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PATH TRIANGULATION, CYCLES AND GOOD COVERS ON
PLANAR CELL COMPLEXES.

EXTENSION OF J.H.C. WHITEHEAD’S HOMOTOPY SYSTEM
GEOMETRIC REALIZATION AND E.C. ZEEMAN’S

COLLAPSIBLE CONE THEOREMS.

JAMES F. PETERS

Dedicated to J.H.C. Whitehead & S.V. Banavar

Abstract. This paper introduces path triangulation of points in a bounded,
simply connected surface region, replacing ordinary triangles in a Delaunay
triangulation with path triangles from homotopy theory. A path triangle
has a border that is a sequence of paths h : I → X, I = [0, 1]. The main
results in this paper are that (1) a cone D × I collapses to a path triangle
h△K, extending E.C. Zeeman’s dunce hat cone triangle collapse theorem, (2)
an ordinary path triangle with geometrically realized straight edges generalizes
Veech’s billiard triangle, (3) a billiard ball K × I collapses to a round path
triangle geometrically realized as a triangle with curviliear edges, (4) a geomet-
rically realized homotopy system defined in terms of free group presentations
of path triangulations of finite cell complexes extends J.H.C. Whitehead’s ho-
motopy system geometric realization theorem and (5) every path triangulation
of a cell complex is a good cover.
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1. Introduction

In this paper, the conventional Delaunay triangulation of a set of points is re-
placed by a path triangulation of distinguished points P on a bounded, simply
connected surface S, resulting in a collection of path triangles geometrically real-
ized as curvilinear triangles that provide a good cover of the surface. This form of
triangulation results in a collection of path-connected points in overlapping path
cycles.

A path h : [0, 1] → S is a continuous mapping from the unit interval to a set
of points P in a bounded, simply connected surface S. The surface S is simply
connected, provided every path h has end points h(0), h(1) ∈ P and h maps to
no self-loops.

Paths either lie entirely on a surface boundary in the planar case or puncture
a surface in the non-planar case. Paths that puncture a surface are called cross-
cuts. A cross cut path (also called an ideal arc [8, §3, p.11]) has both ends
in P and path interior in the interior of S. A pair of points p, q in P are called
orphan points, provided there is no path h with endpoints h(0) = p and h(1) = q.
Surface cross cuts are useful in collapsing 3D shapes such as cones and spheres to
2D triangles. A surface cross section is a collection of cross-cuts.

Two forms of path triangles are possible: (1) surface path triangle with edges
and interior entirely on the surface boundary or (2) cross-cut path triangle with
edges on the surface boundary and with triangle interior in the interior of the
surface.

A path triangulation of a bounded surface S (denoted by h4nS) is geometrically
realized as a collection of 1-cycles on sequences of triangle edges. A 1-cycle is a
sequence of edges with pairwise shared vertexes with no end vertex, geometrically
realized as a simple closed curve. Let p, q ∈ h4n E for a selected vertex p (called
a generator) and any other vertex q. A move operation +(p, q) → kp results from
traversing the k edges from p to reach q, leading to a free group presentation of
E. Free group presentations of path triangulations result in an extension of the
homotopy geometric realization theorem introduced by J.H.C. Whitehead [20, 21],
namely,

Theorem [21, Theorem 2,§6]. A given homotopy system, ρ, has a geometric
realization, if dim≤ 4.

In its simplest form, a free group presentation of a triangulation ρ is a free
group, which is realized geometrically as a collection of path-connected 1-cycles
(see Theorem 7).

Path triangulation leads to the geometric realization of new forms of 2-cells
(triangles) [10], homotopic nerves [9] and good covers [11] on a planar triangulated
cell complex.

Different forms of path triangles result from an extension of the Zeeman’s col-
lapsible dunce hat theorem [23]: A dunce hat cone D× I is collapsible to a triangle
(see Theorem 1 and Lemma 2). A cell complex K collapses to a subcomplex L ⊂ K,
provided there is a finite sequence of elementary collapses starting with K and end-
ing with L (denoted by K ↘ L) [23, p.342] Here is Zeeman’s conjecture (1) (still
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open): If K is a contractible 2-complex, then K × I is collapsible,i.e., K collapses
to a single vertex v in K via a sequences of elementary collapses Ki:

K = K0 ↘ K1 ↘ Ki ↘ · · · ↘ Kn = v.

