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This implies

(1 + ε)|B|d ≥ (1 + ε)Hd
∞(B) ≥ (1 + ε)Hd

∞(E) ≥
∑
n≥0

|Ln|d

≥
∑
n≥0

Ld(Ln) ≥ Ld(E) = Ld(B) = |B|d.

Taking the in�mum on the Borel sets E ⊂ B such that Ld(E) = Ld(A) gives

|B|d ≤ (1 + ε)HLd,d
∞ (B).

In particular,
1

1 + ε
|B|d ≤ HLd,d

∞ (B) ≤ |B|d.

Letting ε → 0 shows that HLd,d
∞ (B) = |B|d. This implies, with item (4) of Propo-

sition 3.12, that for any δ ≥ 1,

|B|
d
δ ≥ HLd, d

δ∞ (B) ≥ (HLd,d
∞ (B))

1
δ = |B|

d
δ ,

hence the result. □

4.2. Proof of Theorem 2.6.

Proposition 4.2. Let µ be a self-similar measure. For any 0 < ε ≤ dim(µ), there
exists a constant κ(d, µ, ε) ∈ (0, 1) such that for any ball B = B(x, r) with x ∈ K
(the attractor of the underlying IFS) and r ≤ 1, one has

κ(d, µ, ε)|B|dim(µ)−ε ≤ Hµ,dim(µ)−ε
∞ (B̊) ≤ Hµ,dim(µ)−ε

∞ (B) ≤ |B|dim(µ)−ε.

In addition, for any s > dim(µ) one has Hµ,s
∞ (B) = 0.

Proof. Let {f1, ..., fm} the underlying IFS. Denote by ci the contraction ration of
fi, and (p1, ..., pm) the probability vector with positive entries associated with µ
so that (13) is satis�ed. Set α = dim(µ) and Λ = {1, ...,m}. For k ≥ 0 and
i := (i1, ..., ik) ∈ Λk, de�ne

• ci = ci1 ...cik , fi = fi1 ◦ ... ◦ fik and Ki = fi(K), so that |Ki| = ci|K|.

• Λ(k) =
{
i := (ii, ..., is) : cis2

−k < ci ≤ 2−k
}
.

Note �rst that item (5) of Proposition 3.12 implies that for any s > dim(µ),
Hµ,s

∞ (B) = 0.
Let us consider 0 ≤ s < dimH(µ) and start by few remarks.

Recalling (29) and Proposition 3.7, let us �x ρε so that µ(E
[α,α],ρε,ε
µ ) ≥ 1

2
and

write E = E
[α,α],ρε,ε
µ .

Set Λ∗ :=
⋃

k≥0 Λ
k, and for i ∈ Λ∗, de�ne Ei = fi(E) and µi = µ(f−1

i ). One has

Ei =
{
fi(x) ∈ Rd : x ∈ K∀ r ≤ ρε, µ(B(x, r)) ≤ rα−ε

}
=

®
fi(x) : x ∈ K, ∀, cir ≤ ciρε, µ(f−1

i (B(fi(x), rci))) ≤
Å
rci
ci

ãα−ε
´

=

®
y ∈ Ki : ∀r′ ≤ ciρε, µi(B(y, r′)) ≤

Å
r′

ci

ãα−ε
´
,(74)

Also, µi(Ei) = µ(E) ≥ 1
2
.
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One emphasizes that iterating the self-similarity equation gives

µ =
∑
i′∈Λk

pi′µi′ ,

which implies that µi is absolutely continuous with respect to µ (since all pi's are
strictly positive).

We are now ready to estimate the µ-essential content of a ball B centered on K.

Let B = B(x, r) with x ∈ K and r ≤ min1≤i≤m ci.

Since x ∈ K, there exists an i such that min1≤j≤m cjr ≤ ci|K| ≤ r and Ki ⊂ B̊.

By construction, Ei ⊂ B̊.

Consider a Borel set A ⊂ B such that µ(A) = µ(B). One aims at giving a
lower-bound of the Hausdor� content of A which does not depends on A.

Consider a sequence of balls (Ln = B(zn, ℓn))n≥1 covering A ∩ Ei, such that
ℓn < ρεci and zn ∈ A ∩ Ei. Since µi is absolutely continuous with respect to µ, it
holds that µi(A) = 1.

