
HAL Id: hal-03617649
https://hal.science/hal-03617649

Submitted on 23 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Influence Functions for Dataset Exploration
and Cleaning

Agustin Martin Picard, David Vigouroux, Petr Zamolodtchikov, Quentin
Vincenot, Jean-Michel Loubes, Edouard Pauwels

To cite this version:
Agustin Martin Picard, David Vigouroux, Petr Zamolodtchikov, Quentin Vincenot, Jean-Michel
Loubes, et al.. Leveraging Influence Functions for Dataset Exploration and Cleaning. 11th Euro-
pean Congress Embedded Real Time Systems (ERTS 2022), Jun 2022, Toulouse, France. pp.1-8.
�hal-03617649�

https://hal.science/hal-03617649
https://hal.archives-ouvertes.fr


Leveraging Influence Functions for Dataset
Exploration and Cleaning

Agustin Martin Picard∗†, David Vigouroux†, Petr Zamolodtchikov‡,
Quentin Vincenot∥†, Jean-Michel Loubes§, Edouard Pauwels¶

∗ Scalian, † IRT Saint Exupéry, ‡ University of Twente, ∥ Thales Alenia Space,
§ Institut Mathématique de Toulouse, Université Paul Sabatier, ¶ IRIT, CNRS, Université de Toulouse,

Abstract—In this paper, we tackle the problem of finding
potentially problematic samples and complex regions of the input
space for large pools of data without any supervision, with the
objective of being relayed to and validated by a domain expert.
This information can be critical, as even a low level of noise
in the dataset may severely bias the model through spurious
correlations between unrelated samples, and under-represented
groups of data-points will exacerbate this issue. As such, we
present two practical applications of influence functions in neural
network models to industrial use-cases: exploration and clean-
up of mislabeled examples in datasets. This robust statistics tool
allows us to approximately know how different an estimator
might be if we slightly changed the training dataset. In particular,
we apply this technique to an ACAS Xu neural network surrogate
model use-case[14] for complex region exploration, and to the
CIFAR-10 canonical RGB image classification problem[20] for
mislabeled sample detection with promising results.

Keywords: Intelligent Systems, Artificial Neural Networks,
Influence functions, Dataset Exploration, Mislabeled Sample
Detection.

I. INTRODUCTION

In recent times, the field of artificial intelligence (AI)
and machine learning has been shifting to a paradigm with
an extreme reliance on huge, over-parametrized models and
equally large pools of data. These models leverage correlations
between samples of the same class to perform their predictions
with an impressive precision on domains ranging from image
classification [20, 8], object detection [8, 22] and semantic
segmentation [22, 6] in computer vision, to sentiment analysis
[23] and natural language translation [16] in natural language
processing (NLP). The exponential growth of widely available,
vast amounts of data for these applications has been a major
catalyst in this process, and along with it comes the need to
validate it and clean it.

Traditionally, domain experts would be requested to perform
this task, but when dealing with millions of examples, it
becomes impossible to realistically verify each one. As such,
there has been an emergence of different techniques to remedy
this issue by automatically proposing interesting samples that
might need to be verified before integration into the dataset.

Related work

Namely, Koh et al. recovered a classical statistics tool and
adapted it to differentiable statistical models and applied it to
dataset cleaning and white-box model explainability [18] with
interesting results in the former task. It is this formulation that

we will be employing in this work. They later went further
and studied the effect groups of data-points have on models
in [17], with Basu et al. providing a second-order formulation
that takes into account pairwise interactions between samples
[3]. Choosing a different starting point, Giordano et al. have
proposed alternative formulations based on the infinitesimal
jack-knife for first [9] and higher order approximations [10],
where they also provide bounds on the error incurred during
the approximation.

More recently, Kong et al. have adapted the notion of
influence function to Variational AutoEncoders in [19], where
they address the problem of computing the loss of test samples
over the expectation over the encoder, and they apply it to
dataset cleaning tasks on the MNIST [21] and CIFAR-10 [20]
computer vision datasets. With another application in mind,
Alaa et al. have employed higher-order influence functions to
measure uncertainty in deep learning models [1], showcasing
the numerous applications of this tool.

