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ABSTRACT.  12 

Analyzing concrete microscopic images is difficult because of its highly heterogeneous 13 

composition and the different scales involved. This article presents an open-source deep 14 

learning-based algorithm dedicated to air-void detection in concrete microscopic images. The 15 

model, whose strategy is presented alongside concrete compositions information, is built using 16 

the Mask R-CNN model. Model performances are then discussed and compared to the manual 17 

air-void enhancement technique. Finally, the selected open-source strategy is exposed. Overall, 18 

the model shows a good precision (mAP=0.6452), and the predicted air void percentage agrees 19 

with experimental measurements highlighting the model’s potential to assess concrete 20 

durability in the future. 21 

 22 
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1. Introduction 25 

Concrete, the most consumed manufactured material globally, is mainly used in the 26 

construction field, because of its low cost and good mechanical and durability properties. 27 



 

 

During their life service, concrete constructions are exposed to a variety of harmful 28 

environments, in particular, to freeze and thaw cycles in frost regions. Concrete heterogeneous 29 

and multi-scale natures are both responsible for its remarkable resistance and its complex 30 

behavior against potential degradation. Therefore, characterizing and modeling the multi-scale 31 

spatial properties of concrete has attracted attention during the past decades. 32 

For example, air-entrainment using air-entraining agents (AEA) was found to be an effective 33 

way to improve freeze-thaw resistance, and the parameters of the entrained air-voids network 34 

are to be determined in order to assess its quality. In fact, total air content does not ensure the 35 

good protection of concrete alone, and Powers’ spacing factor1 L̅ better, representing the 36 

maximal distance from any point in the cement paste to the edge of the nearest air-void, matters 37 

most. Currently, the most widely used method for the purpose of evaluating this spacing factor 38 

is the stereomicroscope-based one described in both ASTM C457 / C457M-162 and EN 480-39 

113 standards. This manual method is tedious, time-consuming (nearly 3 hours for each slice), 40 

and depends on the operator’s judgment. In addition, this method may not be representative of 41 

the real air-void structure since the measurements are one-dimensional. Other techniques have 42 

been used to overcome some of the limitations of the standard methods. For example, X-ray 43 

micro-computed tomography can give the spatial 3D air-void structure4. The manual 44 

segmentation technique of 2D enhanced contrast images, either between aggregates and paste 45 

by using phenolphthalein or between air-voids and the rest of the constituents by black inking 46 

the surface and filling the air voids with white powder can also be used5,6. The automated air-47 

void analyzer RapidAir 457 can also help inspect black inked surfaces7. Nonetheless, all these 48 

methods are not entirely automatized and the uncertainties brought by operator interference and 49 

subjectivity may be a source of significant errors. 50 

Due to the complex heterogeneous nature of concrete, phase separation remains a challenging 51 

task. The last advances in machine learning led to a better understanding of concrete properties, 52 



 

 

from strength8 to shrinkage9 or micro-mechanical properties10, and, more specifically, deep 53 

learning segmentation techniques have been fruitful in different fields11. For visual imagery, a 54 

convolutional neural network (CNN) might be used, combined with other techniques, to 55 

increase observation precision classifying or detecting objects of low contrast with a completely 56 

automated procedure. In terms of concrete petrographic analysis, the outcomes are not yet well 57 

studied because of the lack of information for validation steps. Yet, it recently showed a 58 

promising potential for crack damage detection and monitoring12–14 in concrete, some defaults 59 

in different structures15,16 and air voids detection17. 60 

The aim of the current study is to address the challenge of fast and accurate air-void analysis of 61 

concrete with the minimum amount of sample preparation and human bias-prone preparation 62 

and interpretation. To this end, an open-source deep learning-based air-voids detection 63 

algorithm for concrete microscopic images is introduced. The principle of the model is first 64 

presented and then some of its advantages are given and finally the open-source code 65 

architecture is presented. 66 

 67 

2. Materials and methods 68 

2.1 Concrete formulations 69 

Several concrete samples were employed in this study, divided into two sets. The first one was 70 

used for the model training and involved concrete samples of different air void structures and a 71 

wide variety of aggregates nature (calcareous/siliceous) and size distributions; in order to get 72 

the model well trained. . The other set of samples was used for the validation of the analysis 73 

method: different dosages of AEA were used ranging from 0.05% to 0.13% of cement weight 74 

in order to get concretes with different air-voids structures. Some of these mix proportions were 75 

used to formulate different concretes changing just the cement type. Table 1 summarizes the 76 



