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COMPACTNESS METHODS IN LIEB’S WORK

JULIEN SABIN

Abstract. We review some compactness methods appearing in the work of Lieb, with

an emphasis on the techniques developed around his 1983 article on the optimizers for the

Hardy-Littlewood-Sobolev inequality.

1. Introduction

We survey several compactness methods appearing in Lieb’s work. Such methods appear

naturally when dealing with optimization problems: a natural way to prove the existence of

optimizers is to show that optimizing sequences converge (perhaps up to a subsequence) by

some compactness argument. The question of existence of optimizers appears in several works

of Lieb: in chronological order, for the Young inequality [6], in Choquard theory [36], Hartree-

Fock theory [43], Thomas-Fermi theory [35], Thomas-Fermi-von Weizsäcker theory [4], for

the Hardy-Littewood-Sobolev inequality [38], the Brézis-Nirenberg problem [9], for vector

field equations [8], in problems related to zero modes of magnetic fields [24], for Gaussian

kernel operators [39], in non-relativistic QED [28, 40], for Poincaré-type inequalities [42], for

spherical Young’s inequalities [12], for the Müller functional [22], for the Hardy-Littlewood-

Sobolev inequality on the Heisenberg group [18], for the Pekar-Tomasevich functional at

thereshold [21], for negative ions at threshold [2], for the liquid drop model [19], for the

Stein-Tomas inequality [20], for Nash-type inequalities [11]. The previous list is probably not

exhaustive, for instance we did not mention works related to spin systems where optimizers

typically exist due the finite dimensionality of the problems.

In this review, we focus on the techniques introduced by Lieb and his collaborators in a

series of articles published around 1983, since they introduce new and important ideas that

can be applicable to many problems. The key concept here is the loss (or lack) of compact-

ness. As an illustration of this concept, let us briefly explain what were the compactness

tools used by Lieb before 1983, to give a comparison point with the techniques we survey

later on. The optimization problems we consider here are all of the form

e0 := inf
{
E(f) : f ∈ X0

}

where X0 is a (non-empty) strongly closed subset of a (infinite-dimensional) Banach space

X , and E : X → R is a bounded-below, strongly continuous functional. To show that e0 is

attained (that is, there exists f ∗ ∈ X0 with E(f ∗) = e0), it is natural to pick a minimizing

sequence (fn) ⊂ X0 such that E(fn) → e0 as n → ∞, and the hope is that f ∗ can be obtained

as the limit of (fn) in some topology. The first obvious obstacle to this strategy is the fact

that X0 is in practice not compact for the strong topology of the (infinite dimensional space)

X , so that a strongly converging subsequence of (fn) cannot be found in this way. The
1
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standard tool to bypass this difficulty is to use instead weak topologies on X (either the

weak-∗ topology together with the Banach-Alaoglu theorem or the weak topology when X

is reflexive), for which sequential compactness is much easier to obtain. In all practical

situations, one obtains in this way a subsequence of (fn) –that we still denote by (fn)– that

converges weakly (or weakly-∗) towards f ∗ belonging to X0
w
, the (sequentially) weak closure

of X0. To show that f ∗ is an optimizer of the problem, it remains to show i) that f ∗ ∈ X0

and ii) that E(f ∗) = limn→∞ E(fn). The most favorable case where these properties hold

is the case where X0 is (sequentially) weakly closed, that is X0
w

= X0, and where E is

weakly lower semi-continuous (that is, for any sequence (gn) ⊂ X such that gn ⇀ g, one has

lim infn→∞ E(gn) > E(g)); indeed, we then have e0 = limn→∞ E(fn) = lim infn→∞ E(fn) >

E(f ∗) > e0 since f ∗ ∈ X0, so that E(f ∗) = e0 and f ∗ is an optimizer for e0. The first

occurrence where loss of compactness occurs is the case where i) is not true; i.e. weak limits

may leave the minimization set X0. In this case, all hope is not necessarily lost since (fn) is

not any weakly converging sequence, it is a minimizing sequence for e0. Hence, one may try

to use this minimizing property to infer that f ∗ ∈ X0.

This is what happens for Thomas-Fermi [35] or Hartree-Fock [43] theory. In the Thomas-

Fermi problem (and in many other optimization problems), the minimization set X0 is a

sphere X0 = {f ∈ X : ‖f‖X = λ} of radius λ > 0 in the full space X , for which its

weak closure is the ball of same radius X0
w

= {f ∈ X : ‖f‖X 6 λ}. In this kind of

problems, showing that f ∗ ∈ X0 means that a minimizing sequence cannot ’lose mass’, i.e.

that ‖f ∗‖X < λ is impossible. In the Hartree-Fock problem, the minimization set is not a

sphere but rather the set of all rank-N self-adjoint projections on L2(R3), for a fixed N ∈ N.

In this case, the weak closure is the set of all self-adjoint operators γ with 0 6 γ 6 1 and

Tr γ 6 N and thus in this context, ’loss of mass’ can be interpreted as a ’loss of particles’

(since Tr γ is interpreted as the number of particles that the state γ describes). In both

Thomas-Fermi and Hartree-Fock problems, the energy functional E is weakly lower semi-

continuous, so showing that f ∗ ∈ X0 is enough to infer that f ∗ is a minimizer. Actually, one

can show that for λ and N not too big, ’loss of mass’ does not happen and one indeed has

f ∗ ∈ X0. The proof depends quite strongly of the specific features of these problems, so that

we will not provide it here. In the Thomas-Fermi problem for instance, it relies on the fact

that for λ not too big, the minimum e0 is strictly decreasing as a function of the parameter

λ, so that it is energetically unfavorable to loss mass.

The situation is different for the Choquard problem [36], where the minimization set is

the ball X0 = {f ∈ H1(R3) : ‖f‖L2 6 λ} for some fixed λ > 0, which is weakly-closed and

hence minimizing sequence cannot leave the minimization set. What changes here is that

the energy functional is not weakly lower semi-continuous, due to the translation-invariance

of the problem. Indeed, for any y ∈ R3 and any f ∈ X0, one can define the translate

τyf := f(· − y) which clearly satisfies that τyf ∈ X0. Furthermore, the functional E has

the invariance E(τyf) = E(f) for any f ∈ X0 and any y ∈ R3. Now notice that for any

(yn) ⊂ R3 such that |yn| → ∞ as n → ∞, one has fn := τynf ⇀ 0 weakly in H1(R3). Hence,

if one chooses f such that E(f) < 0 (which in this case is always possible due to the explicit

form of E), we have lim infn→∞ E(fn) = E(f) < 0 = E(0) with fn ⇀ 0, proving that E is
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not weakly lower semi-continuous (so that point ii) above fails). Another point of view on

this loss of compactness is that it is hopeless to try to obtain a minimizer as a weak limit

of any minimizing sequence; because if it worked and one obtained a minimizer f ∗ ∈ X0 in

this way, then (τynf
∗)n would be a minimizing sequence whose weak limit (which is zero) is

obviously not a minimizer. If one wants to obtain a minimizer as a weak limit of minimizing

sequence, one thus cannot consider any minimizing sequence; one should look at a subclass

of minimizing sequences for which translation-invariance is ’broken’ and in such a way that

lower semi-continuity is restored for this type of sequences. Lieb did so by showing that one

can look for minimizers among the subclass of functions in X0 which are radially symmetric

decreasing, for which he proved that the energy was lower semi-continuous and hence its

weak limits are minimizers for the Choquard problem.

The starting point of this review is to consider minimization problems where both the

issues presented above are present: the minimization set is not weakly closed and the problem

has some ’non-compact’ invariance. In the context of Lieb’s work, the first such problem

where this kind of phenomenon appeared was the existence of optimizers for the Hardy-

Littlewood-Sobolev inequality,

sup
{
‖f ∗ | · |−λ‖Lq : f ∈ Lp(Rd), ‖f‖Lp = 1

}

with d > 1, λ ∈ (0, d), 1 < p, q < +∞ such that 1/p+ λ/d = 1+ 1/q. The maximization set

is here a sphere (which is again not weakly-closed), and the energy functional is invariant

under translations and dilations. In the seminal work [38], Lieb understood how to consider

minimizing sequences such that these invariances have been broken, and that do not lose

mass and hence converge towards maximizers. This approach was applied in the next years

to several other optimization problems [9, 8, 24]. The goal of this review is to explain these

techniques and how they can be apply to several optimization problems. We emphasize

that our focus is on the works of Lieb on these questions and that many other authors

contributed to this theory, before and after the articles that we survey. For instance, Lions

developed in the same period his technique (which shares several common features with

Lieb’s approach) of concentration-compactness [45, 46, 47, 48], bringing even more tools to

tackle such problems. To keep this review at a reasonable size, we will not try to comment

on these works and to compare them to the results we detail here.