For a recent study of Zeeman’s conjecture (1), see A. Kupers [6, §2, p. 37].
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Figure 1. Three Paths that Construct the Sides of a Path Trian-
gle h 4 E in a CW space K, leading to its geometric realization
|h 4 E| as a 2-cell (triangle)
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Figure 2. Path-based triangulated Rotman-Vigolo Hawaiian fish
cell complex with nucleus vertex p ∈ int(h4n K)

2. Preliminaries

We assume that a bounded, simply connected surface S is Hausdorf, i.e., surface
points P in S reside in disjoint neighborhoods. A path triangulation K of surface
points (denoted by h4nK) maps to a collection of triangles that provide an al-
ternative to Delaunay triangulation [3, 4]. The basic building block in h4nK is a
path triangle denoted by h4E.
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Definition 1. Path.
Let I = [0, 1], the unit interval. A path in a space (S, P ) is a continuous map
h : I → S with endpoints h(0) = x0, h(1) = x1 ∈ P and h(t) ∈ S for t ∈ I [14,
§2.1,p.11]. The geometric realization of a path h is denoted |h|. �

Lemma 1. Every path has a geometric realization as an edge.
Proof. From Def. 1, a path h : I → X includes all points h(t), t ∈ [0, 1], i.e., we
have the closed set of points

{h(0), . . . , h(t), . . . , h(1)} , for 0 ≤ t ≤ 1,

which is geometrically realized as an edge |h| =
>
h(0)h(1) with h(t) ∈ int(|h|), t ∈

(0, 1) (interior of edge |h|). �
From Lemma 1, the geometric realization of a path h is a 1-cell (edge) |h| in

a cell complex. In attaching paths together to construct a path triangle E (see
Def. 4), the end result is a path cycle with a geometric counterpart |E| that is a
1-cycle.
Definition 2. 1-Cycle. In a CW space K [20], a 1-cycle E (denoted by cycE) in
a CW space K is a collection of path-connected vertexes (0-cells) on edges (1-cells)
attached to each other with no end vertex. �

Definition 3. Path-Connected.
A pair of 0-cells v, v′ in a cell complex K is path-connected, provided there is a
sequence of paths h1, . . . , hk, starting with h1(0) := v and ending with hk−1(1) =
hk(0) := v′. �

In defining a path triangle, we consider both the bounding edge as well as the
interior of the triangle. Consider the contour (bounding edge) of a planar cell
complex shape shE (denoted by bdy(shE)) in a CW complex.
Definition 4. Path Triangle.
A path triangle h 4 abc with a boundary bdy(h 4 abc) is a sequence of three
overlapping paths with no end path in a space X. Each path h ∈ h4 abc maps to
an edge ℓ ∈ X.

Each edge ℓ is an edge perpendicular to base >
bc, with an endpoint on either >

ab
or on >ac and ℓ ∩ bdy(h4 abc) 6= ∅. Let the interior int(h4 abc) be defined by the
homotopy f : X × I → Y , i.e.,

X =
{
ℓi ∈ h4 abc : ℓi ⊥

>
bc and ℓi ∩ bdy(h4 E) 6= ∅

}
.

Y = h4 abc.

f(ℓt) = ℓt ∩ bdy(h4 abc), t ∈ I.

= set of boundary points on h4 abc cut by ℓt.

int(h4 abc) = h4 abc \ f(ℓt), for all t ∈ I.

h4 abc = bdy(h4 abc) ∪ int(h4 abc).

