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The determination of the elastic field of an ellipsoidal 
inclusion, and related problems 

BY J. D. EsHELBY 
Department of Physical Metallurgy, University of Birmingham 

It is supposed that a region within an isotropic elastic solid undergoes a spontaneous change 
of form which, if the surrounding material were absent, would be some prescribed homogeneous 
deformation. Because of the presence of the surrounding material stresses will be present both 
inside and outside the region. The resulting elastic field may be found very simply with the 
help of a sequence of imaginary cutting, straining and welding operations. In particular, if the 
region is an ellipsoid the strain inside it is uniform and may be expressed in terms of tabu
lated elliptic integrals. In this case a further problem may be solved. An ellipsoidal region 
in an infinite medium has elastic constants different from those of the rest of the material; 
how does the presence of this inhomogeneity disturb an applied stress-field uniform at large 
distances? It is shown that to answer several questions of physical or engineering interest it 
is necessary to know only the relatively simple elastic field inside the ellipsoid. 

1. INTRODUCTION

In the physics of solids a number of problems present themselves in which the uni
formity of an elastic medium is disturbed by a region within it which has changed its 
form or which has elastic constants differing from those of the remainder. Some of 
these problems may be solved for a region of arbitrary shape. Others are intractable 
unless the region is some form of ellipsoid. Fortunately, the general ellipsoid is 
versatile enough to cover a wide variety of particular cases. It is the object of this 
paper to develop a simple method of solving these problems. 

When a twin forms inside a crystal the material is left in a state of internal 
stress, since the natural change of shape of the twinned region is restrained by its 
surroundings. A similar state of strain arises if a region within the crystal alters its 
unconstrained form because of thermal expansion, martensitic transformation, pre
cipitation of a new phase with a different unit cell, or for some other reason. These 
examples suggest the following general problem in the theory of elasticity. 

The transformation problem 
A region (the 'inclusion') in an infinite homogeneous isotropic elastic medium 

undergoes a change of shape and size which, but for the constraint imposed by its 
surroundings (the' matrix'), would be an arbitrary homogeneous strain. What is the 
elastic state of inclusion and matrix? 

We shall solve this problem with the help of a simple set of imaginary cutting, 
straining and welding operations. Cut round the region which is to transform and 
remove it from the matrix. Allow the unconstrained transformation to take place. 
Apply surface tractions chosen so as to restore the region to its original form, put it 
back in the hole in the matrix and rejoin the material across the cut. The stress is now 
zero in the matrix and has a known constant value in the inclusion. The applied 
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surface tractions have become built in as a layer of body force spread over the inter
face between matrix and inclusion. To complete the solution this unwanted layer is 
removed by applying an equal and opposite layer of body force; the additional 
elastic field thus introduced is found by integration from the expression for the 
elastic field of a point force. 

So far nothing has been assumed about the shape of the inclusion. However, we 
shall find that if it is an ellipsoid the stress within the inclusion is uniform. This fact 
enables us to use the solution of the transformation problem as a convenient 
stepping-stone in solving a second set of elastic problems. Superimpose on the whole 
solid a uniform stress which just annuls the stress in the inclusion. The remova.I of 
the unstressed inclusion to leave a hole with a stress-free surface is then a mere 
formality, and we have solved the problem of the perturbation of a uniform stress 
field by an ellipsoidal cavity. More generally, suppose that the uniform applied stress 
does not annul the stress in the inclusion. Then the stress and strain in the inclusion 
are not related by the Hooke law of the material, since part of the strain arises from 
a non-elastic twinning or other transformation with which no stress is associated. The 
stress and strain are, however, related by the Hooke law of some hypothetical 
material, and the transformed ellipsoid may be replaced by an ellipsoid of the hypo
thetical material which has suffered the same total strain, but purely elastically. We 
have thus solved the following problem. 

The inhomogeneity problem 
An ellipsoidal region in a solid has elastic constants differing from those of the 

remainder (if, in particular, the constants are zero within the ellipsoid we have the 
case of a cavity). How is an applied stress, uniform at large distances, disturbed by 
this inhomogeneity1 

The strain in the inclusion or inhomogeneity may be found explicitly in terms of 
tabulated elliptic integrals. The elastic field at large distances is also easy to deter
mine. The field at intermediate points is more complex, but for many purposes we 
do not need to know it. In fact, knowing only the uniform strain inside the ellipsoid 
we can find the following items of physical or engineering interest: 

(i) The elastic field far from an inclusion. 
(ii) All the stress and strain components at a point immediately outside the 

inclusion. 
(iii) The total strain energy in matrix and inclusion. 
(iv) The interaction energy of the elastic field of the inclusion with another elastic 

field. 
(v) The elastic field far from an inhomogeneity. 
(vi) All the stress and strain components at a point immediately outside the 

inhomogeneity. (This solves the problem of stress concentration.) 
(vii) The interaction energy of the inhomogeneity with an elastic field. 
(viii) The change in the gross elastic constants of a material when a dilute dis

persion of ellipsoidal inhomogeneities is introduced into it. 
Problems (i) to (iv) can also be solved for an inclusion of arbitrary shape, (i) and 

(iv) trivially, (ii) and (iii) if we can evaluate the necessary integrals. They differ, of

2



course, from the problems considered by Nabarro (1940) and Kroner (1954) in which 
the inclusion breaks away from the matrix. Problems (v) to (viii) can only be solved 
for the ellipsoid. They each have an analogue in the theory of slow viscous flow. 

Many particular cases of these problems have been discussed. Robinson (1951) 
gives references to earlier work; see also Shapiro (1947), Sternberg, Eubanks & 
Sadowsky (1951). Apart from some increase in generality (we consider shear trans
formations and the disturbance of an arbitrary shear stress by an ellipsoidal inhomo
geneity) our treatment is, perhaps, rather simpler and more direct than the orthodox 
method. Nowhere do we have to introduce ellipsoidal co-ordinates, search for suit
able stress functions or match stress and displacement at an interface. Indeed, we 
do not even use the equations of elastic equilibrium explicitly except in certain of 
the applications (i) to (viii). 