In Section 2, we present the specific tools developed by Lieb and his collaborators on the

question of loss of compactness. In Section 3, we explain how these tools were applied to

solve various optimization problems, including some other well-known optimization problems

that we can treat in the same way. In Section 4, we apply the same methods but to slightly

different problems with a non-compact ’almost’ invariance. In Appendix A, we explain how

these techniques can be extended to understand profile decompositions.

Acknowledgements: The author is indebted to Mathieu Lewin and Rupert Frank for

introducing him to these techniques, for many discussions about them, and for comments

on this text. He is of course also very thankful to Elliott Lieb for all the inspiring ideas and

works that are presented here.
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2. Optimization toolbox

We choose to start by highlighting the various tools that Lieb and his collaborators devel-

oped in the context of compactness problems. More precisely, we present an abstract result

on convergence of optimizing sequences for functional inequalities [38, Lemma 2.7], which

itself relies on a refinement of Fatou’s lemma called the Brézis-Lieb lemma [7]. We also

present a very useful result about the existence of non-zero weak limits in Sobolev spaces

[37, Lemma 6], which is often combined with the pqr lemma [24, Lemma 2.1] (see also [8,

Lemma 2.1]).

As we already mentioned, the Hardy-Littewood-Sobolev was chronologically the first op-

timization problem to which these methods were applied. We will see that many functional

inequalities can be treated with the same strategies. The following result provides a fairly

general setting in which some maximizing sequences converge to maximizers in the context

of sharp constants for functional inequalities.

Proposition 2.1. [38, Lemma 2.7] Let 0 < p < q and X, Y be measure spaces. Assume

that A is a non-zero bounded linear operator from Lp(X) to Lq(Y ) and denote

S := sup{‖Af‖qLq(Y ) | f ∈ Lp(X), ‖f‖Lp(X) = 1} ∈ (0,+∞).

Assume that there exist (fn) ⊂ Lp(X) and f ∈ Lp(X) such that

(1) ‖fn‖Lp = 1 for all n;

(2) ‖Afn‖
q
Lq → S;

(3) fn → f almost everywhere;

(4) f 6= 0;

(5) Afn → Af almost everywhere.

Then, (fn) converges strongly in Lp(X) to f and ‖Af‖qLq = S.

The interpretation of Proposition 2.1 is that if one can find a maximizing sequence for

S for which conditions (3), (4), (5) are satisfied, then it automatically converges towards a

maximizer for S. Let is comment on these conditions. Condition (4) is natural from the

considerations explained in the introduction, in the sense that in the context of non-compact

invariances, it is easy to construct potential maximizing sequences which converge to zero.

Hence, the assumption (4) is a manifestation that such potential invariances are ’broken’.

Here, notice that the minimization set is a sphere so that its weak closure is the closed

ball of same radius. As we explained in the introduction, it is natural to try to prove that

minimizing sequences cannot leave the minimization set by showing that their weak limits

cannot belong to the open ball of same radius. In this respect, condition (4) may look

incomplete because while it forbids the limit to be zero, it does not a priori forbid that it

belongs to an intermediate sphere of radius strictly between 0 and 1. Such a scenario may

again happen in the presence of non-compact invariances, where a potential maximizing

sequence is composed of a positive piece of mass which remains in the limit and of another

positive piece of mass escaping along the non-compact invariances. To show that maximizing

sequences cannot exhibit this mass-splitting phenomenon, conditions (3) and (5) intervene:
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we will see below that, together with the Brézis-Lieb lemma, they exactly show that mass

splitting is energetically unfavorable.

Remark 2.2. The assumption p < q in Proposition 2.1 is natural when for instance A is

translation-invariant [29, Theorem 1.1].

Before proving Proposition 2.1, let us state the important result on which it relies.

Lemma 2.3 (Brézis-Lieb lemma [7, 38]). Let r > 0 and Z be a measure space. Assume that

(gn) ⊂ Lr(Z) is bounded and converges almost everywhere to g ∈ Lr(Z). Then, we have
∫

Z

|gn|
r =

∫

Z

|g|r +

∫

Z

|gn − g|r + on→+∞(1).

The Brézis-Lieb lemma is a refinement of Fatou’s lemma, since it quantifies how non-

negative is the quantity lim infn→∞

∫
Z
|gn|

r −
∫
Z
|g|r. Notice that the assumption of the

Brézis-Lieb lemma is almost everywhere convergence, which motivates the assumptions (3)

and (5) in Proposition 2.1. Notice also that a Brézis-Lieb lemma where almost everywhere

convergence is replaced by weak convergence holds only for r = 2 (see [31, Eq. (4.23)]),

showing the importance of a.e. convergence for this kind of problems.

We now explain why the Brézis-Lieb lemma implies Proposition 2.1. We provide the proof

because its idea can be adapted to various situations besides the one presented here, and

because the role of each assumption is made more explicit.

Proof of Proposition 2.1. Applying Lemma 2.3 to (fn) implies that

lim
n→+∞

‖fn − f‖pLp = 1− ‖f‖pLp.

Now applying again Lemma 2.3 but now to (Afn) we deduce that

S + o(1) = ‖Afn‖
q
Lq

= ‖Af‖qLq + ‖A(fn − f)‖qLq + o(1)

6 S
(
‖f‖qLp + ‖fn − f‖qLp

)
+ o(1).

In the limit n → +∞ and using S > 0 we obtain

1 6 ‖f‖qLp +
(
1− ‖f‖pLp

)q/p
.

Since 0 < p < q, we have that for any a, b > 0, (a+ b)q/p 6 a+ b with equality if and only if

a = 0 or b = 0. Applying this fact to a = ‖f‖pLp and b = 1 − ‖f‖pLp (which is non-negative

by Fatou’s lemma), we obtain

1 6 ‖f‖qLp +
(
1− ‖f‖pLp

)q/p
6 1,

so that we are in the equality case ‖f‖pLp = 0 or 1 − ‖f‖pLp = 0. Since f 6= 0, we deduce

that ‖f‖Lp = 1, and hence 1 − ‖f‖pLp = limn→+∞ ‖fn − f‖pLp = 0, showing that fn → f

strongly. Using the continuity of A, this implies that Afn → Af strongly in Lq, and hence

S = limn→+∞ ‖Afn‖
q
Lq = ‖Af‖qLq . �
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Remark 2.4. In [38], the last argument proving that fn → f in Lp(X) is attributed to

Brézis and in [9] the same argument adapted to the Hilbert space setting described below is

attibuted to Browder.

Remark 2.5. The above proof can be adapted to the case q = p to deduce that f is a

maximizer for S, without knowing that fn → f strongly in Lp. This is done using only the

bound ‖A(fn − f)‖qLq 6 S‖fn − f‖qLq , so that

S + o(1) 6 ‖Af‖qLq + S(1 − ‖f‖qLq) + o(1)

and hence ‖Af‖qLq > S‖f‖qLq .

In Proposition 2.1, the assumptions (1) and (2) are automatic for maximizing sequences for

S. Assumptions (3) to (5) are less obvious to obtain in practice. In particular, assumption

(3) does not follow from the boundedness of (fn) in Lp and one needs specific properties

of A to obtain it. In the case p = 2, one can get rid of assumption (3) by the following

straightforward adaptation of Proposition 2.1, which appears explicitly in [17, Prop. 1.1].

Proposition 2.6. Let q > 2 and X, Y be measure spaces. Assume that A is a non-zero

bounded linear operator from L2(X) to Lq(Y ) and denote

S := sup{‖Af‖qLq(Y ) | f ∈ L2(X), ‖f‖L2(X) = 1} ∈ (0,+∞).

Assume that there exist (fn) ⊂ L2(X) and f ∈ L2(X) such that

(1) ‖fn‖L2 = 1 for all n;

(2) ‖Afn‖
q
Lq → S;

(3) fn ⇀ f in L2(X);

(4) f 6= 0;

(5) Afn → Af almost everywhere.

Then, (fn) converges strongly in L2(X) to f and ‖Af‖qLq = S.

One can see the advantage of Proposition 2.6 compared to 2.1: the assumption (3) is now

a consequence of the boundedness of (fn) in L2, using the weak compactness of closed balls

in L2. In the context of Proposition 2.6, only assumptions (4) and (5) have to be checked in

practice.

Proof of Proposition 2.6. The proof is identical to the one of Proposition 2.1, replacing the

application of the Brézis-Lieb lemma to (fn) by the following consequence of the weak con-

vergence of (fn) to f :

lim
n→+∞

‖fn − f‖2L2 = 1− ‖f‖2L2 .

�

Remark 2.7. As is clear from the proof, Proposition 2.6 can be extended straightforwardly

to the case where L2(X) is replaced by any separable Hilbert space H, as in [17].

The next tool we present is related to verifying the key assumption (4) in Proposition

2.6, namely the existence of maximizing sequences which have a non-zero weak limit. As

we already mentioned, this fact is particularly relevant in problems with a non-compact
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invariance where optimizing sequences with zero weak limit are bound to exist (just by

applying the symmetries to an optimizer). The following result, which appears for the first

time in [37, Lemma 6], is a very useful tool to obtain non-zero weak limits for bounded

sequences in W 1,p(Rd).