By (74) applied to every n ∈ N , one has
Ä
|Ln|
ci

äα−ε
≥ µi(Ln), so that

(75)
∑
n∈N

|Ln|α−ε ≥
∑
n∈N

cα−ε
i µi(Ln) ≥ cα−ε

i µi

(⋃
n∈N

Ln

)
≥ cα−ε

i µi(Ei) ≥
1

2
cα−ε
i .

This series of inequalities holds for any sequence of balls (Ln)n∈N with radius less
than ρεci centered on A ∩ Ei and covering A ∩ Ei.
Now, assume that (Ln)n∈N is a sequence of balls covering A ∩ Ei, which still

veri�es ℓn < ρεci but zn does not necessarily belongs to A ∩ Ei.
Let n ∈ N. One constructs recursively a sequence of balls (Ln,j)1≤j≤Jn such

that the following properties hold for any 1 ≤ j ≤ Jn:

� Ln,j is centered on A ∩ Ei ∩ Ln;

� A ∩ Ei ∩ Ln ⊂
⋃

1≤j≤Jn
Ln,j;

� for all 1 ≤ j ≤ Jn, |Ln,j| = |Ln|;
� the center of Ln,j does not belong to any Ln,j′ for 1 ≤ j′ ̸= j ≤ Jn.

To achieve this, simply consider y1 ∈ A ∩ Ei ∩ Ln and set L1,n = B(y1, ℓn). If
A ∩ Ei ∩ Ln ⊈ L1,n, consider y2 ∈ A ∩ Ei ∩ Ln \ L1,n and set L2,n = B(y2, ℓn).
If A ∩ Ei ∩ Ln ⊈ L1,n ∪ L2,n, consider y3 ∈ A ∩ Ei ∩ Ln \ L1,n ∪ L2,n and set
L3,n = B(y3, ℓn), and so on...
Note that, for any 1 ≤ j ≤ Jn, any ball Lj,n has radius ℓn, intersects Ln (which

also has radius ℓn) and, because yj /∈
⋃

1≤j′ ̸=j≤Jn
Lj′,n, it holds that, for any j ̸= j′,

1
3
Ln,j ∩ 1

3
Ln,j′ = ∅. By Lemma 3.2, this implies that Jn ≤ Qd, 1

3
.

Hence, denoting by (L̃n)n∈N the collection of the corresponding balls centered

on A ∩ Ei associated with all the balls Ln, one has by (75) applied to (L̃n)n∈N:∑
n∈N

|Ln|α−ε ≥ 1

Qd, 1
3

∑
n∈N

|L̃n|α−ε ≥ 1

2Qd, 1
3

cα−ε
i .

Remark also that any ball of radius smaller that r can be covered by at most ( 2
ρε
)d

balls of radius rρε.



26AN HETEROGENEOUS UBIQUITY THEOREM, APPLICATION TO SELF-SIMILAR MEASURES

This proves that, for any sequence of balls L̂n covering A ∩ Ei, since ci ≥
min1≤j≤m cj

|K| |B|, it holds that

(76)
∑
n∈N

|L̂n|α−ε ≥ ρdε
2d+1Qd, 1

3

cα−ε
i ≥

min1≤j≤m cα−ε
j ρdε

|K|α−ε2d+1Qd, 1
3

|B|α−ε.

Recall (3). Since (76) is valid for any covering (L̂n)n∈N of A ∩ Ei, one has

(77) |B|α−ε ≥ Hα−ε
∞ (A) ≥ Hα−ε

∞ (A ∩ Ei) ≥
min1≤j≤m cα−ε

j ρdε
|K|α−ε2d+1Qd, 1

3

|B|α−ε.

Taking the in�mum over all the Borel sets A ⊂ B satisfying µ(A) = µ(B), one
gets

|B|α−ε ≥ Hµ,α−ε
∞ (B) ≥

min1≤j≤m cα−ε
j ρdε

|K|α−ε2d+1Qd, 1
3

|B|α−ε.