In the plane, the geometric realization of h4E is a 2-cell (filled triangle) denoted
by |h4 E|. �

Remark 1. For example, a path triangle with an empty interior will result from
collapsing a hollow cone1 such as the one in Fig. 3. �

1Many thanks to Tane Vergili for pointing this out
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Figure 3. Zeeman Dunce Hat (cone) D × I collapses to a 2-cell
4E with path ℓi : I → D piercing D at ℓi(0) := p and
ℓi(1) := q.
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Figure 4. Zeeman Dunce Hat (filled cone) cell complex D × I
collapses to a filled Path Triangle h 4 E over the unit interval
I = [0, 1], i.e., D × I ↘ h 4 E, i.e., cone D × I collapses via
a homotopy to a path 2-cell (triangle) h 4 E.

Let D be a cone (a topological dunce hat [23]).

Theorem 1. [23, p.342].
D × I is collapsible.

E.C. Zeeman noted that a dunce hat [23] (cone) D is the simplest polyhedron
contractible via a homotopy f : D × I → cell complex Y , but not collapsible in
the sense of J.H.C. Whitehead [19, §3].

Zeeman’s dunce hat has a simply connected surface. For Riemann [12, p. 7],
a surface is simply connected, provided each cross-cut is a line that pierces the
interior of the surface. Here, a line is a path ℓ : I → 2R

2 with ℓ(t) piercing the
interior of cone D for t ∈ (0, 1).

Example 1. The collapse of a cone D × I to a triangle 4E is shown in Fig. 3.
This collapse results from the union of the paths ℓi : I → D that cut through the
interior of the triangle from points p on the edge of the cone to a points on a line
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segment >
bc that spans the space between the edges at the base of the cone, i.e.,

D × I = {ℓ0} ,
{ℓ0} ∪D \ {ℓ0} × I = {ℓ0, ℓ1} , · · · ,{

ℓ0, ℓ1, . . . , ℓi, . . . , ℓn−2[n]

}
∪D \

{
ℓ0, ℓ1, . . . , ℓi, . . . , , ℓn−1[n]

}
× I

=
⋃

ℓi

= 4E ∈ D.

In other words, the surface of cone D is simply connected so that each line in the
deformation of D to a triangle is a cross-cut path, which punctures the interior of
the cone between a surface boundary point p and a point q on a line >

bc spanning
the base of the cone. �

Lemma 2. Let 4abc be a triangle with vertex a at the top of a cone D with a
simply connected surface. And let base >

bc on 4abc be an edge on the base of D.
Then D × I ↘ 4abc.

Proof. From Theorem 1, D × I collapses. Let ℓ : I → 2R
2 be a path that puntures

D with ℓ(0) on the boundary of D and ℓ(1) on >
bc on the base of D. Then let the

homotopy f : D × I → 4abc be defined by

f(D, i) = ℓi ∩4abc = {pi} ∈ 4abc, with ℓi⊥
>
bc ∈ D.

4abc =
⋃

0<i≤
∣∣∣>bc∣∣∣

ℓi.

Hence, D × I collapses to 4abc.
�

Proposition 1. Let h4v1v2v3 be a path triangle with vertex v2 at the top of a filled
cone D with a bounded, simply connected surface. And let base >v1v3 on h4 v1v2v3
be on the base of D. Then D × I ↘ h4 v1v2v3.

Proof. To construct the interior of h 4 v1v2v3, let ℓi : I → Y be a path that
punctures the interior of solid cone 4v1v2v3. Then let

ℓi(t) = ℓi(t) ∩ int(4v1v2v3), t ∈ (0, 1) , ℓi⊥>v1v3 ∈ 4v1v2v3.

int(h4 v1v2v3) =
⋃

0<i<|>v1v3|
ℓi(t).
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To construct the edges which are paths of h4 abc, let paths hl, hr, hb : I → D be
defined as follows:

hl(0) := v1,

hl(1) := v2,

hl(t) = hl(t) ∩ int(>v1v2), t ∈ (0, 1)

hr(0) := v2,

hr(1) := v3,

hr(t) := hr(0) ∩ int(>v2v3), t ∈ (0, 1)

hb(0) := v1,

hb(1) := v3,

hb(t) := hb(0) ∩ int(>v1v3), t ∈ (0, 1) .