Proposition 2.8. Let d > 1 and 1 < p < +∞. Assume that (fn) ⊂ W 1,p(Rd) is a bounded

sequence such that there exist δ, ε > 0 such that for all n, |{|fn| > ε}| > δ. Then, there

exists (xn) ⊂ Rd such that (fn(· − xn)) has a non-zero weak limit in W 1,p(Rd).

Remark 2.9. In the above result, the Sobolev space W 1,p(Rd) may be replaced by its homo-

geneous version Ẇ 1,p(Rd).

We will present below some applications of Proposition 2.8 in the case p = 2 to obtain

Assumption (4) in Proposition 2.6 in its Hilbert space version with H = H1(Rd). Notice that

Proposition 2.8 naturally breaks translation invariance to obtain a non-zero weak limit. In

[37], one proof of Proposition 2.8 is done using some comparison between the lowest Dirichlet

eigenvalues of two domains, and another, due to Brézis, is done via localization on cubes

and the Sobolev inequality.

The main assumption on the level sets of (fn) in Proposition 2.8 can be obtained in practice

via the following pqr lemma [24, Lemma 2.1] (see also [8, Lemma 2.1]).

Lemma 2.10 (pqr lemma). Let X be a measure space and let 0 < p < q < r < +∞. Let

(fn) be a bounded sequence in Lp(X) ∩ Lr(X) such that there exists α > 0 such that for all

n, ‖fn‖Lq > α. Then, there exist δ, ε > 0 such that for all n, |{|fn| > ε}| > δ.

Proof. Let ε > 0. For all n, we have

αq 6

∫

X

|fn|
q =

∫

|fn|6ε

|fn|
q +

∫

ε<|fn|<1/ε

|fn|
q +

∫

|fn|>1/ε

|fn|
q

6 εq−p‖fn‖
p
Lp + ε−q|{|fn| > ε}|+ εr−q‖fn‖

r
Lr

6 C(εq−p + εr−q) + ε−q|{|fn| > ε}|,

leading to the result for ε small enough. �

Combining Proposition 2.8 and the pqr lemma leads to the following useful result.

Proposition 2.11. Let d > 1 and 1 < p < +∞. Let q ∈ (p,+∞) such that 1/q > 1/p−1/d.

Assume that (fn) is a bounded sequence in W 1,p(Rd). Then, we have the following alternative:

(1) either fn → 0 in Lq(Rd);

(2) or there exists (xn) ⊂ Rd such that, up to a subsequence, (fn(· − xn)) has a non-zero

weak limit in W 1,p(Rd).

Proof of Proposition 2.11. By Sobolev’s embedding, there exists q∗ > q such that (fn) is

bounded in Lp(Rd) ∩ Lq∗(Rd). If (fn) does not converge to zero in Lq(Rd), then there exists

α > 0 such that, up to a subsequence, we have ‖fn‖Lq > α for all n. By the pqr lemma, (fn)

thus satisfies the assumptions of Proposition 2.8 and hence admits non-zero weak limits up

to translations. �
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For optimization problems posed on H1(Rd), Proposition 2.6 and Proposition 2.11 provide

a roadmap to obtain the existence of optimizers: Assumption (4) would follow if optimizing

sequences do not converge to zero in some Lq(Rd) for a subcritical q, and there remains to

understand why Assumption (5) holds. We now explain how to apply these tools in some

explicit cases.

3. Applications to problems with exact symmetries

We apply the compactness tools introduced in the previous section to solve several opti-

mization problems. We begin with the historical example of Lieb [38] concerning the Hardy-

Littlewood-Sobolev inequality, emphasizing how the invariances are broken in conjonction

with Proposition 2.1 to obtain existence of optimizers. We then shift to the Gagliardo-

Nirenberg-Sobolev inequality to illustrate how to apply to H1-methods above, as an in-

troduction to the work of Brézis-Lieb on vector field equations [8]. Finally, we explain

how to apply similar ideas to the Sobolev, (generalized) Gagliardo-Nirenberg-Sobolev, and

Strichartz inequalities.

3.1. Hardy-Littlewood-Sobolev inequality. Let d ∈ N∗. Let 1 < p, q < +∞ and 0 <

λ < d be such that 1/p+ λ/d = 1 + 1/q. Consider the optimization problem

S := sup
{
‖f ∗ | · |−λ‖q

Lq(Rd)
: f ∈ Lp(Rd), ‖f‖Lp(Rd) = 1

}
,

corresponding to the sharp constant in the Hardy-Littlewood Sobolev inequality. As we

already mentioned, this problem exhibits both translation and dilation invariance (meaning

that both the optimization set and the energy functional are invariant under the transfor-

mations f(x) → f(x + x0) and f(x) → δd/pf(δx) for any x0 ∈ Rd and any δ > 0). Despite

this difficulty, Lieb proved existence of maximizers:

Theorem 1. [38, Theorem 2.3] There exists f ∈ Lp(Rn) with ‖f‖Lp(Rd) = 1 such that

‖f ∗ | · |−λ‖q
Lq(Rd)

= S.

The proof of Theorem 1 consists in applying Proposition 2.1. The way to obtain Assump-

tion (3) here is to resort to rearrangement inequalities [38, Lemma 2.1] to infer that there ex-

ists a maximizing sequence (fn) ⊂ Lp(Rd) for S such that for any n, fn is radially decreasing

and non-negative (indeed, for any f ∈ Lp(Rd), one has ‖f ∗ | · |−λ‖Lq(Rd) 6 ‖(f ∗)∗ | · |−λ‖Lq(Rd)

and ‖f‖Lp = ‖f ∗‖Lp where f ∗ is the symmetric decreasing rearrangement of f [38, Definition

1]). Notice that this remark breaks the translation-invariance of the problem, and to break

the dilation invariance we use the following argument. Abusing notations, we still denote by

fn the function of the radius so that fn : x 7→ fn(|x|). The next result enables to deal with

dilations and to obtain Assumption (4), i.e. to prove that fn has a non-zero pointwise limit.

Proposition 3.1. [38, Lemma 2.4] There exists C > 0 and θ ∈ (0, 1) such that for any

non-negative and radially decreasing f ∈ Lp(Rd) we have

‖f ∗ | · |−λ‖Lq 6 C
(
sup
r>0

rd/pf(r)
)θ

‖f‖1−θ
Lp .
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Such an inequality may be called a refined HLS inequality because it implies the actual

HLS inequality, since supr>0 r
d/pf(r) 6 c‖f‖Lp due to the fact that f is radially decreasing.

Applying Proposition 3.1 to (fn) and using that S > 0, we infer that there exist c > 0 such

that for all n one has supr>0 r
d/pfn(r) > c. Hence, for any n there exists rn > 0 such that

r
d/p
n fn(rn) > c/2. Replacing fn by r

d/p
n fn(rn·) –and still denoting this sequence by (fn)–, we

obtain a sequence of non-negative radially decreasing functions (fn) which is maximizing for

S and such that fn(1) > c/2 for all n. Since ‖fn‖Lp = 1, we have fn(r) 6 (|Sd−1|/d)−1/pr−n/p

for all n and r, so that using Helly’s selection principle there exists a non-negative radially

decreasing function f ∈ Lp(Rd) with ‖f‖Lp 6 1 such that (up to a subsequence) fn(r) → f(r)

as n → +∞ for all r > 0. In particular, we have f(1) > c/2 > 0 implying that f 6= 0 and

thus recovering Assumption (4) of Proposition 2.1. There remains to prove Assumption (5)

of Proposition 2.1, which follows from the elementary

Lemma 3.2. Let (fn) ⊂ Lp(Rd) be a sequence of non-negative radially decreasing functions

such that ‖fn‖Lp = 1 for all n and such that fn → f almost everywhere. Then, fn ∗ | · |
−λ →

f ∗ | · |−λ almost everywhere.

Proof. Recall that fn(r) 6 cr−d/p with c independent of n. Then, the result follows from

dominated convergence, noticing that for any x 6= 0, y 7→ |y|−d/p|x − y|−λ is integrable on

Rd. �

It remains to give the

Proof of Proposition 3.1. Denoting by A the operator f 7→ f ∗ | · |−λ and by Us : L
s
rad(R

d) →

Ls(R) the isometric isomorphism (Usf)(u) = edu/sf(eu), we have UqAU
∗
p : g 7→ g ∗ Ld with

∀u ∈ R, Ld(u) := edu/q
∫

Sd−1

dω

|eue1 − ω|λ
= cde

du/q

∫ π

0

(sin θ)d−2 dθ

((eu − cos θ)2 + sin2 θ)λ/2
.