2. THE GENERAL INCLUSION

We employ the usual suffix notation. A repeated suffix is summed over the 
values 1, 2, 3 and suffixes preceded by a comma denote differentiation:

ui ,j = oui f'oxj, <P,i k = o2</J/oxioxk. 
The elastic displacement ui , strain ei i and stress Pi i are related by

ei i = l(ui ,i + u i,i) ,  (2 ·1)

Pi i = Aemmoi j+2µei j (2·2) 
in an isotropic medium with Lame constants A, µ. When a particular set of elastic
functions are distinguished by an affix (e.g. u f ,  eft, pg) , it is to be understood that
they are related by (2·1) and (2·2). It is often convenient to split a second-order
tensor fi j into its scalar and so-called deviatoric parts:

where 

fij = 'fi j + lfoi j• 
f = f mm and '!i i = !i i - tfotj· 

Thus, for example, (2·2) may be written 

p = 3Ke, 'pi j = 2µ 'ei j  (K = A+ -fµ ), 
and the inversion 

e = p/3K , 'ei i = 'Pi i/2µ 

(2·3) 

is immediate, whereas to find ei i in terms of Pi i from (2·2) is more difficult. For two
tensors fi i, Yi i we also have the convenient relationfiiYii = }Jg+ 'Ji / gi 1; there are no
cross-terms between the scalar and deviatoric parts. The elastic energy density is 
thus 1 ( 1 1 )1 1 ( 2 2 I I ) 2 I I 2Pi iei i = 2 Ke + µ eii ei i = 2 9KP + 2µ Pii Pi i • (2 ·4) 

Following Robinson ( 1951) we shall give the name ' stress-free strain ' to the uniform 
transformation strain elf which the inclusion would undergo in the absence of the
matrix. The main problem is to find the 'constrained strain' eft in the inclusion when
it transforms while it is embedded in the matrix and also the strain set up in the 
matrix, which we shall also call eg. Let S be the surface separating matrix and
inclusion, ni its outward normal and d Si = ni dS the product of the normal and an
element of S. We now carry out the steps outlined in the Introduction. 
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I. Remove the inclusion and allow it to undergo the stress-free strain e'ft without
altering its elastic constants. Let 

p'fj = A_eT Oi i + 2µe'fj
be the stress derived from e� by Hooke's law. At this stage the stress in the inclusion
and matrix is zero. 

II. Apply surface tractions -p'fjn1 to the inclusion. This brings it back to the
shape and size it had before transformation. Put it back in the matrix and reweld 
across S. The surface forces have now become a layer of body force spread over S. 

III. Let these body forces relax, or, what comes to the same thing, apply a further
distribution + p'ft n1 over S. The body is now free of external force but in a state of
self-stress because of the transformation of the inclusion. 

Since the displacement at r due to a point-force F;, at r' is (Love 1927)

U.(r-r' ) = -1- Fj ' 47Tµ lr-r'I
1 ()2 

1_ 6_7T_µ _(l---u- /1-ox- 1o-x1 I r-r' j, 
the displacement impressed on the material in stage III is 

u f(r ) = Is dSkp{k�(r-r') ,

(2 ·5) 

(2 ·6 ) 

where CT is Poisson's ratio. It will be convenient to take the state of the material at 
the conclusion of stage II as a state of zero displacement . This is reasonable, since the 
stress and strain in the matrix are then zero and the inclusion, though not stress-free, 
has just the geometrical form which it had before the transformation occurred. 
u f is then the actual displacement in the matrix and inclusion. The strain in matrix
or inclusion is a _ 1 ( a + a) ei i - 2 u i,i u i,i ·
The stress in the matrix is derived from eft by Hooke's law:

pft = A.eaoi i + 2µeft.
On the other hand, the inclusion had a stress -pft even before stage III, so that the
stress in it is (2·7) 

where, according to our general convention, pft is the stress derived by Hooke's law
from the strain eft in the inclusion.

By using Gauss's theorem and the equivalence of o/oxi and -o/oxi when acting on
I r-r' I, (2·7) may be made to read

where 

u <! = l T ,fr l T ,/. i 167Tµ ( I-<r)Pi k '1' ,ii k-41TµPi k'l',k• 

f dv ¢ = 
v i r-r' I and ijr = f v I r-r' I dv

( 2 ·8) 

are the ordinary Newtonian potential and the biharmonic potential of attracting 
matter of unit density filling the volume V bounded by S. Evidently

and 

V2ijr = 2 ¢ {- 87T inside S , V4ifr = 2 v2 ¢ = 
0 outside S. 

(2 ·9) 
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Generally we must know both 1fr and¢. However, if we are interested only in the 
dilatation in the material, it is enough to know ¢: 

0 1-20" T ,./, 
e = -

S7Tµ (l - cr)Pik'r,ik· (2·10) 

Again, if elf is a pure dilatation ieT 8i1, then

0_ 1 l + cr 
T ,.f, eil - -47T 3(1-er) e 'r,il> 

a result due toCrum (Nabarro 1940). In this case the dilatationiseT (l + cr)/3(1-er) in
the inclusion and zero in the matrix. Thus, for example, with er =  !, the constraint of 
the matrix reduces the free expansion of the inclusion by a factor J. 

The second derivatives of a potential function satisfying V2U = -41Tp undergo
a jump 11U,ii = -41Tl1pnini on crossing a surface (with normal ni) across which the
density jumps by 11p (Poincare 1899 ). (This is perhaps more familiar in the form: the
jump in attraction across a double layer is equal to its moment. In our problem 
-¢,i is the potential of a double layer over S with unit moment directed along the
xi axis and ¢.ii is the corresponding force.) This gives for¢ the expression

,./, .. (out)-,./, .. (in) = 41fn.n. 'Y,11;3 'r,iJ i. J (2·11) 

for the difference at adjacent points just inside and outside S. Applying the same 
argument in turn to 1/r,ii> which is the potential derived from the density - 2¢,i1/47T,
we have 1/r,iikl(out)-1/r,iikl(in) = 81Tnininkn1• (2·12) 
From (2·11), (2·12) and (2·8) we can find the stresses and strains just outside the
inclusion from their values at an adjacent point just inside without having to solve 
the exterior problem at all. We easily find that 

. 1 1 + CT 1 -2cr 
eO (out) = eO (m)--3 -1-eT--1--'eftnini -er -er 

1 - 2cr , T � 1 1 + er T ( 1 � ) + 3(1- er) e:ikninkuiz- 3 1-cr e ninz- auil . (2· 13)

The 0 quantities are related by (2·2) and so are the T quantities. Thus either or both
sides of these equations may be expressed in terms of stress without trouble. This 
solves problem (ii). 

We can find a convenient alternative form for uf by noting that (2·5) may be
written as 

_ � [ (xi -xi )  (x1-xj)] l67Tµ(l -er) Di - I r-r' I (3-4cr) 8ii + I r-r'12�- . (2· 14) 

Inserting this in (2·6) and using Gauss's theorem to convert to a volume integral we
find 

0 
_ 

Pik J dv e'fk J dv 
ui (x) - 167Tµ(l- er) v r2fi1k(l) = 87T (l -er) v r2 giik(l), (2· 15) 
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where r and 1 = (lv l2, Z3) are the length and direction of the line drawn from the
volume element dv to the point of observation x and 

fiJk = ( 1- 2U') (8ijlk + 8ikl;) -8;kli + 3liljlk, 
gijk = (1 - 2U') (8ijlk + 8iklj-8;kli) + 3liljlk. 