Then the proof is symmetric with the proof of Lemma 2 and the desired result
follows. �

Remark 2. A path triangle h4 E differs from a triangle in a Zeeman dunce hat
cone, since paths construct the bounding edges on h4 E. �

Example 2. From Lemma 2, a filled cone collapses to a path triangle. A sample
4v1v2v3 ∈ D collapsing of a cone D via a homotopy D × I to a path triangle
h4 v1v2v3 ∈ D (briefly, h4E) is shown in Fig. 4. Here, a sequence of three paths
h1, h2, h3 form the edges of the path triangle h4 E with

h1(0) = h3(1) := v1.

h1(1) = h2(0) := v2.

h3(0) = h2(1) := v3. �

The path triangle h4E in Example 2 has a geometric realization |h4 E|, which
is a filled Euclidean triangle with straight edges such as the ones in a Delaunay
trianglulation of a space X, i.e.,

I = [0, 1]

h1 : I → X,h2 : I → X,h3 : I → X.

h1 ∩ h3 = h1(0) := h3(1),

h1 ∩ h2 = h1(1) := h2(0),

h2 ∩ h3 = h2(1) := h3(0),

h3 ∩ h1 = h3(1) := h1(0),

bdy(h4 E) = {h1, h2, h3} (triangle boundary).
int(h4 E) 6= ∅ (nonvoid interior).

4E = bdy(h4 E) ∪ int(h4 E).

h4 E 7→ |h4 E| .

Example 3. A sample path triangle h4h1(0)h2(0)h3(0) and its geometric realiza-
tion |h4 v1v2v3| are shown in Fig. 1. From Lemma 1, we know that every path in
h4 h1(0)h2(0)h3(0) has a geometric realization as a 1-cell (edge). Here, triangle
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|4v1v2v3| is a geometric realization path triangle h4 h1(0)h2(0)h3(0), containing
a sequence of overlapping paths h1, h2, h3, i.e.,

h1, h2, h3 ∈ h4 E 7→ edge >v1v2 ∈ |4v1v2v3| , with
h1(0) := h3(1) := v1, h1(1) := h2(0) := v2 and
h1(t) := vertex p ∈ edge >v1v2, t ∈ [0, 1].

h1, h2, h3 ∈ h4 E 7→ edge >v2v3 ∈ |4v1v2v3| , with
h1(1) := h2(0) := v2, h2(1) := h3(0) := v3 and
h2(t) := vertex q ∈ edge >v2v3, t ∈ [0, 1].

h1, h2, h3 ∈ h4 E 7→ edge >v3v1 ∈ |4v1v2v3| , with
h2(1) := h3(0) := v3, h3(1) := h1(0) := v1 and
h3(t) := vertex r ∈ edge >v3v1, t ∈ [0, 1]. �

bc
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h1

h1(0)
= h3(1)
:= v1

h1(1)
= h2(0)
:= v2

h2

h3(0)
= h2(1):= v3

h3

h
◦
4E

bc

bc

bcv1

v2

v3

K × I
↙

Figure 5. Billiard ball cell complex K × I Zeeman-style col-
lapses to round Path Triangle h

◦
4E, i.e., sphere K × I collapses

via a homotopy to a path 2-cell (triangle) h
◦
4E.

Let K be a filled sphere in a space R3. A round triangle abc (denoted by
◦
4 abc ∈ K) is a sequence of edges on the circumference of a circle that lies on a
slice of a solid sphere with edges on the surface of the sphere.

Remark 3. Paths in a path triangle resemble trajectories of a particle in spacetime.
From a Physics perspective, a path triangle would be viewed as a sequence of tra-
jectories with overlapping endpoints. In keeping with W.A. Veech’s introduction of
triangular billiards [17], spheres in this work are called billiard balls. Unlike Veech’s
billiard triangles with straight edges, the homotopy collapse of a billiard ball results
in a round triangle. Round path triangles are useful in covering a cell complex with
a curvilinear boundary. For example, in the path triangles h4 E in the triangula-
tion h4n K of a cell complex K with curved edges such as those typically found in
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video frame foreground shapes, we have

K =
⋃

h△E∈h△nK

h4 E.

nerve NrvK =
⋂

h△E∈h△nK

h4 E 6= ∅.

and NrvK contracts to a vertex p in the intersection of the path triangles in h4nK.
In other words, h4n K provides a good cover of cell complex K.