There are also numerous techniques for estimating the
influence of training samples based on other principles. In
[32], the authors propose to leverage the representer theorem
[26] to find the training points that contribute the most –
both positive and negatively – to the model’s output. In
particular, they apply this technique to offer explanations to
the neural network’s decisions. With the same application in
mind and basing themselves off of the same principle, Sui et
al. derive a technique that employs a local Jacobian Taylor
expansion instead of re-fitting a new output layer [30] – as
in [32]. They also measure its capacity to detect mislabeled
examples in very noisy scenarios. Finally, in [25], Pruthi et
al. propose to compute a first-order approximation of the
influence function by capitalizing on the model’s checkpoints
saved during the training process. This allows them to spare
themselves the difficulties related to handling with hessian
matrices of considerable size – a problem that, depending on
the dimensionality of the task, can complicate matters in our
case.

However, they all performed tests on canonical datasets
and focused on single model architectures. In contrast,
in this work, we successfully demonstrate the utility of
influence functions on practical industrial applications,
namely on the ACAS Xu use-case, and we perform exper-
iments on multiple types of models and training schedules
to conclude that they constitute a critical component to



obtaining satisfactory results.
In practice, we know that mislabeled data-points heavily

influence the shape of the decision boundary, and thus, when
fixed, force the optimal model to change drastically to accom-
modate this deformation. In much the same way, removing
samples from insufficiently dense regions of the input space
will result in a model whose parameters are significantly
different. However, it would be prohibitively time-consuming
to re-train a model leaving out one sample at a time in
most use-cases. This is why we turned to the concept of the
influence function, that allows us to approximately measure the
importance of each data-point without the need for expensive
re-trainings – assuming certain criteria are met.

II. INFLUENCE FUNCTIONS

A. Theory

In the literature of classical robust estimation, the question
of how to appropriately measure the influence of subsamples
of data on a given estimator is often raised [11, 5, 13]. In
other words, how an estimator would behave if some of the
data-points were not provided. An accurate way to answer
this question would be to re-fit the estimator on a dataset with
these points held-out. However, for modern models on high-
dimensional data, this process can be computationally very ex-
pensive and time-consuming. Fortunately, when working with
neural network models, it is possible to leverage any of the
modern, widely available automatic differentiation frameworks
to approximate the answer.

In [18, 17], the authors adapt the concept of influence
function to neural networks trained using empirical risk min-
imization (ERM) and leveraging the automatic calculation of
gradients.

Definition 1. Let z1, ..., zn be a group of training points,
where zi = (xi, yi) ∈ X ×Y – where X and Y are the input
and output spaces respectively –, θ ∈ Θ be a set of parameters,
ℓ(z, θ) a loss function, and θ̂ = argminθ∈Θ

1
n

∑n
i=1 ℓ(zi, θ)

the empirical risk minimizer. Then, they posit that the influence
that a test point ztest has in the model’s weights induced by
infinitesimally up-weighting a data-point z is equal to [18]:

Iup,loss (z, ztest) = ∇θℓ
(
ztest, θ̂

)T

H−1

θ̂
∇θℓ

(
z, θ̂

)
, (1)

where Hθ̂ = 1
n

∑n
i=1 ∇2

θℓ
(
zi, θ̂

)
is the average Hessian with

respect to the model’s weights.

This formulation requires us to make some very strong as-
sumptions about the underlying problem. Namely, we assume:

1) the loss ℓ : (x, y, θ) 7→ ℓ (fθ(x), y) to be convex and
twice continuously differentiable.

2) that ∃θ0 ∈ Rd such that ∇θE [ℓ (fθ0(x), y)] = 0.
3) the matrix Hθ̂ to be invertible.
These hypotheses are reasonable when the model has been

trained long enough to be close to a local first and second-
order minimum. However, they can constrain the applicability
of this formulation considerably, but to work around them,

we may limit ourselves to the regression – linear or logistic,
depending on the task – between the embedding engendered
by the feature extraction chain (from the input to the last
layer of the neural network) and the output. If this embedding
was created carefully enough, the first and last assumptions
should be true, and the second one, approximately verified
(∇θE [ℓ (fθ0(x), y)] ≈ 0). This also allows us to drastically
reduce the computational cost associated to these calculations
for the large models that are typically used in high-dimensional
applications.

Returning to Eq. 1, when z = ztest, this quantity is exactly
identical to the influence measure introduced by Cook in [5],
also known as Cook’s distance, and we will apply this concept
to our practical applications.