The results stands for balls of diameter less than min1≤j≤m cj. Then for any ball
B centered on K with |B| ≤ 1, remarking that

|B|α−ε ≥ Hµ,α−ε
∞ (B) ≥ Hµ,α−ε

∞ ( min
1≤j≤m

cjB)

and setting κ(d, µ, ε) =
min1≤j≤m c

2(α−ε)
j ρdε

|K|α−ε2d+1Q
d, 13

yields the desired inequality. □

Remark 4.3. Note that in the proof of Proposition 4.2, the estimate of Hµ,s
∞ (B)

for s < dim(µ) only relies on the absolute continuity of µ(f−1
i (·)), for any i ∈ Λ∗.

In particular, the same estimates holds for any quasi-Bernoulli measures (which
are proved to be exact-dimensional, see [19]).

This result in hand, one establishes the more general Theorem 2.6.

Proof of Theorem 2.6. Note �rst, that by item (5) of Proposition 3.12, for any
s > dim(µ) and any set E, one has Hµ,s

∞ (E) = 0.

Let us �x s < dim(µ) and set ε = dim(µ) − s > 0. Since K ∩ Ω ⊂ Ω and
µ(K ∩ Ω) = µ(Ω), it holds that

Hµ,s
∞ (Ω) ≤ Hs

∞(Ω ∩K).

It remains to show that there exists a constant c(d, µ, s) such that for any open
set Ω, the converse inequality

c(d, µ, s)Hs
∞(Ω ∩K) ≤ Hµ,s

∞ (Ω)

holds.

Let E ⊂ Ω be a Borel set such that µ(E) = µ(Ω) and

(78) Hs
∞(E) ≤ 2Hµ,s

∞ (Ω).

Let {Ln}n∈N be a covering of E by balls verifying

(79) Hs
∞(E) ≤

∑
n≥0

|Ln|s ≤ 2Hs
∞(E).

The covering (Ln)n∈N will be modi�ed to get a covering (L̃n)n∈N which veri�es the
following properties:

• K ∩ Ω ⊂
⋃

n∈N L̃n;
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•
⋃

n∈N Ln ⊂
⋃

n∈N L̃n;

• one has ∑
n≥0

|L̃n|s ≤ 8 · 2s
Q2

d,1

κ(d, µ, ε)

∑
n≥0

|Ln|s,

where κ(d, µ, ε) is the constant introduced in Proposition 4.2 and Qd,1 is the con-
stant arising in Proposition 3.8 applied with v = 1. Last item together with (78)
and (79) then immediately imply that

κ(d, µ, ε)

8 · 2sQ2
d,1

Hs
∞(K ∩ Ω) ≤ Hµ,s

∞ (Ω),

and setting c(d, µ, s) = κ(d,µ,dim(µ)−s)

8·2sQ2
d,1

concludes the proof.

Let us start the construction of the sequence of balls (L̃n)n∈N. Let X = (K \⋃
n∈N Ln) ∩ Ω. For every x ∈ X, �x 0 < rx ≤ 1 such that B(x, rx) ⊂ Ω. One of

the following alternatives must occur:

(1) for any ball Ln such that Ln ∩B(x, rx) ̸= ∅, it holds that |Ln| ≤ rx, or

(2) there exists nx ∈ N such that Lnx ∩B(x, rx) ̸= ∅ and |Lnx| ≥ rx.

Consider the set S1 be the set of points in X for which the �rst alternative holds.
By Lemma 3.1 applied with v = 1, it is possible to extract from the covering of S1,
{B(x, rx), x ∈ S1}, Qd,1 families of pairwise disjoint balls, F1, ...,FQd,1

, such that

S1 ⊂
⋃

1≤i≤Qd,1

⋃
L∈Fi

L.

Now, any ball Ln intersecting a ball L ∈
⋃

1≤i≤Qd,1
Fi must satisfy |Ln| ≤ |L|. In

particular, since for any 1 ≤ i ≤ Qd,1 the balls of Fi are pairwise disjoint, applying
Lemma 3.2 to the balls of Fi intersecting Ln we get that Ln intersects at most
Qd,1 balls of Fi, hence at most Q2

d,1 balls of
⋃

1≤i≤Qd,1
Fi.