(2·16) 

(2· 17) 

For points x remote from the inclusion we may take everything except dv outside the 
sign of integration to obtain 

(2· 18) 

where rand I are now the distance and direction of x from the inclusion. This solves
problem (i). 

The strain energy density in the inclusion is -!Pfi ef1, where ef1 is the strain derived
from pf1 by Hooke's law. By (2·7) the elastic energy in the inclusion is thus 

� f v 
pf1(eg-e'fj) dv.

The elastic energy in the matrix is 

-�J p9. u9dS . = -�f pfu9dS . = -�J p.{1e9;dv. 
2 s iJ i J 2 s i) i J 2 v i i 

(2·19) 

(2·20) 

The first member exhibits it as the work done in setting up the elastic field by 
applying suitable forces to the surface S; the sign is correct if the normal points from 
inclusion to matrix .  The second follows because displacement and normal traction 
are continuous across S. The third follows from Gauss's theorem, the equilibrium 
equation pf1,1 = 0 and the symmetry condition pf1 = Pfi· The total strain energy in
matrix and inclusion is thus 

(2·21) 

In the special case where e'fj is a uniform expansion we have at once from (2· 10) and
(2·21) Eei. = 2µ(eT)2V (l + U')/9 (1-U'), whatever be the shape of the cavity, as
pointed out by Crum (Nabarro 1940). 

The interaction energy of the elastic field uf with another field uf is (Eshelby 
1951, 1956) 

(2·22) 

taken over any surface J; enclosing the inclusion. Let us take J; to be a surface just
outsides. Once again, sinceuf and the normal stress are continuous across S, (2·22) 
can be converted into an integral over a surface just inside S, and hence into a volume 
integral over the inclusion: 

Eint. = fv 
(Pf1e�-pfteg}dv.

The second term in the integrand is equal to -pl}e�, so that

Eint. = -f 
v

p�ef;dv = -f 
v

p�eyjdv = -t?fJuf dS1• (2·23) 

25-2 
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This solves problem (iv). The same result is reached by evaluating (2·22) over a large 
sphere using the remote field (2· 18). It is fortunate that we need only e'f'J and note�.
In fact the last member of (2·23) has formally the appearance of being the work done 
against the external field in 'blowing up' the inclusion (regarded as rigid) to a final 
shape specified by e[J. It is perhaps not obvious that this should be so, since the
inclusion is not rigid and its final shape is described by a displacement uf which may
be quite complicated (e.g. it produces a barrel or pincushion distortion of the cubical 
inclusion which Cochardt, Schoek & Wiedersich (1955) consider). If we regard the
inclusion as capable of moving through the matrix, as in the elastic model of a sub
stitutional atom, 

(2·24) 

is the 'force ' on the inclusion, where �z is a vector specifying its position. 
Let Etrans. be the change of internal energy when the inclusion transforms in the

absence of the matrix. Consider the sum 

E = Etrans. +Eel.+ Eint. ·

Give their adiabatic values to A.,µ, Kand suppose that the constrained transforma
tion occurs without any heat flow. Then E can be interpreted indifferently as the 
enthalpy change of the inclusion, the enthalpy change of the body (inclusion plus 
matrix) or the change of internal energy, of the body and loading mechanism 
regarded as a single thermodynamic system. There is a similar interpretation for an 
isothermal process if we read 'Helmholtz free energy' for 'internal energy' and 
'Gibbs free energy' for 'enthalpy' and give A, µ, K their isothermal values. 

Since problems (v) to (viii) can only be solved for an ellipsoid their discussion is 
deferred to § 4. 

As a simple example of the use of (2·18), suppose that we need the field at large 
distances from a dislocation loop of area A in the x1 x2 plane with its Burgers vector
along the positive x3 axis. We have to insert a sheet of material of area A and thick
ness b. One way to do this is to cut out a disk of areaA and height h, give it a per
manent strain els= b/h to increase its height by b and then force it back into the 
cavity. In(2·18)we have toput V =Ah, efa = b/h and theotherefJ. equal to zero. Thus

ui = bA Yisa/87T (l - a') r2• 
Suppose next that the Burgers vector lies in the plane of the loop and, say, along 
the x1 axis. We now give the disk a permanent shearefa = ib/h, which gives its
upper and lower surfaces a relative offset b, and re-insert it in the matrix. In the 
limit h-+0 we have a displacement discontinuity b across the loop. Putting 
V = Ah, efa = efi. = !b/h and the other e'f'J zero in (2· 18) we get

(2·25) 

reproducing a result of Nabarro's (1951). It is perhaps not quite clear that the 
restraint of the matrix will not reduce the offset to something less than b. Actually 
this is not true in the limit h-+ 0. But we can see that (2·25) is correct by inserting 
Vefa =!Ab in (2·23); this gives Eint. = - bApifi, which is the correct interaction
energy for such a loop (Nabarro 1952). Indeed by the same argument we can find the 
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remote field of an arbitrary loop of area A, normal ni and Burgers vector bi. The 
interaction energy is -bipftn1A for any pft. Equation (2·23) then shows that
Vetj = i(bin1+b1ni) and (2·18) gives 

u i = AbinkgiJk/811(1-u) r2•

There is, in fact, a more general connexion with dislocation theory. The stress-free 
strain in the inclusion may always be imagined to be (or may actually be) the result 
of plastic deformation. A set of dislocation loops (with equal Burgers vectors) 
expanding from zero size on a close set of equally-spaced planes will give a shear if 
their Burgers vectors lie in the planes, or an extension perpendicular to the planes 
if their Burgers vectors are at right angles to the planes. (In the latter case their
movement is non-conservative.) If the deformation occurs in the absence of the 
matrix these loops will, so to speak, disappear into free space. But if the inclusion is 
embedded in the matrix the dislocations will lodge in the surface S separating matrix 
from inclusion. S then becomes the discontinuity surface of a Somigliana (1914, 
1915) dislocation. In this generalized type of dislocation there is a variable discon
tinuity di of displacement across S. In our model, di makes itself felt through the gaps 
and interpenetrations of matter which we should find if we tried to re-insert the 
transformed inclusion into the hole in the matrix without pulling it back to its 
original shape. It is easy to see that di has the value !eftxj at a point xj of Sand 
hence to verify, after some manipulation, that our expression for u f agrees with 
Somigliana's. 