 

 

composition of this second set of concrete samples. The nature of superplasticizers 1 and 2 77 

cannot be revealed for confidentiality purposes. 78 

2.2 Experimental testing and microscopic measurements 79 

For this validation set of concrete samples, the amount of entrained air was measured on fresh 80 

concrete samples according to NF EN 12350-7 standard.  81 

Prior to microscopic analysis, special care was given to the sample preparation step in order to 82 

get good quality images for microscopic analyses and clearly distinguish phases for the manual 83 

method. For each formulation, two 10x10x2 cm3 slices were cut from 15x15x15 cm3 cubic 84 

concrete samples, in a way that keeps parallel the two faces of the slice; and then they were 85 

polished using different SiC papers of decreasing grit sizes to minimize surface defects. The 86 

quality of the surface is checked after each polishing step. On each prepared surface, the spacing 87 

factor L̅ has been evaluated using the point-count method of the manual petrography test method 88 

described in ASTM C457 / C457M-16 standard. 89 

Concrete microscopic images were obtained using a Hirox RH-2000 3D microscope. A 90 

magnification of x50 was used in the image acquisition, which is the same as the required one 91 

in the ASTM C457 / C457M-16 standard in order to allow proper comparison; this led to 3.13 92 

µm pixel size. Several 768 (H) ×480 (V) pix images, approx.. 7000 to 8000 in total, have been 93 

acquired and merged with a 1/2 relative overlap to reconstruct an 8x8 cm² image with a 3.13 94 

µm resolution. 95 

2.3 Manual contrast enhancement of sections and model comparison. 96 

The classic black and white contrast enhancement method has been used for some sections after 97 

the raw image acquisition for comparison purposes of the proposed CNN-based method to 98 

standard methods. Contrast enhancement was achieved by drawing slightly overlapping parallel 99 

lines with a wide-tipped black permanent marker. This was done in three coats, changing the 100 



 

 

orientation by 90° between coats. After the ink dried, a few tablespoons of thin-sized white 101 

powder were worked into the samples using the flat face of a glass slide. A razor blade was 102 

used to scrape excess powder, leaving powder pressed into voids. The residual powder was 103 

removed by wiping with a clean and lightly oiled fingertip. A fine-tipped black marker was 104 

used to darken voids in aggregates and cracks. 105 

2.4 Instance segmentation algorithm 106 

An instance segmentation algorithm was built in order to perform segmentation based on Mask 107 

R-CNN as illustrated in Fig. 1 to detect air voids in high definition microscopic concrete 108 

images. To train the model, 1470 images with equivalent magnifications ranging from × 10 to 109 

× 100 and a 608 pix × 608 pix size were selected from various cement paste, mortar and 110 

concrete samples. This dataset was divided into training, validation, and test sets given the 111 

following proportions: 78%, 13%, 9%. All the images were annotated using VGG Image 112 

Annotation software. The training was performed during 600 epochs (250 steps/epoch) on a 113 

commercial GPU (Nvidia RTX 2080 Ti, 11 Go GDDR6) using initial weights from COCO 114 

dataset. Bitmap images were then built using the predictions from the high and the reduced 115 

definition image by selecting the minimum intensity for each pixel as explained in Fig. 1 b). 116 

Finally, an air-voids map has been generated and can be compared to images obtained through 117 

manual contrast enhancement as described in the previous sub-section. The comparison 118 

procedure between the numerical and the experimental air voids maps is illustrated in Fig. 1 b). 119 

Model performance has been validated the mean average precision and the intersection over 120 

union (IoU) indicators. mAP can be defined as follows: 121 

 
𝑚𝐴𝑃 =  

∑ 𝐴𝑣𝑒𝑃(𝑞)𝑄
𝑞=1

𝑄
 

(1) 

where Q is the number of queries in the set and 𝐴𝑣𝑒𝑃(𝑞) is the average precision (AP) for a 122 

given query, q. 123 



 

 