B. Implementation

Up until now, we have considered a theoretical problem
leaving out all possible practical issues we might run into,
but it turns out that the exact computation of Cook’s distance
through the formulation we described above can raise plenty
of technical challenges. Namely, calculating the hessian – and
thus, its inverse – can be extremely computationally intensive,
and even impossible depending on the amount of weights our
model has, as this matrix grows quadratically in size with the
model’s parameters.

The first measure to alleviate the computational burden is
to reduce the amount of parameters to consider during the
estimation of the H−1

θ̂
. In particular, we considered only

the neural network’s last layer containing trainable weights,
thus both reducing the size of the hessian and verifying the
hypothesis we need for accurate calculation of these quantities.

Secondly, when this does not suffice to render the problem
tractable, it is still possible to estimate the inverse-hessian-
vector product directly without explicitly computing the hes-
sian by using a Conjugate Gradient Descent algorithm [29].
Furthermore, by leveraging forward-over-backward automatic
differentiation, we can do so in a very memory-efficient
manner. However, although this scheme has been successfully
implemented, it was not employed for the results we showcase
below; we do estimate the hessian matrix of the loss with
respect to the model’s weights in our experiments.

C. Methodology

Intuitively, we can use the concept of influence introduced
in 1 to obtain a measure of how ”interesting” a data-point in
the training dataset is to a given model. If we consider that
those that are difficult to learn will be so for any statistical
model, we can use the information relayed by these influence
functions to assign a value of interest to each data-point and
provide them to the user for validation.

It is important to note that we will be focusing on the
influence functions with respect to the neural network’s
last layer. This not only renders the computation considerably
more memory-efficient, but also places us closer to the hy-
potheses that are necessary for accurate computation of these
values.



In all of our experiments and for both of the different ap-
plications – detection of important data-points and mislabeled
example detection –, the procedure we followed was to:

1) Train a neural network model until convergence on
80%/20% training/test dataset splits as it is convention-
ally done.

2) Compute the value of Cook’s distance for each training
point separately.

3) Sort the training dataset by its data-points’ Cook’s
distance.

4) Consider the top-most points – i.e. those whose Cook’s
distance was the highest – as important or mislabeled,
and request human input for validation.

By performing this procedure, we intend to determine
which training points are maximally important to the model,
and without whom the final neural network would be the
most different. This typically means samples that are under-
represented in the dataset – as the model would rely heavily
on the little information it has to learn how to predict in those
cases –, mislabeled data-points – for much the same reason –,
or those that lie right in the decision boundary – as they help
the model fix it correctly. In our case, examples coming from
all three situations are useful for our tasks.

Concerning the detection of mislabeled samples, as this
technique aims to provide us with the training points that
would change our model the most if they were removed, we
posit that it could help in their detection. These data-points,
that, due to a variety of conditions during the consolidation of
the dataset, have labels that do not correspond to the correct
classes, would introduce confounding factors to our model
during the training process. As such, we want to rid ourselves
of them, and to do so as efficiently as possible, as inspecting
the whole dataset one example at a time might be prohibitively
time-consuming for large pools of data. Thus, we postulate
that by sorting our data-points by their Cook’s distance value,
we should be able to accelerate this process and find the
mislabeled examples among the most influential points in the
dataset.

As a matter of fact, this technique has already been used
as a baseline for other methods [32, 25], but with what seems
to be different model configurations and training schedules.
Indeed, by testing out different architectures, learning rate
decay functions and layer regularization strategies, we have
found that these have a considerable impact on its capacity to
single out mislabeled examples.

III. RESULTS

For each of the tasks, we started by testing our intuitions on
synthetically generated toy datasets, and then moved on to the
actual use-cases. In particular, for the detection of interesting
data-points, we focused on simple, two-dimensional binary
classification datasets with an increasing level of complexity,
and then applied what we had learned to a drone collision
avoidance problem. For the mislabeled point detection, we
followed the same procedure: we corroborated that we were
able to correctly identify a single mislabeled data-point on a

simple, two-dimensional binary classification synthetic dataset,
and then moved on to noisy versions of the CIFAR-10 image
classification dataset.

A. Detection of interesting training points

Experiments on toy examples

As a means to test the validity of this mathematical tool
in the context of deep learning models, we began with some
examples where we controlled perfectly the inputs and already
knew what to expect – i.e. some toy examples. In particular,
we generated groups of points in two-dimensional space,
with different decision boundaries and local down-sampling
strategies to corroborate our intuitions.