3. THE ELLIPSOIDAL INCLUSION
In discussing the elastic field inside an inclusion it is convenient to redefine the li in 

(2· 16), (2· 17) to be the direction cosines of a line drawn from the point of observation
x = (x1,x2,x3} = (x,y,z)tothe volume elementdv. This involves changing the sign of 
the integrals in (2· 15). Let us first integrate over an elementary cone dw(l) centred on
the direction 1 = (lv l2 ,l3) = (l, m, n) with its vertex at x. It gives a contribution

r(l)dw to I dv/r2 • Thus 

811µ(1-u) u i(x) = -ef,,f r(l)dw(l)giik(l), (3·1} 
41T 

which gives the displacement at x in terms of an angular integration over the polar 
diagram r = r(l, m, n) of the surface S as viewed from x. · 

More briefly we could go directly from (2·6) to {3·1) by writing r-1 = lV2r in {2·14)
applying Stokes's theorem in the form 

Is w ... 1,zdS1 = Is w ... i,idSz 

and noting that dw = niridS/r8• 
For the ellipsoid 

r(l) is the positive root of 

(x+rl}2/a2+(y+rm)2/b2+(z+rn)2/c2 = 1, 
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that is, 
where 
and 

r(l) = -f/g+(f 2/g2+e/g)i,
g = z2;a2+m2/b2+n2/c2 

f = lx/a2+my/b2+nz/c2, e = l-x2/a2-y2/b2-z2/c2.

(3·2) 
(3·3) 

The sign of the square root is evidently correct, since e is positive if x is within the 
ellipsoid. In any case, we may omit this term when (3·2) is inserted in (3· l) since it is 
even in 1, whilst gijk is odd. To retain the advantages of suffix notation we introduce
the ' vector' A1 = l/a2, A2 = m/b2, Aa = n/c2. 

Then 

and the strains 

(3·4) 

(3·5) 

are uniform and depend only on the shape of the ellipsoid. The same is also true for 
an anisotropic medium. (This verifies a hypothesis of Frank's (private communica
tion).) For it can easily be shown (see, for example, Eshelby 1951) that (2·5) has then 
to be replaced by �(r) = F;Dij(I)/r, 

where the functions of direction Dij cannot generally be found in finite form. 
A repetition of the argument will evidently lead to an expression like (3·4), but with 
the gijk no longer given by (2· 17). 

It is convenient to write the relation between the constrained and stress-free 
strains in the inclusion in the form 

(3·6) 

From the symmetry of the problem it is clear that the 8ijkl have some of the 
properties of the elastic coefficients of an orthorhombic crystal with its axes parallel 
to the axes of the ellipsoid, though relations of the form 81122 = 82211 are not valid.
Coefficients coupling an extension and a shear (81112, 81123, 82311 . . .  ) or one shear to 
another (81223 . . .  ) are zero. In fact, (3·5) vanishes if any one of l, m, n appears raised 
to an odd power in the integrand. The reduction of surface integrals of the type J z2irn2in2k dw/g to simple integrals has been given by Routh (1892). We find

where 

and 

with 

Sun = Qa2Jaa + Rla, 

J-81122 = Qb2Iab -Rla, 
81212 = Qf(a2+b2) Iab+Rt_(Ia+Ib), 

3 1-20- 1 1 Q
= 8JT(l -a-)' R = &r(f::::.-a=)' 3Q + R = .4JT' 

(3·7) 

(3·8) 
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The remaining coefficients are found by simultaneous cyclic interchange of ( 1, 2, 3), 
(a, b, c) , (l, m, n). Ia, lb, le occur as coefficients in the expression

for the Newtonian potential within an ellipsoid of unit density. We have"f (Kellogg 
1929) 

411abc {b( a2 - c2)! } 
Jc = (b2-c2) (a2-c2)! --------ac- -E ' (3·9) 

where F = F(O, k) and E = E(O, k) are elliptic integrals of the first and second kinds
of amplitude and modulus 

and it is assumed that 

The relations 

a>b>c. 
Ia +  lb + Jc = 411, 

Iaa + lab + lac = 411/3a2,

a2 Iaa + b2 lab + c2Jac = Ia 

(3· 10) 

(3· 1 1) 

(3· 12) 

follow from the w integrals when we use the definition (3·3) of g and the relation
l2 + m2 + n2 = 1. Again, if we split the factor (a2 + u)-1 (b2 + u)-1 in the u integral for
lab into partial fractions we have 3(a2-b2) lab = lb -Ia. Thus when Ia, Jc have been
calculated from (3·9) we have for lb 

lb = 411-Ia-Jc 

and the remaining quantities are found from 

and their cyclic counterparts . 

lab = (lb -Ia)/3(a2-b2), 

Iaa = 411/3a2-Iab-Iac 

For the oblate spheroid (a = b > c) with

(3· 13) 

(3· 14) 

(3· 15) 

the relation ( 3· 13) fails, though not its analogues for Ibc or lac- But from the u integrals
for Iaa and lab it is clear that Iaa = 3Iab and we may use (3· 14). For the prolate
spheroid (b = c <a) we have

(3· 16) 

and the remaining quantities may be determined similarly. 

t Osborn (r945) has given curves for these quantities as functions of b/a and c/a. In his 
notation Ia= L, lb= .!Yl, Jc= N. 
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For the elliptic cylinder x2/a2+y2/b2 = 1, C-?-OO we have the simple results 

la= 47Tb/(a+b), lb= 47Ta/(a+b), le= 0,

lab= 47T/3(a+b)2, laa = 47T/3a2-lab, lbb = 47T/3b2-lab. (3· 17)

lac• Ibc and Ice are zero. However, it is clear from (3·7) that what we really need is the 
limit of their products with c2• In this sense (3· 12) and (3·13) give 

(3·18) 

The uniform rotation wfz = i(uf,1- ufi) in the inclusion may be written in a form

(3·19) 

analogous to (3·6). The only non-zero components are II1212, II2823, II3131 where, for
example, 

(3·20) 

These results are only valid in a co-ordinate system whose axes are parallel to the 
principal axes of the ellipsoid. For any other system there are still relations of the 
form (3·6), (3· 19) and the new coefficients Si;Jkl• Iliikl must be found by the usual law 
for transforming tensors. 