 124 

3. Results and discussion 125 

3.1 Model performance 126 

The mean average precision (mAP) of the model was found to be 0.6452 and the IoU ranged 127 

from 0.810 to 0.890 on test images. Thus, the very high precision of the air void detection model 128 

is comparable to the precision obtained on large datasets in international competitions for 129 

common objects detection18. 130 

The model has then been applied on completely unknown large-scale high-definition images of 131 

concretes whose formulations are given in Table 1. The comparison between the predicted and 132 

the manual air-void structure analysis can be analyzed as illustrated in Fig. 2. The algorithm 133 

successfully detected air voids and air void maps can be obtained as illustrated in Fig. 2 a). The 134 

air content associated with the model prediction equaled 7.76 % (1706 air voids) which is close 135 

to the fresh state measured air void content (7.4 %) and the air content measured using ASTM 136 

C457 / C457M-16 method which is 7.94 %. However, the manually calculated air void content 137 

of the concrete based on Fig. 2 b) image is around 12.8 % (1327 detected air voids) which is 138 

higher than the predicted air void content and the measured fresh state air void content.  139 

Therefore, the model results are closer to the experimentally measured values than the 140 

classically manually colored image analysis technique which constitutes a very promising 141 

feature regarding its industrial application. The difference between these values can be 142 

attributed to several phenomena: first, the preparation of slices is a critical step and often leads 143 

to the overestimation of the actual air void content as some powder particles may be stuck in 144 

non perfectly flat regions such as asperities on aggregates, second, the CNN model is less error-145 

prone, and its results are reproducible, which is not the case in experimental samples 146 

preparation. 147 

 148 



 

 

3.2 Open-source code availability and website deployment 149 

Source code is available on a GitLab instance19. Code has been divided between the training 150 

procedure and the files related to detection on concrete images (image split, model inference 151 

and final image merge). Once public, all the contributions to the source code will be allowed. 152 

The open-source strategy of the model is given in Fig. 3. The user can run the source code using 153 

its own image and a Python interpreter (Option A). In the future, a dedicated website might be 154 

implemented to facilitate the inference (Option B). 155 

 156 

4. Conclusions 157 

In this article, an open-source deep learning instance segmentation model has been developed 158 

to detect air voids in cementitious materials using uncolored slices and without any other human 159 

intervention (except during the polishing step). Based on the state-of-the-art Mask R-CNN 160 

model with a Resnet-101 backbone architecture, the model has been trained to accurately detect 161 

air voids with a circular or an irregular shape within a wide range of cementitious materials. 162 

The principle of the model has been presented, and its performance has been quantified. The 163 

main results can be summarized as follows: 164 

- The adapted Mask R-CNN model has then been trained using various concrete and 165 

mortar training images on a commercial GPU 166 

- Thousands of air voids can be easily detected with the model in some minutes and clear 167 

boundaries can be drawn between the instances 168 

- The detection of pores on large-scale concrete sections has been performed with good 169 

precision (mAP=0.6452) using a novel strategy combining the model results on full-170 

size images and reduced-size images 171 



 

 

- The model predictions agree with the experimentally measured fresh-state air content, 172 

while air void content can be overestimated using the manual contrast enhancement 173 

method. 174 
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Table 1. Mix proportion of concrete validation set (kg/m3) 228 

Cement Sand 

0/4 

Gravel 

4/10 

Gravel 

10/20 

Water Admixture 1 Admixture 2 AEA w/c 

385 795 244 701 171 3.08 0.963 0.501 0.42 

385 795 244 701 171 3.08 0.963 0.193 0.42 

385 795 245 701 181 3.08 0.963 0.231 0.42 

350 880 918 - 162 2.275 0.350 0.420 0.44 

385 850 289 640 169 1.925 - 0.270 0.45 
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a) 

 
b) 

 
Fig. 1. Deep Learning air void detection algorithm: a) adapted Mask R-CNN architecture, b) inference 231 

strategy on large-scale concrete images and comparison with powder-treated sections. 232 
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a) 

 

b) 

 

Fig. 2. Comparison example of the model to manual air void image analysis: a) binary image of the 234 

added predictions on the full-size image and on the reduced-size image, b) binary image of the voids 235 

detected using the manual analysis. 236 
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 238 

Fig. 3. Open-source code availability and associated usage options. 239 