For all the following toy problems, a simple 2-hidden layer
multi-layer perceptron with sigmoid activations was employed.
They were all trained until convergence on splits with 80% of
the whole data being used during the training process, and the
remaining 20% was held out for validation. Then, we applied
our methodology and plotted the whole training dataset with
the transparency set as a function of each point’s influence.

In Fig. 1, we showcase the results, and we observe that
for each problem, the most influential points are always close
to the decision boundary. This applies to the more complex
examples as well, telling us that our intuitions about the
capabilities of the power of this tool might be correct. In
particular, it is interesting to note how the data-points near
under-sampled parts of the boundary of the more complex
example carry some influence, as otherwise the model would
not know where to place its decision boundary. Similarly,
we observe the whole region with mislabeled samples in the
noisy boundary toy example to be influential, as the model
is not quite confident inside of it and is forced to memorize
each data-point, thus rendering them important to the model
in question. This last intuition will be important for the
mislabeling sample detection task later on.

Experiments on ACAS Xu

The ACAS Xu problem [14] is an unmanned drone collision
avoidance use-case, where, knowing some information about
the drone and the intruder’s states, and the previous action that
was taken, a look-up table (LUT) is employed to compute the
next optimal step our drone has to take to successfully avoid
a collision between the two aircraft. Considering that these
decisions will depend on 7 variables – 6 describing the current
state of both drones + 1 for the previous action –, this cost
table can be quite difficult to manipulate efficiently, specially
due to the fact that it contains 93 million points.

The six variables that are presented in Fig. 2 are:
• ρ [ft]: The distance from ownship to intruder.
• θ [rad]: The angle to intruder relative to ownship heading

direction.
• ψ [rad]: The heading angle of the intruder relative to

ownship heading direction.
• vown [ft/s]: The speed of the ownship.
• vint [t/s]: The speed of the intruder.
• τ [sec]: Time until the loss of vertical separation.



(a) Unit circle dataset (b) Influential points of the
unit circle dataset

(c) Unit circle dataset with a
down-sampled region

(d) Influential points of the
unit circle dataset with a
down-sampled region

(e) Unit circle dataset with
noisy boundary

(f) Influential points of the
unit circle dataset with noisy
boundary

(g) More complex 2D
dataset with a line boundary
that transforms into a sinus

(h) Influential points of the
more complex 2D dataset.

Fig. 1: The synthetic 2D toy datasets and their corresponding most influential
samples according to simple two-layer perceptrons, in increasing complexity
from top to bottom. In the scatter plots on the left, each color indicates the
class label for each point. On the right, all the points are colored blue and
their transparency is a function of their influence value.

Consequently, a solution to reduce its cost is to train a neural
network to operate as a surrogate model, which, in inference,
would be able to produce predictions much faster and at a
much lower memory cost. This technique would allow us to
accurately approximate the predictions of the 2GB+ table with
a simple ≈3MB neural network[14, 7].

Fig. 2: Illustration of the ACAS Xu problem, as per [14].

Placing ourselves in this frame of work, we wish to increase
the confidence we have on what the model is learning without
having to manually search for regions of the input space that
may be hard to learn for the model. As such, will apply the
methodology described above to determine whether we need
to gather more data on specific regions with the help of a
human domain expert.

To do so, we trained a simple, 6-hidden-layer multi-layer
perceptron with ReLU activations with an Adam optimizer
on 8096 sized mini-batches with the table’s contents for 200
epochs until convergence, reaching 99% accuracy. We chose
to optimize directly for the classification between the different
5 actions – ‘COC’ (clear of conflict), ‘WR’ (weak right), ‘WL’
(weak left), ‘R’ (right) and ‘L’ (left) – and starting always from
the state ’COC’, to keep the optimization and interpretation
of the results simple, as well as be able to easily apply our
current formulation of the influence functions. Additionally,
as it is typically done in these sorts of scenarios, we held out
20% of the dataset for validation, which left us with 80% for
training.

Thus, we applied the influence function’s method to single
out the most influential datapoints in the training dataset. For
these points, we plotted the two-dimensional cuts obtained by
sweeping the range (i.e. the distance to the intruder) and the
theta (i.e. the angle between the ownship and the intruder)
while keeping the rest of the parameters constant. These plots
simulate a situation where the intruder moves in a straight
line and our drone tries to avoid it. We expect to find some
interesting scenarios, and the most influential points to be close
to the decision boundary.