Let L ∈
⋃

1≤i≤Qd,1
Fi. One aims at replacing all the balls Ln intersecting L by

the ball 2L.
For any 1 ≤ i ≤ Qd,1 and any ball L ∈ Fi, denote by GL the set of balls Ln

intersecting L. Since E ⊂
⋃

n∈N Ln and µ(E) = µ(Ω), one has E ∩ L ⊂
⋃

B∈GL
B

and µ(E ∩ L) = µ(L). By De�nition 2.4 and Proposition 4.2, this implies that

(80) κ(d, µ, ε)|L|s ≤ Hµ,s
∞ (L) ≤

∑
B∈GL

Hµ,s
∞ (B) ≤

∑
B∈GL

|B|s.

Replace the balls of GL by the ball L̂ = 2L (recall that
⋃

B∈GL
B ⊂ 2L). The new

sequence of balls so obtained by the previous construction applied to all the balls
L ∈

⋃
≤i≤Qd,1

Fi is denoted by (L̂k)1≤k≤K , where 0 ≤ K ≤ +∞.

It follows from the construction and (80) that S1 ⊂
⋃

1≤k≤K L̂k and

(81)
∑

1≤k≤K

( |L̂k|
2

)s
≤

Q2
d,1

κ(d, µ, ε)

∑
n≥0

|Ln|s.
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On the other hand, since for any x ∈ S2 = X \S1, there exists nx ∈ N such that
Lnx ∩B(x, rx) ̸= ∅ and rx ≤ |Lnx|, one has S2 ⊂

⋃
n∈N 2Ln, so that( ⋃

n∈N

Ln

)
∪
(
K ∩ Ω \

⋃
n∈N

Ln

)
⊂
( ⋃

1≤k≤K

L̂k

)
∪
( ⋃

n∈N

2Ln

)
.

Putting the elements of (L̂k)1≤k≤K and (2Ln)n≥0 in a single sequence (L̂n)n≥0,

writing (L̃n := 2L̂n)n∈N, by construction, K ∩ Ω ⊂
⋃

n∈N L̃n and due to (81):

Hs
∞(K ∩ Ω) ≤

∑
n∈N

|L̃n|s ≤ 2s
( Q2

d,1

κ(d, µ, ε)
+ 1
)∑

n∈N

|Ln|s ≤ 8 · 2s
Q2

d,1

κ(d, µ, ε)
Hµ,s

∞ (Ω).

□

Remark 4.4. The proof of Theorem 2.6 only uses Proposition 2.11. In particular,
Theorem 2.6 holds for any measure µ ∈ M(Rd) supported on K and verifying, for
any i ∈ Λ∗, µ(f−1

i (·)) is absolutely continuous with respect to µ.

5. Applications of Theorem 2.2

5.1. Ubiquity Theorems for self-similar measures.

5.1.1. Proof of Theorem 2.11. Let µ be a self-similar measure with support K,
and set α = dim(µ). Let (Bn := B(xn, rn))n∈N be a sequence of balls such that
xn ∈ K for all n ∈ N, limn→+∞ rn = 0 and µ(lim supn→+∞ Bn) = 1.
Fix ε > 0, v > 1 and δ ≥ 1 and set Bv = {vBn}n∈N. Lemma 2.1 shows that Bv

is µ-a.c. Then, by Proposition 4.2, for n large enough, one has

Hµ,α−ε
∞ ( ˚(vBn)δ) ≥ κ(d, µ, ε)(vrn)

δ(α−ε) ≥ (vrn)
δ(α− ε

2
).

Consequently,

t(µ, δ, ε,Bv) = lim sup
n→+∞

logHµ,α−ε
∞ ( ˚(vBn)δ)

δ log |vBn|
≤ α− ε

2

so t(µ, δ, ε,Bv) ≤ α. Due to Corollary 2.5, one concludes that

dimH(lim sup
n→+∞

(vBn)
δ) ≥ α

δ
.

But for any ε′ > 0, lim supn→+∞(vBn)
δ ⊂ lim supn→+∞ Bδ−ε′

n , so that

dimH(lim sup
n→+∞

Bδ−ε′

n ) ≥ α

δ
.

It follows that for any ε′ > 0 and δ ≥ 1 one has

dimH(lim sup
n→+∞

Bδ
n) ≥

α

δ + ε′
.

Letting ε′ → 0 proves that dimH(lim supn→+∞ Bδ
n) ≥

dim(µ)
δ

, hence the result.