Problems (i) to (iv) of § 1 are solved as for the inclusion of arbitrary shape (§2). 
The only simplification is that, since e� is uniform within the inclusion, (2·2 1) 
becomes 

(3·21)

and similarly (2·23) becomes 
(3·22) 

if the applied field pfJ is also uniform. The field immediately outside the inclusion is
found from (2·13) using the expressions 

(3·23) 

for the components of the normal to an ellipsoid at the point x, y, z. We have seen that usually it is sufficient to know only the elastic field within, just
outside and far from the inclusion. The field at any point outside the inclusion can, of 
course, be found from (2·8) if we know the potentials ¢ and ijr. The expression for 
¢ is well known (Kellogg l 929 ). Dirichlet ( 1839) calculated the exterior potential of 
an ellipsoid when the law of attraction is the inverse pth power of the distance. His 
derivation is only valid for 2 �p < 3 and so does not cover the biharmonic case p = 0.
However, his calculation of the force-grad ifris valid for p = 0, and the derivatives 
are all we need to know. His result is 

where 

oijr 
ab Joo Uudu

ox= X1T c "- (a2+u)�'
oifr 
oy = ... ,

x2 y2 z2 u = l- -- ---- -
a2+u b2+u c2+u 

and,\ is the positive root of U ( u) = 0. The integral can be reduced to elliptic integrals 
by the same substitutions as serve for ¢. (For the details see, for example, Byrd & 
Friedman (1954).) For an external point¢ and iJr are respectively first and second 
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degree polynomials in x2, y2, z2 whose coefficients are integrals of the type (3·8} with
the lower limit changed from 0 to A. These coefficients can be made to depend on the 
integrals (3·9} with argument 

fJ = sin-1 (a2-c2)l-/(a2+.;t)t
and modulus k = (a2- b2)l-/(a2-c2)t. 

They depend on x, y, z through A .  

4. THE ELLIPSOIDAL INHOMOGENEITY
The inhomogeneity problem for the ellipsoid is solved in the way outlined in § I. 

On the elastic field eg due to an ellipsoidal inclusion with arbitrary e'£ we super
impose a uniform strain eft. The deformation of the surface of the inclusion is
specified by the strain efJ + et}. Because a part eft of this strain is not associated with
any stress (compare equation (2·7)) the uniform stress in the inclusion is given by
applying Hooke's law not to ef;. + ef;, but rather to ef:; + efj-efj. In the notation of
(2·3) the strain in the inclusion is

(4·1) 
but the stress in it is 

p = 3K(eO + eA-eT), 'Pii = 2µ('ef;. + 'ef;-'e'f'J). (4·2) 

Take an ellipsoid the same shape and size as the untransformed inclusion and made 
of an isotropic material with elastic constants A1, µ1, Ki = A1 + iµ1 different from
those of the matrix and inclusion. Subject this ellipsoid to the strain ( 4· l ). If this
treatment develops the stress (4·2} in it, it may be used to replace the inclusion with
continuity of displacement and surface traction across the interface. We can always 
ensure that the correct stress is developed by choosing A1, µ1 suitably. It is only 
necessary that they should satisfy the relations 

and 

Kl(eO + eA) = K(eO + eA-eT) 
µi('efJ + 'eft) = µ('efJ + 'efj-'efj). 

(4·3 ) 
(4·4) 

Actually, it is the uniform applied field efj and the elastic constants of the inhomo
geneity which are prescribed, and (4·3}, (4·4) are equations which have to be solved
for e'f'J in terms of eft, ;\1, µ1 after eliminating ef;. with the help of the relation
ef;. = 8iikle'fz. Equations (4·3) and (4·4) are not as simple as they appear, since each
of ea, 'ef;. depends on both eT and 'eft. However, for the shear components the
solution is immediate, since the 8ijkl do not couple different shears:

T µ-µ1 A era = 2(µ1 -µ) 81313 + µ efa, .... (4·5) 
On the other hand, for the components efi, �. efa we have to solve the three simul
taneous equations 

(Ai - A) 8mmpq e'$q + 2(µ1 -µ} 8iJpq e'$q + ;\eT + 2µef; 
= (A. -Ai) eA + 2(µ -µ1} eft, ij = 11, 22, 33.

(Only efi, �. efa appear in the pq summations since, e .g. 81112 = 0.)
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From our derivation it is clear that e[J found in this way is the stress-free strain of 
a certain transformed inclusion which, with the given applied field efJ, could replace 
the inhomogeneity without altering the stress or displacement anywhere. We shall 
call this imaginary transformed inclusion the 'equivalent inclusion'. Outside the 
inclusion the elastic field ui , eii' Pii is the sum of the applied field uf , eft, pf; and the
field uf, efJ, pfJ of the equivalent inclusion. It is convenient to regard the latter as the
field' of' or' due to' the inhomogeneity. It measures the perturbation of the applied 
field by the inhomogeneity and may be found from ef; by the methods of §§  2, 3. In 
particular .the remote field of the inhomogeneity follows at once from (2· 18). Inside 
the inhomogeneity the total strain is 

(4·6) 

by (4·3) and (4·4). The field immediately outside the inhomogeneity is found from 
(2· 13) and (3·23). 

The question of the interaction of a stress field and an elastic inhomogeneity has 
been discussed elsewhere (Eshelby 1951, 1956). We shall need the following result. 
If the initial elastic constants K, µ of a body loaded by surface tractions are changed 
to arbitrary functions of position K*(x),µ*(x) the surface tractions being held 
constant, then the total energy of the system increases by 

Eint. = -� f { (K -K*) ee* + 2(µ-µ*) 'ei/ e�} dv, (4·7) 
where eii• eT1 are the strains before and after the change. By total energy we mean the 
sum of the elastic energy of the body and the potential energy of the loading 
mechanism. E1nt. is by definition the interaction energy of the applied stress and the 
inhomogeneity described by the non-uniform elastic constants K*, µ*. The increase 
of elastic energy arising from the change is 

fiE = -Eint.· (4·8) 

Equation ( 4·7) is valid also if eii is the strain arising from sources of internal stress or 
because the material is strained by rigid grips, but in this case (4·8) is replaced by 

!iE = +Emt.· (4·9) 

In the present case the change of elastic constants is confined to the interior of the 
ellipsoid and eii' eT1 are uniform there. Thus 

Emt. = -! V{(K-K1) w4(eA + e0) + 2(µ-µ1) 'ef;('ef;+ 'ef;)} 

by (4·8) and (2·3) (V is the volume of the ellipsoid). This solves problem (vii). tt will 
be noticed that (4· 10) is just half the expression (3·22) for the equivalent inclusion. 
The physical interpretation is as follows. Equation ( 4· 10) is still approximately 
correct if pft is a slowly varying function of position. The 'force' on the inhomo
geneity' regarded as an elastic singularity is again given by (2· 24). Fz depends only on
the remote field of the singularity and not at all on whether its field is permanent 
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(internal stress) or merely 'induced' in an inhomogeneity by an elastic field . The 
factor! ensures that this is so, for clearly (4·10) varies with position twice as fast 
when e'{j is a linear function of e:£1 as it does when e!§ is constant.