We observe from Fig. 3 that these influential regions usually
contain either groups of points that are quite close to each other
but belong to different classes, or are sparsely sampled. In both
cases, the influence is mostly monopolized by the samples that
are close to the decision boundary.

Once these regions have been identified, we can present
them to a domain expert for further analysis and validation.
If they are indeed important for the task, more data could be
gathered to facilitate the learning process near them, and if
not, then they can be filtered out to prevent the addition of
confounding data-points.

In particular, when we showed our results to some experts
on the ACAS Xu drone collision avoidance problem, they



Fig. 3: Some 2D cuts of influential regions in the input space.
The scatter plot on the right of each sub-figure represents the
ground-truth’s decisions, and the one on the left, the model’s.
Each dot is a point in the training dataset, and its size depends
on its influence, bigger meaning more influential.

found some interesting patterns: in most of the most influential
2D cuts we generated, there was either one or both drones
that were traveling at high speeds. Additionally, they found
that there were some situations where the region was very
sparsely sampled, and contained some very sudden changes in
the LUT’s decisions – i.e. switching from left to right and back
in contiguous data-points. This is important information to
have before finishing the consolidation of the training dataset,
as it could guide experts to push for asking for more data from
the regions in input space in question.

B. Mislabeled sample detection

Experiment on a toy example

As we have done for the previous task, we test our intuitions
on a synthetic dataset so as to be able to easily visualize and
understand the problem at hand. In this case, we will generate
a set of uniformly distributed points, with a decision boundary
at the center of the horizontal axis, of which one point will
have its label flipped.

In this experiment, we will attempt to trace the point’s
influence during the model’s training phase to verify whether
we can retrieve it successfully. Given the previous ones, we
would expect the point to dominate the rest as the model starts
to gradually overfit on it to minimize the training loss. As the
problem is quite a simple one, we solve it with a simple, one-
hidden-layer MLP, and we minimize a binary cross-entropy
loss.

(a) 500 epochs (b) 2000 epochs

(c) 4000 epochs (d) 8000 epochs

(e) 12000 epochs (f) 20000 epochs

Fig. 4: Influence of a simple 2D binary classification dataset
as training progresses. Blue and red indicate each class and
the yellow data-point has been incorrectly labeled as blue in
the red zone (i.e. has been mislabeled). The size of each point
is proportional to its Cook’s distance.

In Fig. 4, we observe that the model attributes a high
influence to the decision boundary points at first, but as
training progresses and it starts to overfit, the influence shifts



to the points close to the mislabeled one – showing that the
model is forced to bend its decision boundary to accommodate
this outlier –, and ends up with only the mislabeled point
dominating the rest of the dataset in terms of influence value.

Experiments on CIFAR-10

Now that our intuitions have been confirmed, we will gauge
the informative power of this technique on the CIFAR-10[20]
RGB image classification dataset. This problem consists on
assigning the correct category to natural images of 32 × 32
pixels and belonging to 10 classes ranging from cars to frogs
and in different contexts.

In particular, we have tested the EfficientNetB0[31],
ResNet-20[12] and VGG-19[27] architectures, trained with
Adam[15] optimizers and custom learning rate schedules, and
Dropout[28] and layer-wise elastic net reguralizations (L1L2).
For each of these configurations, we have trained sets of 6–12
models on the CIFAR-10[20] dataset on two noisy regimes:
≈ 0.05% and ≈ 0.01% of randomly changed labels throughout
the training set. These proportions of noise were chosen to
simulate what we would expect to have on standard, clean
data in industrial use-cases.

In Fig. 5, we observe that, in most cases, our technique of
searching the most influential samples for mislabeled images
is a good strategy for cleaning up a slightly noisy dataset.
Furthermore, it seems that the choice of architecture can have
a considerable impact on the results.

In particular, as we are comparing ROCs, we expect the
best curves to be those that get as close to as possible to
detecting every mislabeled image with as little samples as
possible. Thus, we notice that the EfficientNetB0 architecture
does not seem suitable for this task as the VGG-19, which
itself performs quite well if we exclude the outliers. Ideally,
we would not have any poorly performing models from a given
architecture, and this seems to be the case for the ResNet-20
models. This is why we used this last architecture for the rest
of the experiments.