Since

Ld(u) ∼





cedu/q as u → −∞,

c





1 if λ < d− 1

log(1/u) if λ = d− 1

ud−1−λ if λ > d− 1

as u → 0,

ce(d/q−λ)u as u → +∞,

the function Ld is integrable on R. Hence, UqAU
∗
p is bounded on Ls(Rd) for all s ∈ [1,+∞]

and using that q ∈ (p,+∞), we deduce by Hölder’s inequality that there exist C > 0 and

θ ∈ (0, 1) such that

∀g ∈ Lp(R) ∩ L∞(R), ‖UqAU
∗
p g‖Lq 6 ‖UqAU

∗
p g‖

1−θ
Lp ‖UqAU

∗
p g‖

θ
L∞ 6 C‖g‖1−θ

Lp ‖g‖θL∞.

Stating this inequality in terms of the operator A, we get the result. �

Remark 3.3. A consequence of the previous proof and of Proposition 2.1 is that any maxi-

mizing sequence (fn) for S admits a subsequence such that there exists (δn) ⊂ (0,+∞) such

that (δ
d/p
n f ∗

n(δn·)) converges strongly in Lp(Rd) (and hence the limit is a maximizer for S).
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Lions [48, Theorem 2.1] proved that any maximizing sequence (fn) for S admits a subse-

quence such that there exists (xn) ⊂ Rd and (δn) ⊂ (0,+∞) such that (δ
d/p
n fn(δn(· − xn)))

converges strongly in Lp(Rd) (that is, we use translations instead of rearrangement).

3.2. Gagliardo-Nirenberg-Sobolev inequality. In the above approach to the HLS in-

equality, rearrangement was used to break the translation-invariance of the problem. In

the following, we will see that the same method can be applied to prove the existence of

optimizers for the model problem of Gagliardo-Nirenberg-Sobolev inequality. In one space

dimension, this was done explicitly by Lieb in [38, Theorem 4.2], but his method (which was

used before in [36, Theorem 7] and [41, Appendix A]) works in any dimension. Another proof

using rearrangement was suggested in [44, Remark (A), Sec. 4], using rather the methods of

[27, 55] relying on solving the Euler-Lagrange equations among radial decreasing functions.

We also provide another method based on the H1-based tools of Section 2, and compare the

two approaches.

Let d > 1 and q ∈ (2,+∞) be such that 1/q > 1/2− 1/d. Define

S := sup

{∫

Rd

|u|q : u ∈ H1(Rd), ‖u‖H1 = 1

}
.

Proposition 3.4. There exists u ∈ H1(Rd) with ‖u‖H1 = 1 such that ‖u‖qLq = S.

Proof. Let (un) ⊂ H1(Rd) be a maximizing sequence for S. As was noticed by Lieb [38,

Lemma 4.1] (see also [36, Lemma 5] or [27, Theorem 1] for earlier proofs), since ‖∇f‖L2 >

‖∇f ∗‖L2 for any f ∈ H1(Rd), one may assume that un is radially symmetric decreasing for

all n. Since (un) is bounded in H1(Rd), it converges weakly to some u ∈ H1(Rd) up to a

subsequence, and by the Rellich-Kondrachov theorem one may also assume that un → u a.e.

In particular, ‖u‖H1 6 1. From the boundedness of (un) in H1(Rd), one also deduces that

(un) is bounded in Lp(Rd) for any p > 2 such that 1/p > 1/2− 1/d. Applying this fact for

p = 2 and p = q0 for some fixed q0 > q with 1/q0 > 1/2 − 1/d, one deduces from the fact

that (un) is radially symmetric decreasing that (as in the HLS case) for all n and all r > 0,

|un(r)| 6 Cmin(r−d/2, r−d/(2q0)) ∈ Lq(Rd). Hence, by the dominated convergence theorem,

we deduce that un → u in Lq(Rd) and hence S = ‖u‖qLq 6 S‖u‖qH1 so that ‖u‖H1 > 1 and

hence ‖u‖H1 = 1. Finally, u is a maximizer for S. �

As in the HLS inequality, the above method relies on rearrangement to break translation

invariance and actually shows that for any maximizing sequence (un), there exists a (radially

symmetric decreasing) maximizer u for S such that (u∗
n) converges strongly to u in H1(Rd),

up to a subsequence. We now present an alternative approach to Proposition 3.4, in the spirit

of [8] (see also [10, Lemma 4.2]), that does not rely on rearrangement but rather on the tools

of Section 2 and has the advantage of describing more precisely maximizing sequences. It

can also be applied to problems where rearrangement is not available, as we present in the

next example.

Alternative proof of Proposition 3.4. Let (un) be a maximizing sequence for S. In particular,

‖un‖
q
Lq → S as n → ∞ and thus un does not converge to zero in Lq(Rd). By Proposition

2.11 applied to p = 2, there exist (xn) ⊂ Rd and u ∈ H1(Rd) \ {0} such that vn := un(·−xn)
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converges weakly to u in H1(Rd). The sequence (vn) is also a maximizing sequence for S, and

by the Rellich-Kondrachov theorem we can also assume that vn → u almost everywhere. We

can then apply Proposition 2.6 in its Hilbert space version with H = H1(Rd) to the sequence

(vn) and the operator A : f ∈ H1(Rd) 7→ f ∈ Lq(Rd) to deduce that u is a maximizer for S

and that (vn) converges strongly in H1(Rd). �

A corollary of the above proof is that for any maximizing sequence (un) for S, there

exist (xn) ⊂ Rd and a maximizer u of S such that (un(· − xn)) converges strongly to u in

H1(Rd), up to a subsequence. In other words, maximizing sequences converge strongly up

to translations. This powerful statement (in conjunction with the further determination of

the set of maximizers) can be used in the context of the associated nonlinear Schrödinger

equation, to obtain the stability of standing waves as showed by Cazenave and Lions [13] or

to study the minimal mass blow-up solutions following Weinstein [59] (see also Merle [49]).

3.3. Solutions to vector field equations. We present now a problem where rearrange-

ment techniques do not apply and one must use the second approach of the last subsection.

In the article [8], Brézis and Lieb proved the existence of optimizers for ’vector field’ problems

of the type

S = sup

{∫

Rd

G(u(x)) dx : u ∈ C, ‖∇u‖L2 = 1

}
,

where C = {u ∈ Ḣ1(Rd,RN) : G(u) ∈ L1(Rd)}, d > 3, N > 1, and G : RN → R is a

non-zero continuous function satisfying some assumptions that we detail below. For general

G, this problem has a more general structure than the ones covered by Proposition 2.6, but

we will see that some ideas still apply here. Notice that the problem S is invariant under

translations, and that for N > 2 the rearrangement techniques used above cannot be used.

To break translation invariance, Brézis and Lieb rathered appealed to Proposition 2.8. To

illustrate how to adapt the tools of Section 2 in this more general setting, assume that G

satisfies the assumptions

(1) ∀u ∈ RN \ {0}, G(u) > 0 and G(0) = 0,

(2) lim|u|→0 |u|
−pG(u) = 0 = lim|u|→∞ |u|−pG(u), p = 2d

d−2
,

(3) ∀δ > 0, ∃Cδ > 0, ∀u, v ∈ RN , |G(u+ v)−G(u)| 6 δ|u|p + Cδ|v|
p.

Notice that assumptions (1) and (2) together with Sobolev’s embedding imply that C =

Ḣ1(Rd,RN).

Proposition 3.5. Under the above assumptions on G, there exists u ∈ C with ‖∇u‖L2 = 1

such that
∫
G(u) = S.

Proof. Let (un) be a maximizing sequence for S. Let η > 0 and from assumption (2) on G,

let ε > 0 such that G(u) 6 η|u|p for all |u| 6 ε or |u| > 1/ε. Hence, for n large enough we

have by Sobolev’s embedding

S/2 6

∫
G(un) =

∫

|un|6ε

G(un) +

∫

ε<|un|<1/ε

G(un) +

∫

|un|>1/ε

G(un)

6 Cη +

(
max

ε6|u|61/ε
G(u)

)
|{|un| > ε}|
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so that for η small enough we have |{|un| > ε}| > α for all n for some α > 0 independent of

n. Using Proposition 2.8, we obtain (xn) ⊂ Rd such that vn := un(· − xn) converges weakly

to some v ∈ Ḣ1(Rd,RN) \ {0}, up to a subsequence. By the Rellich-Kondrachov theorem,

we may also assume that vn converges to v a.e. on R
d. Notice that (vn) is still a maximizing

sequence for S. Assumptions (1)-(2)-(3) on v imply that we have a Brézis-Lieb lemma for

the function G [7, Theorem 2], so that
∫

G(vn) =

∫
G(v) +

∫
G(vn − v) + on→∞(1).

One can then copy the proof of Proposition 2.6 and the fact that for all f ∈ Ḣ1(Rd,RN) one

has using scaling that ∫
G(f) 6 S‖∇f‖

2d/(d−2)

L2

to infer

S + o(1) =

∫
G(vn) =

∫
G(v) +

∫
G(vn − v) + o(1)

6 S(‖∇v‖
2d/(d−2)
L2 + ‖∇(vn − v)‖

2d/(d−2)
L2 ) + o(1)

which imply in the limit n → ∞ using the weak convergence of (vn) to v that

1 6 ‖∇v‖
2d/(d−2)
L2 +

(
1− ‖∇v‖2L2

)d/(d−2)
.