Proposition 2. Let
◦
4 abc be a round path triangle in a billiard ball complex K in

a space X with triangle edges ab, ab, bc on the boundary of K. And let base bc on
h4 abc be an edge on the base of D. Sphere sphK × I ↘ h4 abc collapses to a
round triangle

◦
4 abc.

Proof. Replace cone D with sphere sphK and triangle 4abc with round triangle
◦
4E in the proof of Prop 1 and the desired result follows. �

Proposition 3. A sphere sphK × I ↘ h
◦
4 abc collapses to a round path triangle

h
◦
4E.

Proof. Replace triangle 4abc with round path triangle h
◦
4E in the proof of Prop. 2

and the desired result follows from Lemma 2. �

Example 4. A sample collapse of a billiard ball complex to a round triangle is
shown in Fig. 5. �

Theorem 2. Every path triangle has a geometric realization as a 1-cycle.

Proof. From Def. 4, a path triangle h4K is a collection of path-connected vertexes
with no end vertex and with nonvoid interior. From Lemma 1, the geometric
realization of each path in h 4 K is an edge in its geometric realization |4K|.
Consequently, the sequence of paths in h4K results in a sequence of 1-cells (edges)
attached to each other. Hence, from Def. 2, |4K| is a 1-cycle. �

A path-based triangulation of a cell complex K (denoted by h 4n K) is a
collection of path triangles in which adjacent path triangles either have a common
vertex or a common edge. The geometric realization of h 4n K is denoted by
|h4n K|.

Example 5. A sample bounded cell complex K is shown in Fig. 2.1. The path-based
triangulation of cell complex h4n K displayed in Fig. 2.2 constucts an example of
a Rotman-Vigolo Hawaiian fish, inspired by the bird complex in [13, Fig. 11.2, p.
367] and Hawaiian earring in [18, §3.31, p. 79]. �

Definition 5. Orphan Vertex.
Let K be a finite, bounded cell complex. An orphan vertex (briefly, orphan) is
a vertex is not an end vertex of a path and is located either on the boundary bdyE
or on an edge in the interior intK of K. �

Example 6. Vertexes p, q in Fig. 2.1 are examples of orphans that cease being
orphans in Fig. 2.2, since path h constructs an edge attached p and q. �
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A path-based triangulation of a cell complex K results in the elimination of
orphan vertexes in K, i.e.,

Definition 6. Path Triangulation.
A path triangulation h4n K of a cell complex K results from the introduction
of a path between every pair of orphans in the complex. �

Orphans are distinguished surface points that eventually cease being orphans as
a result of a path triangulation.

Lemma 3. Every path triangulation of a cell complex containing 3 or more ophan
0-cells results in a collection of path triangles.

Proof. Immediate from Def. 6. �

Theorem 3. Path Triangulation Geometric Realization.
Every path triangulation of a cell complex has a geometric realization as a collection
of 1-cycles.

Proof. Let h 4 K be a path triangulation of a cell complex K. From Lemma 3,
h4E is a collection of path triangles. Hence, from Theorem 2, every path triangle
in h4K has a geometric realization as a 1-cycle, which is the desired result. �

Lemma 4. Every pair of vertexes in a path triangulation is path-connected.

Proof. Let h4n K be a path-based triangulation of a cell complex K and let v, v′

be vertexes in K. From Def. 6, there are no orphans in h4n K. Hence, there is a
path h ∈ h4n K with h(0) := v and h(1) is the beginning of one or more paths h′.
If h(1) := v′, then h is desired path. Otherwise, we follow path h′ until we reach
vertex v′. As a result, every pair of vertexes in h4n K is path-connected. �

Recall that a triangulation 4nK of a collection of points (sites) in a bounded
planar region K is Delaunay (aka Delone) if and only if the circumcircle of none of
its triangles contains sites in its interior [16]. Here, path triangulation eliminates
orphan points. Hence, there are no orphans in the interior any path triangle.