Additionally, we tested the effect of adding elastic net
regularization to the classification head of the ResNet-20, and
of training with a smaller learning rate for more epochs. These
results are presented in Fig. 6.

In [2], it was demonstrated that it is possible to more
accurately compute influence values on layers that have been
trained with layer-wise regularization, and in Fig. 6a, we
corroborate this and we obtain an even better performance.
However, contrary to our intuition, by training for a longer
period of time – and potentially overfitting the model on the
training set –, we severely deteriorate the network’s capacity
to retrieve these samples. We surmise that once it has reached
convergence, the cross-entropy loss encourages the model to
assemble all the points from each class together and form
tightly knit clusters, and to separate these groups from each
other as much as possible. This leads to it not being able
to differentiate individual points through their influence, and
hence, to not be capable of detecting these artificially gener-
ated mislabeled images.

(a) EfficientNetB0

(b) ResNet-20

(c) VGG-19

Fig. 5: ROC curves for the detection of mislabeled examples
for both noise regimes. In each case, we plot the mean ROC
in solid blue, each individual ROC in transparent blue, and the
random baseline in orange.

These two phenomena of performing better when con-
strained by the L1L2 regularization and worse when overfit-
ting are the two sides of the same coin: once an unconstrained
network starts approaching convergence, it can decrease the
surrogate classification loss (i.e. the negative log-likelihood or
cross-entropy loss) without altering the 0-1 loss – the actual
loss we would like to optimize, that indicates whether an
element was correctly classified – by increasing its Lipschitz
constant [4]. This can be easily demonstrated by leveraging
some of the softmax activation function’s properties when the
neural network has already achieved the 100% accuracy in
the training dataset, but this phenomenon has been observed
to also occur slightly before reaching this point [4]. In layman
terms, this means that the model will attempt to maximally



(a) ResNet-20 with L1L2

(b) ResNet-20 with slower schedule

Fig. 6: ROC curves for the detection of mislabeled examples
for both noise regimes when training the model with an L1L2
constraint, and a slower learning rate schedule. In each case,
we plot the mean ROC in solid blue, each individual ROC in
transparent blue, and the random baseline in orange.

distance the points from different classes, theoretically con-
verging to Nclass clusters of points infinitely far away from
each other in the form of a simplex [24].

We leave for future work the analysis of when this happens
and how to guarantee that our model has been correctly trained
for useful information retrieval through influence functions.

IV. CONCLUSIONS

Initially applied to simple models and computed in its exact
form, the influence function fell into disuse when models
and datasets started to grow, making the procedure practically
intractable. However, with the advent of frameworks that effi-
ciently implement auto-differentiation and the popularization
of GPUs capable of greatly accelerating computation times, it
became possible to develop an approximate version specific
to neural network models.

In this work, we have successfully leveraged them to deter-
mine influential points in the dataset and retrieve potentially
problematic regions on the ACAS Xu use-case, and for the
mislabeled example detection on the CIFAR-10 image classi-
fication dataset. In both cases, despite the size and complexity
of the models at hand, the results were quite impressive, and
come to show of its usefulness in real-life scenarios.

ACKNOWLEDGMENTS

This work was conducted as part of the DEEL project1.
Funding was provided by ANR-3IA Artificial and Natural
Intelligence Toulouse Institute (ANR-19-PI3A-0004). The au-
thors thank Florence de Grancey, Claire Pagetti and Adrien
Gauffriau for their input on our results on the ACAS Xu
problem.

REFERENCES

[1] Mihaela van der Schaar Ahmed M. Alaa. Discriminative
jackknife: Quantifying uncertainty in deep learning via
higher-order influence functions. In International Con-
ference on Machine Learning, 2020.

[2] Samyadeep Basu, Philip Pope, and Soheil Feizi. Influ-
ence functions in deep learning are fragile, 2021.

[3] Samyadeep Basu, Xuchen You, and Soheil Feizi. On
second-order group influence functions for black-box
predictions. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 715–724. PMLR, 13–18 Jul
2020.

[4] Louis Béthune, Alberto González-Sanz, Franck Mamalet,
and Mathieu Serrurier. The many faces of 1-lipschitz
neural networks, 2021.

[5] R. Dennis Cook and Sanford Weisberg. Characterizations
of an empirical influence function for detecting influen-
tial cases in regression. Technometrics, 22(4):495–508,
1980.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understand-
ing, 2016.