Using that d/(d− 2) > 1 and v 6= 0 we can conclude as in the proof of Proposition 2.6 that

(vn) converges strongly to v in Ḣ1, so that v is a maximizer for S. �

The above proof is a direct adaptation of the methods of Section 2, but in their article

Brézis and Lieb go actually way beyond by considering much more general assumptions on

the functions G:

(1) G(0) = 0 and ∃u0 ∈ RN , G(u0) > 0;

(2) lim|u|→0 |u|
−pG(u) 6 0, lim|u|→∞ |u|−pG(u) 6 0, p = 2d

d−2
,

(3) ∀δ > 0, ∃Cδ > 0, ∀u, v ∈ RN , |G(u + v) − G(u)| 6 δ(|G(u)| + |u|p) + Cδ(|G(v)| +

|v|p + 1).

For such G, the above approach is too simplistic and one has to adapt it quite substantially.

For instance, the function G may change sign so that the set C no longer coincides with

Ḣ1. The assumption (1) implies that S ∈ (0,+∞). From assumption (2), one can thus still

obtain the existence of a non-zero weak limit v for maximizing sequences up to translations

(vn) by the same method, and due to Ḣ1-boundedness one can still assume a.e. convergence

as well. Fatou’s lemma applied together with the assumption (2) on G imply that (G(vn))

is bounded in L1(Rd) and that G(v) ∈ L1(Rd), so that v ∈ C. The major difference in this

more general setting is that the assumptions on G are a priori too weak to ensure that we

have a Brézis-Lieb lemma for the function G as before. There are two reasons for that: i) in

Assumption (3), the function |G(v)|+ |v|p + 1 on the right side is not integrable (due to the

constant function) and ii) the quantity
∫
|G(vn− v)| may be unbounded since we only know

G(u) 6 C|u|p (and not |G(u)| 6 C|u|p). The key to bypass this issue is to prove a ’localized’
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Brézis-Lieb lemma stating that for any compactly supported ϕ ∈ Ḣ1 with G(ϕ) ∈ L1, one

has ∫
G(vn + ϕ) =

∫
G(vn) +

∫
G(v + ϕ)−

∫
G(v) + on→∞(1),

so that when inserted into the bound
∫
G(vn+ϕ) 6 S‖∇(vn+ϕ)‖

2d/(d−2)

L2 one obtains in the

limit n → ∞

S +

∫
G(v + ϕ)−

∫
G(v) 6 S

(
1 + ‖∇(v + ϕ)‖2L2 − ‖∇v‖2L2

)d/(d−2)
.

By a limiting argument, Brézis and Lieb show that one can take ϕ(x) = v(λx)− v(x) in this

inequality for any λ > 0, leading by rescaling to

S + (λ−d − 1)

∫
G(v) 6 S

(
1 + (λ2−d − 1)‖∇v‖2L2

)d/(d−2)
.

Expanding this inequality close to λ = 1 shows that
∫
G(v) > S‖∇v‖

2d/(d−2)

L2 so that
∫
G(v) =

S‖∇v‖
2d/(d−2)

L2 and since v 6= 0, we deduce that there exists a maximizer for S. Let us finally

mention that Brézis and Lieb are also able to deal with the critical case d = 2, by even more

involved methods.

3.4. Sobolev inequality. In [38], Lieb showed that his method also allowed to prove the ex-

istence of optimizers for the Sobolev embedding Ḣ1(Rd) →֒ L2d/(d−2)(Rd) for d > 3. The idea

is again to notice that one can look for optimizers in the set of radially symmetric decreas-

ing functions, and that for such functions the inequality is equivalent to a one-dimensional

Gagliardo-Nirenberg-Sobolev inequality for which Lieb proved the existence of optimizers as

we mentioned above. Another way to prove this result is to notice that such optimizers are

related to the optimizers of the HLS inequality in the special case p = 2 and λ = d−1, since

(−∆)−1/2 is proportional to the convolution operator with | · |−(d−1), so that the existence of

optimizers for the Sobolev embedding follows from Theorem 1 in this special case.

We present here another approach not using rearrangement but still relying on Proposition

2.6, in the spirit of what we already presented about the GNS inequality. Again, one of

the advantages of this approach is that it will provide a better description of optimizing

sequences. Furthermore, it can be applied to any embedding Hs(Rd) →֒ L2d/(d−2s)(Rd), for

which rearrangement techniques are not available.

Let d > 1 and s ∈ (0, d/2). Define q := 2d/(d− 2s) and

S := sup

{∫

Rd

|u|q : u ∈ Ḣs(Rd), ‖u‖Ḣs = 1

}
.

Proposition 3.6. There exists u ∈ Ḣs(Rd) such that ‖u‖Ḣs = 1 and ‖u‖qLq = S.

The proof is the same as the alternative proof of Proposition 3.4 using Proposition 2.6.

Again, Assumption (5) follows from the Rellich-Kondrachov theorem so that all boils down

to finding a maximizing sequence for S which has a non-zero weak limit. While for the GNS

inequality, we saw that the main enemy was the invariance by translations, here we will see

that we have to deal with both translations and dilations. The main tool to break these

invariances is the following result.
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Proposition 3.7 (Refined Sobolev inequality [26]). Let χ ∈ C∞
0 (0,+∞) be such that χ ≡ 1

in a neighborhood of 0. Then, there exist C > 0 and θ ∈ (0, 1) such that for any u ∈ Ḣs(Rd)

one has

‖u‖Lq 6 C
(
sup
t>0

t(d−2s)/4‖χ(−t∆)u‖L∞

)θ

‖u‖1−θ

Ḣs
.

This is called a refined inequality because it implies the Sobolev inequality; indeed we

have for all t > 0

‖et∆u‖L∞ 6 (2π)−d/2‖F(χ(−t∆)u)‖L1

= c

∫

Rd

|χ(t|ξ|2)û(ξ)| dξ

6 c′
(∫

Rd

|χ(t|ξ|2)|2

|ξ|2s
dξ

)1/2

‖u‖Ḣs

= c′t−(d−2s)/4

(∫

Rd

|χ(|ξ|2)|2

|ξ|2s
dξ

)1/2

‖u‖Ḣs.

Proof of Proposition 3.7. As stated by Gérard in [25], one can use the method of Chemin

and Xu [14] to obtain refined inequalities. Let thus u ∈ Ḣs(Rd). We have

‖u‖qLq = q

∫ ∞

0

|{|u| > a}|aq−1 da.

For any fixed a > 0, choosing β = βa > 0 such that

c0β
−(d−2s)/4 = a/2, c0 := sup

t>0
t(d−2s)/4‖χ(−t∆)u‖L∞ ,

we have ‖χ(−β∆)u‖L∞ 6 a/2. We deduce

|{|u| > a}| 6 |{|χ(−β∆)u| > a/2}|+ |{|(1− χ(−β∆))u| > a/2}|

= |{|(1− χ(−β∆))u| > a/2}|

6
4‖(1− χ(−β∆))u‖2L2

a2
.

As a consequence, using the relation between βa and a,

‖u‖qLq 6 4q

∫

Rd

|û(ξ)|2
∫ ∞

0

(
1− χ(βa|ξ|

2)
)2

aq−3 da dξ

= 4q

∫

Rd

|û(ξ)|2
∫ ∞

0

(
1− χ((a/(2c0))

−4/(d−2s)|ξ|2)
)2

aq−3 da dξ

= 2d(2c0)
q−2

∫ ∞

0

(1− χ(b))2 b−s−1 db

∫

Rd

|ξ|(q−2)(d−2s)/2|û(ξ)|2 dξ,

which proves the result since (q − 2)(d− 2s)/2 = 2s. �

Let us now explain why the refined Sobolev inequality allows to break symmetries to find

a non-zero weak limit (this argument is implicit in [25]; see also [31]). Indeed, let (un) be a
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maximizing sequence for S. Since ‖un‖
q
Lq → S 6= 0 as n → ∞, Proposition 3.7 implies that

there exists c > 0 such that for all n,

sup
t>0

t(d−2s)/4‖χ(−t∆)un‖L∞ > c,

hence for all n there exist tn > 0 and xn ∈ Rd such that

t(d−2s)/4
n |(χ(−tn∆)un)(xn)| = (2π)−d/2t(d−2s)/4

n

∣∣∣∣
∫

Rd

χ(tn|ξ|
2)e−ixn·ξûn(ξ) dξ

∣∣∣∣ > c/2.

Defining g = F−1(χ(| · |2)) ∈ L2(Rd), this implies that for all n,

|〈g, t(d−2s)/2
n un(t

1/2
n (· − xn))〉L2 | > (2π)d/2c/2,

and hence the sequence (t
(d−2s)/2
n un(t

1/2
n (· − xn))), which is still a maximizing sequence for S

and as such converges weakly up to a subsequence, has a weak limit v 6= 0 (since |〈g, v〉L2| >

(2π)d/2c/2 > 0). Notice that this approach shows that any maximizing sequence for S

converges strongly in Ḣs up to translations and dilations (up to a subsequence), a result that

is originally due to Lions [47, Theorem I.1]. Arguments closely related to those described

here were applied in the setting of the Heisenberg group in [18, Proposition 4.3].

