Skip to Main content Skip to Navigation
New interface
Journal articles

A k-means clustering machine learning-based multiscale method for anelastic heterogeneous structures with internal variables

Abstract : A new machine-learning based multiscale method, called k-means FE 2 , is introduced to solve general nonlinear multiscale problems with internal variables and loading history-dependent behaviors, without use of surrogate models. The macro scale problem is reduced by constructing clusters of Gauss points in a structure which are estimated to be in the same mechanical state. A k-means clustering-machine learning technique is employed to select the Gauss points based on their strain state and sets of internal variables. Then, for all Gauss points in a cluster, only one micro nonlinear problem is solved, and its response is transferred to all integration points of the cluster in terms of mechanical properties. The solution converges with respect to the number of clusters, which is weakly depends on the number of macro mesh elements. Accelerations of FE 2 calculations up to a factor 50 are observed in typical applications. Arbitrary nonlinear behaviors including internal variables can be considered at the micro level. The method is applied to heterogeneous structures with local quasi-brittle and elastoplastic behaviors and, in particular, to a nuclear waste package structure subject to internal expansions.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03621332
Contributor : J. Yvonnet Connect in order to contact the contributor
Submitted on : Monday, March 28, 2022 - 10:23:58 AM
Last modification on : Tuesday, October 4, 2022 - 3:08:59 AM
Long-term archiving on: : Wednesday, June 29, 2022 - 6:24:42 PM

File

[96]PP.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Mohamed Amine Benaimeche, Julien Yvonnet, Benoît Bary, Qi-Chang He. A k-means clustering machine learning-based multiscale method for anelastic heterogeneous structures with internal variables. International Journal for Numerical Methods in Engineering, In press, ⟨10.1002/nme.6925⟩. ⟨hal-03621332⟩

Share

Metrics

Record views

46

Files downloads

48