Proposition 4. There are no orphans in the interior of the triangles in a path
triangulation.

Proof. This is an immediate consequence of Def. 6. �

Remark 4. The proposed path triangulation alternative to Delaunay triangulation
has a number attractive features, namely,
1o For its definition, a path triangle h4E does not depend on a circumcircle with

the absence of sites (orphan vertexes) in its interior, since, from Def. 6, all
orphans are endpoints of paths on edges of path in a path triangulation and,
from Prop. 4, path triangles do not have orphans in their interiors.

2o Every path triangulation has a free group presentation (see Theorem 6). Such a
free group has simplicity and reflects the path structure of the triangulation. In
a simple extension of Whitehead’s homotopy system realization theorem, every
free group presentation of a path triangulation has a geometric realization as
a collection of triangles (unlike Euclidean triangles, the edges of the triangles
covering a complex can be either straight or curved (see, e.g., 4ABC in the
proof of Prop. 1 in [5] vs.

◦
4E in Fig. 5).
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3o Unlike a Delaunay triangle, every path triangle has either a nonvoid or an empty
interior.

4o Unlike a Zeeman dunce hat triangle or Veech billiard triangle, every point in
a path triangle h 4 E edge is a known point that is either an endpoint or an
interior point in a path that constructs a triangle edge in the path triangulation
of distinguished surface orphan points, since we know h(t) for every t ∈ I in
h : I → K.

5o Every path-based triangulation of a planar cell complex is a good cover of the
complex (see Theorem 8). �

bc
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bc

K

hi(0) = ℓi(1) := v1

hi(1) = ki(0) := v2

ki(1) =
ℓi(0) :=

v3

[k]

[h]

[ℓ]

7→

bc

bc

bc

[h] 4 E |[h] 4 E|

v1

v2

v3

Figure 6. [h] 4 E (Curviliner path class triangle) 7→ |[h] 4 E|
(geometrically realized as curviliner, overlapping triangles)

3. Path Class Triangles

This section introduces path class triangles.
Definition 7. Path-Class.
A path-class h (denoted by [h]) is a collection of paths h that have the same initial
and final values, i.e., if path hi, hj ∈ [h], then hi(0) = hj(0) and hi(1) = hj(1).
�

Definition 8. Path-Class Triangle.
A path-class triangle [h] 4 E is a collection of three path classes that pairwise
have the same initial and final values. �

Example 7. Sample Path-Class Triangle.
A sample path-class triangle [h] 4 E = {[h], [k], [ℓ]} is shown in Fig. 6, i.e.,
we have

hi ∈ [h], ki ∈ [k], ℓi ∈ [ℓ], i ∈ {1, 2, 3, 4} .
hi(0) = ℓi(1) := 0-cell v1,
hi(1) = ki(0) := 0-cell v2,
ki(1) = ℓi(0) := 0-cell v3.

�
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Definition 9. Nerve Complex.
A nerve complex NrvE in a CW space is a collection of nonempty cell complexes
with nonvoid intersection. This is an example of an Alexandrov nerve [1, §4.3,p.
39]. �

A vertex with a collection of triangles attached to it, is called the nucleus of the
attached triangles (also called the nucleus of an Alexandrov-Hopf nerve complex or
Nerv [2]).

Lemma 5. Every vertex in the triangulation of the vertices in a CW space is
the nucleus of an Alexandrov-Hopf nerve complex in which one more triangles are
attached to each vertex.

Theorem 4. A path triangulation of a cell complex containing n vertexes contains
n Alexandrov-Hopf nerve complexes.

Proof. Immediate from Lemma 5. �

Definition 10. Path Class Triangulation.
A path class triangulation [h]4n E of a cell complex K results from the intro-
duction of a path class between one or more pairs of neighboring orphans in the
complex.

Proposition 5. Every path class triangulation of a cell complex is a collection of
Alexandrov-Hopf nerve complexes.