Remark 5.1. If the sequence of balls (Bn)n∈N is not assumed to be µ-a.c, but only
to verify µ(lim supn→+∞ Bn) = 1, then the same lower-bound estimate holds for
dimH(lim supn→∞Bδ

n), but the existence of a gauge function as in Theorem 2.2
does not hold in general.
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� Let us also notice that the computation in the proof of Theorem 2.11 actually
shows that, under the assumption that limn→+∞

log µ(Bn)
log |Bn| = dim(µ), it holds that,

for n large enough, Hµ,s
∞ (Bδ

n) ≥ µ(Bn) ⇔ s < dim(µ)
δ

.

5.1.2. Proof of Theorem 2.13. Given τ1 = 1 ≤ τ2 ≤ ... ≤ τd and s ≥ 0, set
τ = (τ1, . . . , τd) and

gτ (s) = max
1≤k≤d

{
sτk −

∑
1≤i≤k

τk − τi

}
.

We will need the following lemma (one refers to [25], Proposition 2.1 for the
proof, although it is stated in terms of singular values functions).

Lemma 5.2. Let τ1 = 1 ≤ τ2 ≤ ... ≤ τd.
The are two positive constants C1 and C2 depending on d only such that for all

s ≥ 0, r > 0 and x ∈ Rd one has

C1r
gτ (s) ≤ Hs

∞(Rτ (x, r)) = Hs
∞(R̊τ (x, r)) ≤ C2r

gτ (s).

Recall that K is the closure of its interior, and note that since the weights pi
are taken positive in De�nition 2.7, one must have µ(K̊) > 0.

Denote µ̃ = µ(·)
µ(K̊)

and α = dim(µ) = dim(µ̃). It is easily veri�ed that the

computation made in the proof of Theorem 2.6 implies that, for any open set
Ω ⊂ K̊, there exists a constant c(d, µ, s) given by Theorem 2.6, so that

(82)

®
c(µ, d, s)Hs

∞(Ω) ≤ Hµ̃,s
∞ (Ω) ≤ Hs

∞(Ω) if s < α

Hµ̃,s
∞ (Ω) = 0 if s > α.

Also, µ̃ being absolutely continuous with respect to µ, the sequence (Bn)n∈N is
µ̃-a.c. Furthermore, up to a µ̃-a.c extraction, we can assume that each ball (Bn)n∈N
is included in K̊ (and we will do so).
Let ε > 0. Set R = {Rn}n≥0 . By Lemma 3.13, up to a µ̃-a.c extraction, one

can assume that for every n ∈ N, the ball Bn satis�es

µ̃(Bn) ≤ rα−ε
n .

Setting τ ′ = ( τi
τ1
)1≤i≤d, for all 0 ≤ s < α− ε, one has

gτ ′(s) = max
1≤k≤d

®
sτk −

∑
1≤i≤k τk − τi

τ1

´
.

From equation (82) and Lemma 5.2, one deduces that

(83) C1c(d, µ, s)r
τ1gτ ′ (s)
n ≤ Hµ̃,s

∞ (Rn).

In particular, for any s verifying

(84) τ1gτ ′(s) ≤ α− ε

2
,

if rn ≤ 1 one has

C1c(d, µ, s)r
α− 1

2
ε

n ≤ C1c(d, µ, s)r
τ1gτ ′ (s)
n ≤ Hµ̃,s

∞ (Rn).

Since rn → 0, for n large enough, this yields

(85) µ̃(Bn) ≤ rα−ε
n ≤ C1c(d, µ, s)r

τ1gτ ′ (s)
n ≤ Hµ̃,s

∞ (Rn),
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hence (Bn)n∈Nµ̃(B,R,s) is µ̃-a.c., and s(µ̃,R,B) ≥ s.
It remains to note that

(84) ⇔ max
1≤k≤d

®
sτk −

∑
1≤i≤k τk − τi

τ1

´
≤

α− ε
2

τ1

⇔ ∀1 ≤ k ≤ d,
sτk −

∑
1≤i≤k τk − τi

τ1
≤

α− ε
2

τ1

⇔ ∀1 ≤ k ≤ d, s ≤
α− 1

2
ε+

∑
1≤i≤k τk − τi

τk

⇔ s ≤ min
1≤k≤d

®
α− 1

2
ε+

∑
1≤i≤k τk − τi

τk

´
.(86)

Since ε > 0 was arbitrary, this implies that

s(µ̃,R,B) ≥ min
1≤k≤d

®
α +

∑
1≤i≤k τk − τi

τk

´
,

and applying Theorem 2.2 gives the desired lower bound estimate.