3.5. Generalized Gagliardo-Nirenberg-Sobolev inequality. The previous approach can

also be used for the subcritical embeddings Hs(Rd) →֒ Lq(Rd) with q ∈ (2, 2d/(d − 2s)).

We already treated the case s = 1 with either rearrangement methods or Proposition

2.8. For general s, rearrangement cannot be used in the same way (since the inequality

‖f‖Ḣs > ‖f ∗‖Ḣs is expected to fail for general s) so we explain how to adapt Proposition

2.8 in this case. This strategy was used in [3].

Let d > 1, s ∈ (0, d/2), and 2 < q < 2d/(d− 2s). Define

S := sup

{∫

Rd

|u|q : u ∈ Hs(Rd), ‖u‖Hs = 1

}
.

Proposition 3.8. There exists u ∈ Hs(Rd) with ‖u‖Hs = 1 such that ‖u‖qLq = S.

As in the previous arguments, it is enough to find a non-zero weak limit for some maxi-

mizing sequences, which we again do using a refined version of the inequality.

Proposition 3.9. Define s′ ∈ (0, s) such that q = 2d/(d−2s′). Let χ ∈ C∞
0 (0,+∞) be such

that χ ≡ 1 in a neighborhood of 0. Then, there exists C > 0 such that for all u ∈ Hs(Rd) we

have

‖u‖Lq 6 C
(
sup
t>0

t(d−2s′)/4‖χ(−t∆)u‖L∞

)θ

‖u‖1−θ
Hs . (3.1)

Proposition 3.9 directly follows from Proposition 3.7 and the injection Hs →֒ Hs′. Now let

(un) ⊂ Hs(Rd) be a maximizing sequence for S. As before, from S 6= 0 and the boundedness

of (un) in Hs(Rd) we deduce that there exists c > 0 such that for all n,

sup
t>0

t(d−2s′)/4‖χ(−t∆)un‖L∞ > c.
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Now notice that from the boundedness of (un) in Hs, we have for all t > 0,

t(d−2s′)/4‖χ(−t∆)un‖L∞ 6
t(d−2s′)/4

(2π)d/2

∫

Rd

|χ(t|ξ|2)ûn(ξ)| dξ 6

{
ct−s′/2‖un‖L2 6 Ct−s′/2

ct(s−s′)/2‖un‖Ḣs 6 Ct(s−s′)/2

hence t(d−2s′)/4‖χ(−t∆)un‖L∞ → 0 as t → 0 or t → +∞ uniformly in n, and thus there exist

t−, t+ ∈ (0,+∞) so that for all n,

sup
t∈[t−,t+]

t(d−2s′)/4‖χ(−t∆)un‖L∞ = sup
t>0

t(d−2s′)/4‖χ(−t∆)un‖L∞ > c.

As above, one deduces from this lower bound that there exist (xn) ⊂ Rd and (tn) ⊂ [t−, t+]

such that (t
(d−2s′)/4
n ϕn(t

1/2
n (·−xn)) has a non-zero weak limit (up to a subsequence) inHs(Rd).

Since (tn) ⊂ [t−, t+], one can furthermore extract a subsequence so that tn → t∗ ∈ [t−, t+].

This implies that (un(· − xn)) has a non-zero weak limit in Hs(Rd).

In the above proof, we used the refined inequality (3.1) which looks like the critical one

of Proposition 3.7 in the sense that both dilations and translations seem to appear in it (in

the supremum in both t and x). Our reasoning above shows that, by subcriticality of q,

the supremum over all dilations t ∈ (0,+∞) can be replaced by a supremum over dilation

t ∈ [t−, t+] which is now a ’compact’ symmetry group, and hence disappears in the final

result. There are ways to obtain a refined inequality in which only translations appear; for

instance in the case s = 1 one has [46, Lem. I.1]: for all q ∈ (2, 2d/(d− 2)) with d > 3,

∀ϕ ∈ H1(Rd), ‖ϕ‖Lq 6 C

(
sup
z∈Zd

‖ϕ‖L2(z+[0,1)d)

)θ

‖ϕ‖1−θ
H1 ,

for some θ ∈ (0, 1) and C > 0 independent of ϕ. From this inequality, it is not hard to deduce

the existence of non-zero weak limits up to translations. For general s, the non-locality of

the Hs-norm makes the proof more difficult but a similar inequality where only translation

appears was proved for s ∈ (0, 1) in [33, Eq. (B.12)].

Remark 3.10. Sometimes, existence of maximizers is stated when S is replaced by

sup{‖u‖qLq : u ∈ Hs(Rd), ‖u‖L2 = 1, ‖u‖Ḣs = 1}.

In this case, one can still apply the same strategy because the above supremum is related

by scaling to S where the Hs-norm ‖u‖Hs = ‖(1 − ∆)s/2u‖L2 is replaced by the equivalent

norm ‖(1 + (−∆)s)1/2u‖L2.

3.6. Strichartz inequality. We give one final example where the above techniques can

be applied, which is the one of Strichartz inequalities. We will see that in this case, more

advanced techniques are required to obtain Assumptions (4) and (5) of Proposition 2.6. The

fact that Lieb’s strategy could be applied to this case was understood by R. Frank and the

author in an unpublished work.

Let d > 1 and define

S = sup

{∫

R

∫

Rd

|(eit∆xu)(x)|2+4/d dx dt : u ∈ L2(Rd), ‖u‖L2 = 1

}
.
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This problem has a lot of symmetries: besides translations and dilations, there are also

the transformations u(x) → (eis∆xu)(x) for any s ∈ R and u(x) → eix·ξu(x) for any ξ ∈ Rd.

Proposition 3.11. There exists u ∈ L2(Rd) with ‖u‖L2 = 1 and ‖eit∆u‖
2+4/d

L2+4/d(R×Rd)
= S.

This result has first been proved by Kunze [32] for d = 1 and by Shao [52] for d > 2, using

profile decompositions. We show here that Proposition 2.6 leads to the same result, even if

the same tools are at the core of all the proofs. To apply Proposition 2.6 to this case, we

again need to find a maximizing sequence (vn) which converges weakly to a non-zero limit

v, as well as to show that eit∆xvn → eit∆xv a.e. on R× Rd.

The first step can also be obtained via the following refined inequality, which can be found

for instance in the lecture notes of Killip and Visan [31, Prop. 4.24] and which relies on deep

bilinear estimates due to Tao [56]:

Proposition 3.12. There exists C > 0 and θ ∈ (0, 1) such that for all u ∈ L2(Rd) we have

‖eit∆xu‖L2+4/d(R×Rd) 6 C

(
sup
Q∈D

|Q|−1/2‖eit∆xuQ‖L∞(R×Rd)

)θ

‖u‖1−θ
L2 ,

where D denotes the family of dyadic cubes on R
d of side length 2j and centered at (2jZ)d,

for all j ∈ Z, and uQ := F−1(1Qû).

If (un) is a maximizing sequence for S, one deduces from the refined inequality that there

exist c > 0, (tn, xn) ⊂ R× Rd, (δn) ⊂ (0,+∞), and (cn) ⊂ Rd such that for any n,

|〈g, vn〉| = δ−d/2
n

∣∣∣∣
∫

cn+[−δn,δn)d
e−itn|ξ|2−ixn·ξûn(ξ) dξ

∣∣∣∣ > c,

where g = F−1(1[−1,1)d) and vn := F−1(ξ 7→ δ
d/2
n e−itn|cn+δnξ|2−ixn·(cn+δnξ)ûn(cn + δnξ)). It can

be shown that (vn) is still a maximizing sequence for S, which thus has a non-zero weak

limit in L2.

The a.e. convergence of eit∆xvn to eit∆xv can be proved using the following result stated

for instance in [30, Proposition 1.4] which is a consequence of the local smoothing properties

of eit∆x :

Proposition 3.13. The map v ∈ L2(Rd) 7→ eit∆v ∈ L2
loc(R× R

d) is compact.

Proof. Notice first that we have the following local smoothing estimate [16]: for any a ∈

S(Rd), there exists C > 0 such that for any u ∈ L2(Rd) one has
∫

R

∫

Rd

a(x)|(−∆x)
1/4(eit∆xu)(x)|2 dx dt 6 C‖u‖2L2.

Indeed, the left integral in Fourier variables is equal to

(2π)d/2
∫

Rd

∫

Rd

û(ξ)Ka(ξ, ξ
′)û(ξ′) dξ dξ′

with an integral kernel

K(ξ, ξ′) = |ξ|1/2|ξ′|1/2â(ξ′ − ξ)δ(|ξ|2 − |ξ′|2).
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To prove the inequality, it is enough by Schur’s test to bound uniformly in ξ,
∫

Rd

|K(ξ, ξ′)| dξ′ = |ξ|d−1

∫

Sd−1

|â(|ξ|ω − ξ)| dω.