The effective bulk elastic constants for a material containing a uniform dispersion 
of ellipsoidal inhomogeneities (not necessarily all of the same form or orientation) 
may be calculated as follows . Consider a specimen of unit volume. Let .E0 be its 
elastic energy when it is free of inhomogeneities and certain surface tractions 
produce a uniform stress P�n in it . If we introduce the inhomogeneities, keeping the
surface tractions constant, the elastic energy is augmented by - "'ZEint. (P�n), the sum
of the interaction energies of all the inhomogeneities with the particular stress P�n 
(compare equation (4·8)). Since E0 and Eint. are both quadratic functions of ptfm we
may write 

(4·11) 

The siikl are then the elastic compliance constants which would be inferred from the
work done in applying the given type of loading. To find the individual components 
of siikl we put, say, pfi = 1, P4 = l,p� = 0 otherwise, and obtain s1122, and so forth.
Unless the ellipsoids are spheres, or have their orientations distributed at random, 
the effective constants siikl will be anisotropic. The effective elastic moduli ciikl may
be found from the relation ciiklsklmn = 8im 81n. It would not do to find them directly
by equating the right-hand side of ( 4· 11) to !ciikl e� efz, since that equation was
derived by considering a process at constant load. Rather, we must consider a unit 
volume given a uniform macroscopic strain by a rigid framework which keeps the 
surface displacements fixed when the inhomogeneities are introduced. This leads to 

!ciikl eiJ efz = Eo + "'ZEint. ( e;!n) · 
(For the difference in sign compare (4·8) and (4·9).)t 

5. DISCUSSION

(4·12) 

It has been shown how the problems listed in § 1 may be solved for the ellipsoid . 
Explicit solutions for the general case would be very clumsy and in this section only 
a few special cases are considered. 

For a sphere of radius a, we have at once from (3·10), (3·11) and the symmetry of 
the problem, Ia= lb= le= 47T/3 and Iaa = Ibb = 3/ab = . . . = 47t/5a2• We find the
following expressions for the constrained strain eg inside the transformed sphere in
terms of the stress-free strain e'.FJ :

where 

a T I a fl' T e = ae , eii = eii> 
fi = _! 4 - 5o-

. 15 1- 0-

For a spherical inhomogeneity with elastic constants K1, µ1 in an applied field e� the
equivalent e'fi are given by

eT = AeA, 'elj = B'ef;,
t Failure to appreciate this point led to an error in a previous paper (Eshelby 1 95 5). It 

may be rectified by changing the sign of the right-hand side of the equation for !;,,,E on p. 488, 
col. 2, line 5. In addition a factor r-6 is missing from the right-hand side of equation (4). 
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where A= Ki-K
(K-K1)a-K 

K-K1 4µ+3K 
K 4µ+3K1 

and B = µ1-µ .(µ-µ1)/1-µ 
The interaction energy ist 

E _ 1 v{A A A B, A' A} int. - 2 9KP P + 2µ Pii Pij ·

By (2· 13) the stress just outside the inhomogeneous sphere is easily found to be

A l+<T B' A p = p - l-<T Piinini,
I ( l  /JB) I A B (' A I A ) B I A Pi!= + Pil - Piknknz+ Pzknkni +-1 � P1kninkninz-(T 

1 -2<T BI A � 1 -2<T A A( 1 � +3(1-<T) P1kn1n1cuil-3( l-<T) P ninz- 3uu)· 

In particular, for the stress at the surface of a spherical cavity (K1 = 0, µ1 = 0)
perturbing a uniform stress-field p� we find

15 { A A A ) A Pi!= 7 _5<T (1-<T) (Piz -Pikn1cnz-Pz1cn1cni +P1kn1n1cninz

A � 1 - 5<T A � )} -<TPi1cn1n1cuiz+ ---wp (ninl-uil · 

The expression given by Landau & Lifshitz (1954) is clearly incorrect, since the
surface traction pilnz formed from it does not vanish.

According to the discussion leading to (4·7), the energy density of a body con
taining a volume fraction v of inhomogeneous spheres is

1 { 1 1 } 2 9K( l+Av)pApA+ 2µ( l+Bv)'pi}'p�'

and so the effective bulk elastic constants are 

Keff. = Kj(l +Av), µeff. = µ/ (l +Bv). 
Since we have neglected the interaction between the spheres these expressions will 
only be valid for small v and we may equally well write

Keff. = K( l-Av), µeff. = µ( l-Bv). 
When we let K1, µ1 approach zero or infinity we recover known results for a material
containing empty spherical cavities (Mackenzie 1950) or rigid and incompressible 
spherical inclusions (Hashin 1955). For arbitrary Kv µ1 the expression for Keff. agrees
with Bruggemann's (1937). Bruggemann's expression for µeff. is independent of the
Poisson's ratio of the matrix and can hardly be correct . It is derived by considering 
the perturbation of the non-uniform elastic field in a sphere twisted in pure torsion 
when a spherical inclusion is introduced at the centre . This is obviously not typical of 

* There is an error in a previous paper (Eshelby 1 95 1 ); the expressions for 8, F(K' = 0),
F(K' =00) on page 104 should all be multiplied by 4µ/3K. 
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the effect of an inhomogeneity at an arbitrary point in the sphere . A well-known 
analogy (Goodier 1936) between problems in elasticity and viscosity enables us to 
interpret µeff. as the effective viscosity of a suspension of rigid spheres in a liquid of
viscosity µ provided we put µ1 = oo, u = t · This gives Einstein's expression
µeff. = (1 +2 ·5v)µ. Kynch (1956) has discussed the value of v above which the
mutual interaction of the spheres makes this expression inaccurate . Evidently 
Kett.> µeff. will be subject to a similar limitation.

The problem of an ellipsoidal inclusion which has undergone a simple shear is of 
interest in connexion with twinning and martensitic or other diffusionless trans
formations . Suppose, then, that an ellipsoidal region of volume V undergoes a pure 
shear transformation in which efs = efi are the only non-zero components of e�.
Then (3 ·21) and (2 ·7) give EeL = 2yµ V(ef:J)2 {5 · l) 
with y = 1-281313 (5 ·2) 
for the total elastic energy in matrix and inclusion . 2µ V ( efs}2 is the energy necessary
to pull the inclusion back to its original shape in the absence of the matrix . Alter
natively, it is the energy we should find if the inclusion transformed whilst embedded 
in an imaginary rigid matrix. Thus we may regard y as a measure of the extent to
which the matrix is able to accommodate the transformation. It also describes the 
partition of the total strain energy between matrix and inclusion, for from (2 ·  19) and
{2 ·20) we have energy in matrix 1 -y 

energy in inclusion = y' 
so that for good accommodation (small y) most of such energy as remains is in the
matrix. We also have from (2 ·7) the value

Pfs/ (  -pfa) = Y 
for the ratio between the actual stress in the inclusion to the value it would have if 
the transformation occurred in a rigid matrix. 