Remark 5.3. Note that the estimates made in the proof of Theorem 2.13, to-
gether with Lemma 5.2, can be used to show that, under the assumption that
limn→∞

log µ(Bn)
log |Bn| = dim(µ), one has the following properties:

If s < min1≤k≤d

{
dim(µ)+

∑
1≤i≤k τk−τi

τk

}
then, for n ∈ N large enough, Hµ,s

∞ (Rn) ≥

µ(Bn). If s > min1≤k≤d

{
dim(µ)+

∑
1≤i≤k τk−τi

τk

}
then, for n large enough, Hµ,s

∞ (Rn) ≤
µ(Bn).

5.2. Application to self-similar shrinking targets.

Proof. In this section, Theorem 2.15 is proved and we adopt the notation of the
proof of Proposition 4.2.
Set s = dimH(K). Note that, for each k ∈ N, the set {B(fi(x), 2|K|ci)}i∈Λk cov-

ersK. In particular, for any measure µ supported onK, the family {B(fi(x), 2|K|ci)}i∈Σ∗

is µ-a.c.
Set Bi = B(fi(x), 2|K|ci). One now focuses on proving that, for any δ ≥ 1,

dimH(lim supi∈Σ∗ Bδ
i ) =

s
δ
. If this holds, since for any ε > 0,

(87) lim sup
i∈Σ∗

Bδ+ε
i ⊂ lim sup

i∈Σ∗
B(fi(x), c

δ
i ) ⊂ lim sup

i∈Σ∗
Bδ

i ,

it also holds that dimH(lim supi∈Σ∗ B(fi(x), c
δ
i )) =

s
δ
.

Note that s satis�es the equation
∑

1≤i≤m csi = 1. Let also be νs, the measure
on (Σ,B(Σ)) associated with the probability vector (pi = csi )1≤i≤m and µs its
projection on K by the canonical coding map.
Let 0 < t < min1≤i≤m ci and

Λ
(k)
t =

{
i = (i1, . . . , iℓ) ∈ Λ∗ : ciℓt

k < ci ≤ tk
}
.

If i ∈ Λ
(k)
t , then for any ℓ ∈ Λ, the word iℓ /∈ Λ

(k)
t . This implies that for any

i ̸= j ∈ Λ
(k)
t , [i] ∩ [j] = ∅.
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Then for any δ ≥ 1, one has, for any ε > 0,∑
k≥0

∑
i∈Λ(k)

t

(
|Bi|δ

) s+ε
δ = (4|K|)s+ε

∑
k≥0

∑
i∈Λ(k)

t

cs+ε
i

≤ (4|K|)s+ε
∑
k≥0

∑
i∈Λ(k)

t

tkενs ([i]) .

Since
∑

i∈Λ(k)
t

νs (i) ≤ 1, one obtains∑
k≥0

∑
i∈Λ(k)

t

(
|Bi|δ

) s+ε
δ ≤ (4|K|)s+ε

∑
k≥0

tkε < +∞.

This shows that

(88) dimH

(
lim sup

i∈Λ∗
Bδ

i

)
≤ s

δ
.

One now establishes the lower-bound estimate. By the dimension regularity as-
sumption (see De�nition 2.9), dimH(µs) = s. Since (Bi)i∈Σ∗ is µs-a.c, Theorem 2.11
yields dimH(lim supi∈Σ∗ Bδ

i ) ≥ s
δ
.

□

5.3. Study of a problem related to a question of Mahler. Let us �rst notice
that by Theorem 21, one has

dimH

(
lim sup

B∈Q
Bδ ∩K

(0)
1/3

)
≤ min

ß
1

δ
,
log 2

log 3

™
.

In particular, this proves that the expected upper-bound in Theorem 2.16 stands.

Before showing that the lower-bound also holds, let us start with some facts and
remarks.