For small ξ, this is clearly bounded while for large ξ, one can write any ω ∈ Sd−1 as ω =

(cos θ)ωξ + (sin θ)ω′ with ωξ = ξ/|ξ| and ω′ · ξ = 0, |ω′| = 1. Using the decay of â, we then

have the bound
∫

Sd−1

|â(|ξ|ω − ξ)| dω 6 C

∫ π

0

(sin θ)d−2

(1 + |ξ| sin θ)d
dθ 6 C ′|ξ|−(d−1).

To prove the proposition, let (vn) ⊂ L2(Rd) such that vn ⇀ 0 and let C ⊂ Rd+1 be a compact

set. Let us prove that eit∆vn → 0 in L2(C). Let ε > 0, Λ > 0 and a ∈ S(Rd) such that a > 0.

Split vn as vn = vn,> + vn,< with v̂n,>(ξ) = 1(|ξ| > Λ)v̂n. By the local smoothing estimate,

we have

‖eit∆vn,>‖
2
L2(C) 6 (min

C
a)−1

∫

R

∫

Rd

a(x)|(eit∆vn,>)(x)|
2 dx dt

6 C(min
C

a)−1‖(−∆)−1/4vn,>‖
2
L2

6 C ′Λ−1,

where in the last step we used that (vn) is bounded in L2(Rd). We thus fix Λ large enough

so that C ′Λ−1 6 ε2, hence ‖eit∆vn,>‖L2(C) 6 ε for all n. Now for any (t, x) ∈ C we have

(eit∆vn,<)(x) = (2π)−d/2

∫

|ξ|6Λ

e−it|ξ|2+iξ·xv̂n(ξ) dξ = 〈vn, g〉

with g := (2π)−d/2F−1(1(|ξ| 6 Λ)eit|ξ|
2−iξ·x) ∈ L2(Rd), so that by weak convergence we

have (eit∆vn,<)(x) → 0 as n → ∞ for all (t, x) ∈ C. Furthermore, again by boundedness

of (vn) in L2, we also have the bound |(eit∆vn,<)(x)| 6 CΛd/2 uniform in n. By dominated

convergence, we deduce that eit∆vn,< → 0 in L2(C) and hence ‖eit∆vn,<‖L2(C) 6 ε for n large

enough, which concludes the proof. �

4. Applications to problems with approximate symmetries

After these several examples of how to deal with non-compact invariances, we present a

few examples where the same strategy can be applied in the context of ’almost’ invariances.

What we mean by that is for instance a problem that is not translation-invariant but when

one translates a function to infinity, a new effective optimization problem arises. To show

that the original problem has an optimizer through convergent optimizing sequences, one thus

has to understand why it is energetically unfavorable to send some/all the mass to infinity.

We illustrate this idea on the historical example of the Brézis-Nirenberg problem, which is a

version of the Sobolev inequality that is not translation or dilation invariant, and on the more

recent example of the Stein-Tomas inequality, which is a version of the Strichartz inequality

with less invariances. We focus on these two examples but of course, this phenomenon is

ubiquitous in optimization problems and we will not try to give a complete list of the various

methods used to deal with it.



COMPACTNESS METHODS IN LIEB’S WORK 19

4.1. The Brézis-Nirenberg problem. Let d > 3 and Ω an open bounded subset of Rd.

Denote by λ1(Ω) > 0 the first eigenvalue of the Dirichlet Laplacian on Ω. Let λ ∈ [0, λ1(Ω))

and q ∈ 2d/(d − 2). In the Brézis-Nirenberg problem [9], one wants to know whether

maximizers exist for

Sλ := sup

{∫

Ω

|u|q : u ∈ H1
0 (Ω), ‖∇u‖2L2 − λ‖u‖2L2 = 1

}
.

Compared to the similar problem of the existence of optimizers for the Sobolev inequality

in Rd, we see that posing the problem in Ω breaks translation and dilation invariance.

However, dilation remains an ’almost’ invariance, in the sense that if one fixes x0 ∈ Ω and

ε > 0 such that B(x0, ε) ⊂ Ω, then for any u ∈ C∞
c (B(x0, ε)) ⊂ H1

0 (Ω), the function

uδ : x 7→ δ(d−2)/2u(x0 + δ(x − x0)) belongs to H1
0 (Ω) for any δ > 1 so that one can still

dilate some functions in the maximization set (only for large dilation parameters δ, meaning

that one can only contract a function). The operation u → uδ clearly does not leave the

maximization problem invariant, since while
∫
Ω
|uδ|

q =
∫
Ω
|u|q and ‖∇uδ‖

2
L2 = ‖∇u‖2L2,

we have ‖uδ‖
2
L2 = δ−2‖u‖L2. This fact has several important consequences regarding the

maximization problem Sλ. First, it implies that Sλ > S, where S is the Sobolev constant on

Rd,

S = sup

{∫

Rd

|u|q : u ∈ H1(Rd), ‖∇u‖L2 = 1

}
.

Indeed, by density of C∞
0 (Rd) in H1(Rd), the above sup can be computed by looking only

at u’s in C∞
0 (Rd). Now any such u can be dilated and translated so that it belongs to

C∞
c (B(x0, ε)) ⊂ H1

0 (Ω), without changing its Lq(Rd) and Ḣ1(Rd) norms. By the above

procedure, one can then dilate this u so that
∫
Ω
|uδ|

q

(‖∇uδ‖2L2 − λ‖uδ‖2L2)q/2
−→δ→∞

∫
Rd |u|

q

‖∇u‖
q/2
L2

,

which then indeed proves that S 6 Sλ since the left quotient is less than Sλ for all δ > 1.

Secondly, this ’almost’ invariance also has important consequences regarding the convergence

of maximizing sequences. Indeed, if one has the equality S = Sλ, then one can easily find

maximizing sequences for Sλ that converge weakly to 0 in H1
0 (Ω): one can just consider

a maximizing sequence (un) ⊂ C∞
0 (Rd) for S and scale it by the above procedure, with a

scaling parameter δn > 1 large enough so that δ−1
n ‖un‖L2 → 0 as n → ∞. Hence, Sλ < S is

a necessary condition for maximizing sequences for Sλ to converge strongly. Using the same

method as in Proposition 2.6, Lieb proved in [9, Lemma 1.2] that this condition was also

sufficient.

Proposition 4.1. If Sλ > S, then there exists u ∈ H1
0 (Ω) with ‖∇u‖2L2 − λ‖u‖2L2 = 1 such

that ‖u‖qLq = Sλ.

Proof. Define

S̃ := sup

{
lim sup
n→∞

∫

Ω

|un|
q : (un) ⊂ H1

0(Ω), ∀n, ‖∇un‖
2
L2 − λ‖un‖

2
L2 = 1, un ⇀ 0

}
,
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and let us first show the result if Sλ > S̃. We will then show that S = S̃. Let (un) be a

maximizing sequence for Sλ. Since Sλ > S̃, we deduce that un 6⇀ 0 and hence un ⇀ u 6= 0

in H1
0 (Ω), up to a subsequence. By the Rellich-Kondrachov theorem, we may also assume

that un → u a.e. on Ω. Then, one can apply Proposition 2.6 to the sequence (un) and to

the operator A : u ∈ H1
0 (Ω) 7→ u ∈ Lq(Ω), where the Hilbert space H1

0 (Ω) is endowed with

the Hilbert space norm ‖v‖ = (‖∇u‖2L2 − λ‖u‖2L2)1/2. We obtain in this way that u is a

maximizer for Sλ and that un → u strongly in H1
0 (Ω). It thus remains to prove that S = S̃.

First, our construction above of a maximizing sequence for S concentrating at a point in Ω

shows that S 6 S̃. Let us show the reverse inequality. To do so, let (un) ⊂ H1
0 (Ω) be such

that ‖∇un‖
2
L2 −λ‖un‖

2
L2 = 1 for all n and such that un ⇀ 0 in H1

0 (Ω). Again by the Rellich-

Kondrachov theorem, we deduce that un → 0 strongly in L2(Ω), so that ‖∇un‖L2 → 1 as

n → ∞. Defining vn ∈ H1(Rd) to be the extension of un by 0 outside of Ω, we thus have for

all n ∫
Ω
|un|

q

1 + o(1)
=

∫
Rd |vn|

q

‖∇vn‖
q/2

L2

6 S,

hence lim supn→∞

∫
Ω
|un|

q 6 S, so that S̃ 6 S. �

Remark 4.2. In [9], Brézis and Nirenberg showed that Sλ > S is true for all λ ∈ (0, λ1(Ω))

if d > 4. On the other hand, if d = 3, they show that for any bounded smooth Ω (in fact,

finite measure is sufficient) there is a λ∗(Ω) ∈ (0, λ1(Ω)) such that Sλ = S for all λ 6 λ∗(Ω)

and Sλ > S for λ > λ∗(Ω).