Proof. Let h4nK be a path class triangulation of a complex K and let [h]4E be a
path class triangle in h4nK. From Lemma 5, every vertex in K is the nucleus of an
Alexandrov-Hopf nerve complex. From Def. 8, every pair of path classes in [h]4E
with a common orphan vertex have nonvoid intersection equaling the nucleus of an
Alexandrov-Hopf nerve complex. Hence, the desired result follows. �

Proposition 6. Every path class triangulation of a cell complex is a path triangu-
lation.

Proof. Since every path class contains one or more paths between neighboring or-
phans as endpoints, the desired result follows. �

4. Path Cycles

This section briefly introduces path cycles that have geometric realization as
1-cycles.

Definition 11. Path Cycle [10, App. A].
A path cycle hCycE in a CW space K is a sequence of continuous maps {hi}(n−1)[n]

i=0 ,
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hi : I → K, [n] = mod n, with

h0(0) = hn[n](0) = v0 ∈ K,hn−1[n](1) = vn−1[n] ∈ K.

Given hi ∈ {hi}(n−1)[n]
i=0 ,

g = hi(0), a basis element in hCycE, so that

v

hi+k(0) walks forward k vertexes from g to reach hi+k(0)︷ ︸︸ ︷
:= kg = khi(0) = hi+k(0) ∈ K, k ∈ Z.

h̄i+k(0)

h̄i+k(0) walks back k vertexes from hi+k(0) to reach hi(0)︷ ︸︸ ︷
:= h(i+k)−k(0) = hi(0).

+ : K ×K → K, is defined by

+(v, v′) =

move to v′′ via hi(0) = v, hi+k(v
′)︷ ︸︸ ︷

+(kg, k′g) = kg + k′g.

= khi(0) + k′hi+k(0) = h(i+k+k′)[n](0) = v′′ ∈ K. �

Theorem 5. Every path triangulation is collection of path cycles.

Proof. Let h4n K (briefly, K) be a path triangulation of a cell complex K. From
Def. 6, K is a collection of path triangles h4E ∈ K. In a triangulation containing
more than one path triangle, every vertex v ∈ h4E is the beginning of a another
path h′, i.e., h(1) = h′(0) := v in a triangle h′ 4E′. From Lemma 4, every pair of
vertexes in K is path-connected. By following the path that begins with vertex v,
we eventually arrive at a path that takes us back to v. Hence, every vertex in the
triangulation belongs to a path cycle and, from Def. 11, K is a collection of path
cycles. �

5. Free Group Presentation of a Path Triangulation

This section introduces free group presentation of a path triangulation of a cell
complex.

Definition 12. Rotman Presentation[13, p.239]
Let X = {g1, . . . } ,4 = {v =

∑
kgi, v ∈ groupG, gi ∈ X} be a set of generators of

members of a nonempty set X and set of relations between members of G and the
generators in X. A mapping of the form {X,4} → G, a free group, is called a
presentation of G. �

We write G(V,+) to denote a group G on a nonvoid set V with a binary oper-
ation +. For a group G(V,+) presentable as a collection of linear combinations of
members of a basis set B ⊆ V , we write G(B,+).

Definition 13. Free Group Presentation of a Cell Complex.
Let 2K be the collection of cell complexes in a CW space K, E ∈ 2K containing
n vertexes, G(E,+) a group on nonvoid set E with binary operation +, 4 =
{v =

∑
kgi, v ∈ E, gi ∈ E} be a set of generators of members in E, set of relations

between members of E and the generators B ⊂ E, gi ∈ B, v = hi[n](0) ∈ K, ki
the ith integer coefficient [n] in a linear combination

∑
i,j

kigj of generating elements
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gj = hj(0) ∈ B. A free group presentation of G is a continuous map f : 2K×4 →
2K defined by

f(B,4) =

v :=
∑
i,j

kigj ∈ 4 : v ∈ E, gj ∈ B, ki ∈ Z


=

B ×4 7→ free group G presentation of G(E,+)︷ ︸︸ ︷
G(

{
g1, . . . , g|B|

}
,+). �

Lemma 6. [10] Every 1-cycle in a CW space K has a free group presentation.