For an oblate spheroid we have 

2-u Ia c2 y = 1 -u 411 - iQ a2 -c2 ( 411 - 3la) 
with Ia given by (3 ·15). For a sphere y= (7-5u)/15(1-u) and for a needle 
(b = c �a), y = t · The values for sphere and needle are about the same if Poisson's
ratio is in the neighbourhood of i · 

If the inclusion is a thin plate in the form of an ellipsoid with its c axis much less
than its a and b axes we have y = nc/b, 
where 7J has the following values:

= E(k) ____!!__ K(k)-E(k).
'f/ + 1-u k2 '

E(k) u 1 E(k) -k'2K(k) = T + 1-u k' k2 ; 

= 11(2:-u)/ 4{1-u};

a>b, k = (1-b2/a2)l,k' = b/a;)

b >a, k = (l -a2/b2)!, k' = a/b ; 

a= b. 

(5 ·3) 
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Here E(k) and K(k) are complete elliptic integrals. It follows that for a very thin 
plate y approaches zero and there is complete accommodation. If the operative 
shear is efa instead of efa, tending to deform the plate in its own plane, the corre
sponding accommodation factor 1 -281212 approaches unity as the thickness of the
plate decreases and there is no accommodation. We may compare these results with 
the case where eft is a pure dilatation. Then, as we saw in § 2, 

whatever is the shape of the inclusion. In a rigid matrix the energy would be 
!KV(eT)2 and so theaccommodationfactor is always 2(1-2o-)/3(1-o-) or tfor o- = i· 

As a rough iJlustration of how these results might be used, consider the formation 
of martensite in iron. Zener (1946) has shown that the thermodynamics of the 
process suggest that a strain energy of 290 cal is associated with each mole trans
formed. Suppose that the transformation involves a 5 % volume expansion and
a 10°shear, so that eT = 0·05, efa = 0·009. It is easily seen that the total strain energy 
is the sum of the values it would have if the dilatation or shear acted alone. With 
µ = 8 x 1011 dyn/cm2, o- = !, and V one molar volume, the shape-independent
dilatational contribution to the energy is 25 cal. This leaves 265 cal for the shear 
contribution. The quantity 2µ V ( efa)2 has the value 1900 cal. If the transformed region 
is supposed to be an ellipsoid the accommodationfactor is thus y = 265/1900 = 0·14, 
and this tells us something about its shape. For example, if it is assumed to be 
a circular disk, (5·3) shows that its thickness/diameter ratio must be 0·08. In the 
presence of an applied stress the free energy change associated with the transforma
tion becomes Eel.+ Eint. instead of Eel. For the case we have been considering 
equation (3·22) gives Eint."' 8· 10-9( -tpA)- 3· 10-8pfs cal/mole if the applied field 
pf; is measured in dynes/cm2• 

For a cavity, the equations ( 4· 3 ), ( 4·4) for the ellipsoidal inhomogeneity simplify to 

eT e0 - eT S eT - eA. ii- i1 - i:i- iJkl kl - i:J' 
we shall only consider this case. 

(5·4) 

Suppose that an ellipsoidal cavity is perturbing a simple shear efs = S/2µ. We 
have at once for the equivalent stress-free strain, putting µ1 = 0 in (4·5), 

efa = efs/y, (5·5) 

with the notation of (5·2). The interaction energy is 

Eint. = -!Vp�eiJ = -VS2/2µy. (5·6) 

If we let the c axis of the ellipsoid become very small we have an elliptical crack. 
From (5·3) it is clear that Vy remains finite as c approaches zero and the interaction 
energy of the crack with the applied shear stress S is 

Eint. = -27Tab2S2/3µ17. 

Consider next the displacement of the faces of the crack. If the c axis is still finite, 
the displacement of a point xi at the surface of the cavity is

uf = (eg +wf;) x1 
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plus the displacementuf due to the applied field. We suppose that uf = 0 in the plane
of the crack. If we evaluate uf from (3·6} and (3·19) and pass the limit C-?0 and use
(5·5) we find that in the plane of the crack

±uf = (bS/µ'f/} (1-�/a2-'4/b2)l::!b..u1, (5·7) 

uf = 0, uf = ax v a =  1T(l-2CT} beti/4(1-CT) a'J]; 

the + and - signs refer to the upper and lower faces of the crack. Thus the plane of 
the crack is tilted through an angle a, but it remains a plane . The relative displace
ment b..Ui of the faces is everywhere parallel to the x1 axis and has an ellipsoidal
distribution . 

There is a problem in dislocation theory closely related to the theory of the 
sheared crack . Under the influence of a stress Pti = S dislocation loops expand in the
x1 x2 plane from a source at the origin and pile up against an elliptical barrier until 
their back-stresses annul pfs at the source. What is their distribution if each loop is 
in equilibrium under the combined action of the other loops and the applied stress? 
In the limit of a large number of loops with very small Burgers vectors the crack and 
dislocation problems coincide (cf . Leibfried 1954). If the source has its Burgers 
vector parallel to the x1 axis the dislocations are of pure edge type where they cross 
the x1 axis and the number of them crossing a length dx1 is dx1 ob..u1(xv x1 = O)/A. ox1 .
Where they cross the x2 axis they are of pure screw type and their density is 
ob..u1(X1 = 0, X2)/AOX2· The interaction energy of the loops is given by (5·6) . In
diagrams the tip of an array of piled-up dislocations is often drawn curling up or 
down. The remarks following (5·7} do not support this .

As a further example consider a spheroidal cavity (b = c) in a material subject to
a simple tension stress T. If the a axis coincides with the direction of T we need only
know efi to find the interaction energy. The non-zero components of ei} are efi,
e'2 = ea4s = -<T eft. From (5·4) we have

efi = eefi, h 
( 1-Saa -S2a} -2CTS1aw ere e= , (l -Sa3 -S23) (1-Sn)-2S13S31

with the abbreviated notation S11 = ·s111v S13 = S1133 . . . .