[7] Mathieu Damour, Florence De Grancey, Christophe
Gabreau, Adrien Gauffriau, Jean-Brice Ginestet, Alexan-
dre Hervieu, Thomas Huraux, Claire Pagetti, Ludovic
Ponsolle, and Arthur Clavière. Towards certification of
a reduced footprint acas-xu system: A hybrid ml-based
solution. In Ibrahim Habli, Mark Sujan, and Friedemann
Bitsch, editors, Computer Safety, Reliability, and Secu-
rity, pages 34–48, Cham, 2021. Springer International
Publishing.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[9] R. Giordano, W. Stephenson, Runjing Liu, Michael I.
Jordan, and T. Broderick. A swiss army infinitesimal
jackknife. In AISTATS, 2019.

[10] Ryan Giordano, Michael I. Jordan, and Tamara Broder-
ick. A higher-order swiss army infinitesimal jackknife,
2019.

1www.deel.ai



[11] Frank R. Hampel. The influence curve and its role in
robust estimation. Journal of the American Statistical
Association, 69(346):383–393, 1974.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition, 2015.

[13] Louis A. Jaeckel. The infinitesimal jackknife.
https://faculty.washington.edu/fscholz/Reports/
InfinitesimalJackknife.pdf.

[14] Kyle D. Julian, Mykel J. Kochenderfer, and Michael P.
Owen. Deep neural network compression for aircraft col-
lision avoidance systems. Journal of Guidance, Control,
and Dynamics, 42(3):598–608, Mar 2019.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization, 2017.

[16] Philipp Koehn. Europarl: A parallel corpus for statistical
machine translation. In MTSUMMIT, 2005.

[17] Pang Wei Koh, Kai-Siang Ang, Hubert H. K. Teo, and
Percy Liang. On the accuracy of influence functions for
measuring group effects, 2019.

[18] Pang Wei Koh and Percy Liang. Understanding black-
box predictions via influence functions. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th In-
ternational Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
1885–1894, International Convention Centre, Sydney,
Australia, 06–11 Aug 2017. PMLR.

[19] Zhifeng Kong and Kamalika Chaudhuri. Understand-
ing instance-based interpretability of variational auto-
encoders, 2021.

[20] A. Krizhevsky. Learning multiple layers of features from
tiny images. 2009.

[21] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist
handwritten digit database. ATT Labs [Online]. Avail-
able: http://yann.lecun.com/exdb/mnist, 2, 2010.

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona,
Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft coco: Common objects in context, 2015.

[23] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies,
pages 142–150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics.

[24] Vardan Papyan, X. Y. Han, and David L. Donoho.
Prevalence of neural collapse during the terminal phase
of deep learning training. Proceedings of the National
Academy of Sciences, 117(40):24652–24663, Sep 2020.

[25] Garima Pruthi, Frederick Liu, Mukund Sundararajan,
and Satyen Kale. Estimating training data influence by
tracking gradient descent. CoRR, abs/2002.08484, 2020.

[26] Bernhard Schölkopf, Ralf Herbrich, and Alex J. Smola. A
generalized representer theorem. In David Helmbold and
Bob Williamson, editors, Computational Learning The-
ory, pages 416–426, Berlin, Heidelberg, 2001. Springer

Berlin Heidelberg.
[27] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recognition,
2015.

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(56):1929–1958, 2014.

[29] Trond Steihaug. The conjugate gradient method and trust
regions in large scale optimization. SIAM Journal on
Numerical Analysis, 20(3):626–637, 1983.

[30] Yi Sui, Ga Wu, and Scott Sanner. Representer point
selection via local jacobian expansion for post-hoc clas-
sifier explanation of deep neural networks and ensemble
models. In Thirty-Fifth Conference on Neural Informa-
tion Processing Systems, 2021.

[31] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks, 2020.

[32] Chih-Kuan Yeh, Joon Sik Kim, Ian En-Hsu Yen, and
Pradeep Ravikumar. Representer point selection for
explaining deep neural networks. CoRR, abs/1811.09720,
2018.

https://faculty.washington.edu/fscholz/Reports/InfinitesimalJackknife.pdf
https://faculty.washington.edu/fscholz/Reports/InfinitesimalJackknife.pdf

	Introduction
	Influence Functions
	Theory
	Implementation
	Methodology

	Results
	Detection of interesting training points
	Mislabeled sample detection

	Conclusions