Theorem 6. Every path triangulation of a cell complex has a free group presenta-
tion.

Proof. Let h4n K be a path triangulation of a cell complex K. From Theorem 5,
h4n K is a collection of path cycles. From Lemma 6, every path cycle in h4n K.
Let v a vertex in a path cycle cycE ∈ h 4n K. From Lemma 4, every pair of
vertexes v, v′ in h4nK is path-connected. Hence, v serves as a generator in a basis
for a free group presentation of the triangulation. �

Example 8. From Theorem 6, vertex p is a generator of a free group presentation
of the path triangulation of the Rotman-Vigolo fish in Fig. 2, namely, G(B,+) =
G({p} ,+). Vertex p is labeled nucleus, since p serves as a generator of not only the
free group for the entire fish but also for the free group presentation of the cluster of
triangles attached to p. This p-cell complex is also calle a maximal nucleus complex
(MNC), this complex has the highest number of triangle attached to a vertex in the
path triangulation of the fish. �

In an extension of Whitehead’s homotopy system geometric realization theorem,
observe that a homotopy group ρ that presents a path-connected cell complex K
(denoted by ρ(K) is a free group (a Rotman homotopy group [13, 370]that presents
K, which has a basis–one or more generator vertexes that are initial path vertexes–
and a move binary operation). A path homotopy group is a free group that
presents a path triangulation of a cell complex K (denoted by hρ(K)).

Definition 14. Path Homotopy System.

A path homotopy system {hρ(K)} E (denoted by h
ρ(K)

4 E) is a collection of path
homotopy groups that present a collection of path triangulations of a cell complex
K and its subcomplexes. �

Theorem 7. Path Homotopy System Realization
A path homotopy system has a geometric realization.

Proof. Let h
ρ(K)

4 E be a path homotopy system and let hρ(K) ∈ E be a free group
that presents either a path triangulation h4n K of a complex K or a subcomplex
of K. From Theorem 3, h4n K has a geometric realization a collection of 1-cycles
that are path-connected. From Theorem 6, h 4 K has a free group presentation.

Then, hρ(K) has a geometric realization. Hence, the homotopy system h
ρ(K)

4 E
has a geometric realization as collection of path triangulations on cell complex K
and its subcomplexes. �
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6. Path Triangulation as a Good Cover of a Cell Complex

An important property of a path triangulation of a cell complex is that it provides
a good cover of the complex.

Recall that a cover of a space X is a collection of subsets E ∈ 2X such that
X =

⋃
E [22, §15.9,p. 104 ].

Definition 15. [15, §4,p. 12].
A cover of a space X is a good cover, provided, X has a collection of subsets
E ∈ 2X such that X =

⋃
E and

⋂
finite

E 6= ∅ is contractible, i.e., all nonvoid

intersections of the finitely many subsets E ∈ 2X are contractible. �

Theorem 8. Path Triangulation Good Cover.
Every path triangulation of a cell complex is a good cover.

Proof. Here, we consider only good covers resulting from the trianglulation of finite
planar cell complexes. Let h4n K (briefly, K) be a path triangulation of a planar
cell complex K. From Def. 6,K is a collection of path triangles h 4 E ∈ K. In
addition, every vertex in K is attached to one or more path triangles. Then we
know that the intersection of all of the path triangles is a vertex v ∈ K, i.e., we
have

K =
⋃

h△E∈h△nK

h4 E.

nerve NrvK =
⋂

h△E∈h△nK

h4 E = {p} .

Hence, NrvK contracts to vertex p and h4 E is a good cover. �

7. Conjectures

This section briefly introduces conjectures, which lead to a transition from the
results in this paper to closely related results in digital topology by G. Lupton and
N.A. Scoville [7], e.g.,

Theorem 9. Theorem 5.16 [7, p.22].
Every finitely presented group occurs as the (digital) fundatmental group of some
digital image.

Conjecture 1. Every path triangulation has a geometric realization in some tri-
angulated digital image.

Conjecture 2. Every finitely presented path triangulation free group occurs as a
free group presentation of some triangulated digital image.
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