Remark 5.4. • One has H
log 2
log 3
∞ (K1/3) > 0 (this is well known and easily follows

from the fact that K1/3 carries an Alfhors regular measure of dimension log 2
log 3

).

Moreover, for every k ∈ N, setting Kk = {fi([0, 1])}i∈Λk , one has

(89) 1 =
∑
I∈Kk

|I|
log 2
log 3 .

• For every k ∈ N, let us de�ne

(90) Ωk =
⋃
I∈Kk

◦
I.

Since H
log 2
log 3
∞ (

⋃
I∈Kk

I \ Ωk) = 0 (it is a �nite set of points), it follows from (89)
that

(91) CH
log 2
log 3
∞ (Ωk) ≤ H

log 2
log 3
∞ (K1/3) ≤ H

log 2
log 3
∞

( ⋃
I∈Kk

I
)
= H

log 2
log 3
∞ (Ωk) ≤ 1,

with C = H
log 2
log 3
∞ (K1/3) > 0.

• If n ∈ N and T ∈ Tn =
{
[ k
3n
, k+1

3n
[, 0 ≤ k ≤ 3n − 1

}
is a triadic interval of

generation n, denote by FT the canonical homothetical mapping which sends [0, 1]
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to T . For every I ∈
⋃

J∈Kk
FT (J), for all n ≤ k′ ≤ n+ k and all x = (xn)n∈N ∈ Σ

such that π(x) ∈ I, one has

(92) Sn+k′ϕ(x) = Snϕ(x)×
n

n+ k′ .

One are now ready to �nish the proof of Theorem 2.16.

Let (εq)q∈N be a positive sequence such that limq→∞ εq = 0. One constructs
a family {Up,q,δ}δ≥1, q∈N, 0≤p≤q of open sets as follows: Let δ ≥ 1, q ∈ N∗ and
0 ≤ p ≤ q. Consider T a triadic interval of generation nq = ⌊log3(q2δ)⌋ + 1
included in B(p

q
, q−2δ). Let Np,q,δ be large enough to ensure that for any x ∈ Σ

verifying π(x) ∈ T , one has

(93) Snqϕ(x)×
nq

nq +Np,q,δ

≤ εq.

Set

(94) Up,q,δ = FT (ΩNp,q,δ
).

By (92) and (93), for all x ∈ Up,q,δ one has

Snq+Np,qϕ(x) ≤ εq.

This implies that
⋂

Q≥1

⋃
q≥Q

⋃
0≤p≤q Up,q,δ ⊂ K

(0)
1/3∩

⋂
Q≥1

⋃
q≥Q

⋃
0≤p≤q B(p

q
, q−2δ).

Since Up,q,δ is an homothetic copy of ΩNp,q,δ
(see (94)), by (91), due to the choice

of nq there exists C̃ > 0 independent of p, q and δ such that

(95) H
log 2
log 3
∞ (Up,q,δ) ≥ C̃q−2δ

log(2)
log(3) .

For 1 ≤ δ ≤ log 3
log 2

, it follows that

(96) H
log 2
log 3
∞ (Up,q,δ) ≥ C̃q−2 = L

(
B
(p
q
, q−2

))
.

For δ ≥ log 3
log 2

, by concavity of x 7→ x
log 3
δ log 2 ,

H
1
δ∞(Up,q,δ) ≥ (H

log 2
log 3
∞ (Up,q,δ))

log 3
δ log 2 ≥ C̃(q−2δ log 2

log 3 )
log 3
δ log 2 = C̃L

(
B
(p
q
, q−2

))
.(97)

By Theorem 2.2 (or by Rams-Koivusalo's Theorem 2.8) applied toQ = (B(p
q
, 1
q2
))q∈N∗,0≤p≤q,

U = (Up,q,δ)q∈N∗,0≤p≤q and the Lebesgue measure, one gets

dimH

( ⋂
Q≥1

⋃
q≥Q

⋃
0≤p≤q

Up,q,δ

)
≥ log 2

log 3
if 1 ≤ δ ≤ log 3

log 2

dimH

( ⋂
Q≥1

⋃
q≥Q

⋃
0≤p≤q

Up,q,δ

)
≥ 1

δ
if δ ≥ log 3

log 2
.
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