(5·8) 

On the other hand, if the a axis is at right angles to the direction of T we only need
to know efs. The non-vanishing applied strains are efa, efi = e� = -<T es1i and we find

1 +CT eT eT - eA 33 - 22 - 1 Cf Cf 33, +02a-.033 

or, say, 

The interaction energies are respectively 

and 

where E is Young's modulus. 

Eint.(il) = -! VeT2/E
Eint.Cd = -! V(,T2/E, 

(5·9) 

(5·10) 
(5·11) 

If the direction of T remains unaltered and the cavity changes from the parallel to
the perpendicular orientation, the interaction energy changes from ( 5·10) to ( 5· 11 ). 
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The parallel or transverse orientation is energetically favourable according as the 
spheroid is oblate or prolate. We may take the case of the prolate spheroid as 
illustrating the orienting effect of an applied stress on a di-vacancy in a metal 
(A. Seeger, private communication). For a/c = 2, Ci = ! we find e = 2·24, � = 5·88.

When a approaches zero the numerator of e becomes 1 -2c; and the denominator
approaches zero as a7T(l-2u) /4c(l-u2) . The product eV in (5·10) remains finite and
we reproduce Sack's (1946) value -8c3{1-u2)T2/2E for the interaction energy of
a penny-shaped crack in tension. 

The total strain at the surface of the cavity e?J + eft is, according to (5·4), given by 
the right-hand sides of (2·13) with e0, 'efJ replaced by eT, 'eft. The normal is given by
{3·23) and the stress concentration can be found from (2·3). For the spheroid in 
tension we must supplement (5·8) by 

e� = efs = efi(e-eS11-l)/2S13 
and (5·9) by 

( 1 - S11) efi = S12( � + efs) -uea1i . 

These results actually apply to a quite general state of triaxial stress symmetrical 
about the polar axis of the spheroid, for in the applied strain 

we may take <r to be any number unconnected with Poisson's ratio. (The c; implicit
in the Si1 must, of course, be put equal to Poisson's ratio.) The stress concentration
about an ellipsoid in shear is found similarly from (5·5) . 

Two-dimensional problems involving an infinite elliptic cylinder can be dealt with 
similarly, using (3· 17) and (3· 18). The interaction energy per unit length is

where A is the cross-sectional area of the cylinder. The passage to the limit b-+ 0 or
a-+ 0 is in this case very easy and we can derive well-known results for cracks in
plane strain tension or shear. Another simple case is that of a crack joining the 
points x = ±a, y = 0 perturbing a uniform stress pfs = S. Both before and after the
introduction of the crack there is a state of anti-plane strain in which the displace
ment is everywhere perpendicular to the xy plane. The interaction energy and
relative shift of the faces of the crack are 

(5·12)

Several writers have derived approximate expressions for the reduction of energy 
by a crack (or an array of dislocations simulating a crack) by supposing that the 
applied stress is effectively relaxed to zero in a region about the crack whose dimen
sions are of the order of the width of the crack. (In the same sense we might say that 
in {5'10) or (5·11) the 'energy drainage volume' of the cavity was e or� times its
geometrical volume.) This method gives correct results, but the logic behind it is not 
clear. If the applied stress is maintained by constant external loads, the elastic energy 
is increased by a certain amount when the crack is introduced (compare equation 
( 4· 8)). At the same time, the loading mechanism has to expend twice this amount of
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work. Thus the decrease of total energy ( - EintJ is numerically equal to the increase
of elastic energy. On the other hand, ifthe applied stress is due to sources of internal 
strain, or if the body is strained by rigid clamps, the elastic energy (now the total 
energy) clearly decreases (compare equation (4·9)) . But even here the decrease is in
no simple sense located near the crack. This may easily be shown explicitly for the 
case of the crack in anti-plane strain (equation (5·12)) .  In terms of the elliptic
co-ordinates g ,  'tJ defined by

x = a cosh g cos 't], y = a sinh gsin 't],

the displacement is u3 = ( aS / µ) cosh g sin 1J. (5·13) 

.For, when g is large enough for hyperbolic sine and cosine to be indistinguishable it
reduces to the uniform state of shear 

u3 = Sy/µ = (aS/µ) sinh g sin 'fj , (5·14) 

whilst the traction on a curve g = const. is proportional to ou3/og and so vanishes on
the limiting ellipse g = 0 defining the crack. The energy in the small rectangle
dgd'f/ at g , 'f/ is iµ{(ou3/og)2 + (ou3/o'f/)2} dg d1J. If we evaluate this using the displace
ment without ((5· 14)) and with ((5· 13)) the crack, we find that the change of energy
density D..E at any point due to the introduction of the crack is given by 

(5·15) 

We may say that there is stress relaxation between the hyperbolas 1J = !11, !11 and
stress concentration outside them. The integral of (5·15) over any ellipse with the
ends of the crack for foci is precisely zero. By judiciously deforming the ellipse we 
can find a curve within which the energy 'relaxation ' is positive or negative. 
Attempts to evaluate interaction energies in this way lead not only to errors of sign 
(which may be corrected by common sense), but also to incorrect numerical factors. 

The problem of a rigid and incompressible ellipsoidal inhomogeneity is also 
relatively simple, since (4·3} and (4·4} reduce to

sijklefz = - eft .
From the solution Goodier's ( 1936) analogy enables us to find the perturbation of the
slow motion of a viscous fluid when a solid ellipsoid is immersed in it. We have only 
to put <T = i in the matrix and interpret µ, ui , eii and Pii as viscosity, velocity, rate of
strain and stress. The energy density becomes half the rate of dissipation of energy 
per unit volume. Equation ( 4· 11) or ( 4· 12) enables us to find the viscosity of a dilute
suspension of ellipsoids. Eint. is positive for a rigid inclusion and so the viscosity is
increased. Equation (4·11) now states that a viscometer working at constant load
will produce a lower rate of deformation and so will dissipate less energy, whilst 
equation ( 4· 12) states that a viscometer working at constant speed will have to work
harder to maintain a prescribed rate of strain. 

For a single immersed ellipsoid the increase in the rate of energy dissipation is 
clearly twice Eint. for the related elastic problem. The calculation is much simpHfied 
by the fact that for <T = !, R = 0 in (3·7} , whilst the dilatations eA, eT, e0 are all zero.
We can easily verify, for example, Jeffery's ( I 922) expression for the energy dissipa-
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tion by a prolate spheroid, as amended by Eisenschitz ( 1933  ) . To find the viscosity of
a dispersion of spheroids it is necessary to decide what orientation they will take up.  
The elastic analogy suggests (though it does not prove) that they will ultimately 
orient themselves so as to minimize the energy dissipated. This agress with Jeffery's 
hypothesis, verified experimentally by Taylor (1923). 
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