4.2. The Stein-Tomas inequality. In [20], Lieb and his coauthors applied similar ideas

to study the existence of maximizers for the Stein-Tomas inequality [54, 57],

S = sup

{∫

Rd+1

|f̌ |q : f ∈ L2(Sd), ‖f‖L2 = 1

}

with d > 1 and q = 2 + 4/d, and where for any f ∈ L2(Sd) we defined

∀x ∈ R
d+1, f̌(x) =

∫

Sd

f(ω)e−ix·ω dω.

Since the problem is posed on the sphere, the problem is rotation invariant but since the

group of rotations is compact, it does not induce any loss of compactness. However, similarly

to the Brézis-Nirenberg problem, a potential loss of compactness may arise from functions

that concentrate at a point on the sphere. Interestingly, the effective problem that one

finds in this case is the Strichartz inequality that we mentioned above, for which we denote

the sharp constant by SStri. There is a twist compared to the Brézis-Nirenberg problem,

though: one can show that it is energetically more favorable to concentrate around two

points (namely, antipodal points on the sphere) rather than at a single point (with the mass

equally split between the two points). One can compute explicitly that such a scenario leads

to an effective problem which sharp constant is aSStri for some a > 1. In [20], the authors

prove that this scenario is the only possible source of loss of compactness:

Proposition 4.3. If S > aSStri, then there exists f ∈ L2(Sd) with ‖f‖L2 = 1 such that∫
Rd+1 |f̌ |

q = S.
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The proof of this result follows the same line of the one above for the Brézis-Nirenberg

problem: defining

S̃ = sup

{
lim sup
n→∞

∫

Rd+1

|f̌n|
q : (fn) ⊂ L2(Sd), ∀n, ‖fn‖L2 = 1, fn ⇀sym 0

}
,

one can show using Proposition 2.6 that if S > S̃, then maximizing sequences converge

strongly to a maximizer for S since by definition of S̃, they admit non-zero weak limits.

Here, the notation fn ⇀sym 0 refers to weak convergence to zero “up to symmetry”, because

this problem still has a non-compact invariance (the transformation f(ω) → e−ix·ωf(ω) for

any x ∈ Rd+1). Hence, fn ⇀sym 0 means that for all (xn) ⊂ Rd+1, e−ixn·ωfn ⇀ 0 in L2(Sd).

If S > S̃, we thus deduce that maximizing sequences (fn) for S are such that there exists

(xn) ⊂ Rd+1 such that (e−ixn·ωfn) has a non-zero weak limit in L2(Sd) (and it is still a

maximizing sequence to which we can apply Proposition 2.6). In the end, everything boils

down to proving that S̃ = aSStri. Notice again that due to our explicit examples of functions

that concentrate at two antipodal points, we always have S̃ > aSStri and one has to prove

the reverse inequality. It follows from a refined version of the Stein-Tomas inequality (in the

spirit of the refined inequalities that we mentioned above) that for a sequence (fn) which

is an almost maximizer for S̃ (so that f̌n does not converge strongly to 0 in Lq(Rd+1)), one

can find a sequence of scaling parameters such that some positive mass of (fn) concentrates

around antipodal points at this scale. Using a version of Proposition 2.6 adapted to this

setting, one can show that actually all the mass of (fn) concentrates around these points

(for otherwise it would violate its almost maximality), so that it becomes a competitor for

the maximization problem aSStri, leading to S̃ 6 aSStri.

Remark 4.4. It is known that S > aSStri holds for d = 1 [53] and d = 2 [15], but it is a

conjecture for d > 3. In [20], it is shown that this conjecture would be a consequence of the

conjectured fact that Gaussians are maximizers for the Strichartz problem SStri. Let us also

mention that a similar strategy was applied to the case where the sphere is replaced by the

one-dimensional cubic curve y = x3 in [23].

Finally, let us mention that the fact that a strict inequality between the supremum and

an ’effective’ supremum obtained using the almost invariances of the problem implies the

existence of optimizers appeared in many places in the literature; and perhaps one of the

earliest example of such a phenomenon is the HVZ theorem in many-body quantum mechan-

ics going back to the 1960s1 (see for instance [34, Theorem 3.1] for a version reflecting these

compactness ideas; Zhislin’s original proof [60] being very close in spirit, as manifested by

[58, Eq. (2.14)] which shows that sequences of trial functions vanishing weakly must have at

least the energy of N − 1 particles), where it is proved that an atom can bind N electrons

if and only if the N -body ground state is strictly less that the (N − 1)-body ground state

(in other words, it is energetically unfavorable to send one of the electrons to infinity). In

physics, it is also standard that this kind of inequalities imply the stability of the system; as

demonstrated for instance in the work of Bethe [5], where the fact that adding an electron to

1We thank Mathieu Lewin for pointing this out to us.
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the hydrogen atom is proven to be energetically favorable2. There, the fact that it implies the

stability of the negative hydrogen ion (that is, the existence of a ground state) is implicit and

not even mentioned. A famous problem where this phenomenon also appears is the Yamabe

problem in Riemannian geometry, where optimizers exist as soon as concentration around a

point is energetically unfavorable, as understood by Aubin [1]. Finally, this is also the con-

tent of the strict binding inequalities introduced by Lions in his concentration-compactness

theory, which are shown to be necessary and sufficient conditions for the precompactness

of optimizing sequences and which were used by Lions and others to study various types of

optimization problems.

Appendix A. Profile decompositions

We explain why the techniques presented in this review naturally lead to a structure

theorem for bounded sequences in some function spaces which is called profile decomposition,

useful in many analysis problems. For general sequences, this was first introduced by Gérard

[25] but they appear in many works that we will not try to list here. We state it in the

context of Hs(Rd) (which was proved before for instance in [33, Lem. 11]) but as the proof

will show, its basic ingredients are the same as the ones we used to prove the existence of

optimizers: namely, a refined inequality to detect at which scale some positive mass lives, a

compactness tool ensuring a.e. convergence, and the Brézis-Lieb lemma. Hence, a similar

profile decomposition can be inferred for problems where such ingredients are present. That

these tools could be used to obtain a profile decomposition was understood quite early by

Nawa [50, 51] in the context of the nonlinear Schrödinger equation.

Proposition A.1. Let d > 1, s ∈ (0, d/2). Let (un) be a bounded sequence in Hs(Rd). Then,

there exists a subsequence of (un) (that we still denote by (un)), there exist (vj)j>1 ⊂ Hs(Rd)

and (xj
n)j>1 ⊂ Rd such that defining for all J > 1 and n ∈ N,

rJn := un −

J∑

j=1

vj(·+ xj
n),

we have

(1) ∀J > 1,

‖un‖
2
Hs =

J∑

j=1

‖vj‖2Hs + ‖rJn‖
2
Hs + on→∞(1).

(2) ∀q ∈ (2, 2d/(d− 2s)), ∀J > 1,

‖un‖
q
Lq =

J∑

j=1

‖vj‖qLq + ‖rJn‖
q
Lq + on→∞(1).

(3) ∀j 6= j′, limn→∞ |xj
n − xj′

n | = +∞;

(4) ∀q ∈ (2, 2d/(d− 2s)), limJ→∞ lim supn→∞ ‖rJn‖Lq = 0.

2We thank Rupert Frank for mentioning this reference as well as Zhislin’s one.
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Before proving this proposition, let us recall a consequence of the refined inequality of

Proposition 3.9 that we used implicitly in our proof of Proposition 3.8.

Proposition A.2. Let d > 1, s ∈ (0, d/2) and q ∈ (2, 2d/(d− 2s)). Then, there exist c > 0

and θ ∈ (0, 1) such that for any bounded sequence (un) ⊂ Hs(Rd) we have

(1) either limn→∞ ‖un‖Lq = 0;

(2) or a := lim supn→∞ ‖un‖Lq > 0 and there exist a subsequence of (un) (that we still

denote by (un)), there exist v ∈ Hs(Rd)\{0} and (xn) ⊂ R
d such that un(·−xn) ⇀ v

in Hs(Rd) and such that ‖v‖Hs > ca1/θb1−1/θ, where b := lim infn→∞ ‖un‖Hs.

What we did not emphasize in the proof of Proposition 3.8 was the lower bound on the

norm of v; but recall that, using the refined inequality, the proof provides a g ∈ Hs and a

c′ > 0 such that |〈g, v〉| > c′a1/θb1−1/θ , so that the lower bound on ‖v‖Hs just follows from

the Cauchy-Schwarz inequality.

Proof of Proposition A.1. Define b := lim infn→∞ ‖un‖Hs and let us fix any q ∈ (2, 2d/(d −

2s). If limn→∞ ‖un‖Lq = 0, then we define vj = 0 for all j and pick any (xj
n) ⊂ Rd satisfying

(3) to get the result. If a0 := lim supn→∞ ‖un‖Lq > 0, we apply Proposition A.2 to infer

that there exist v1 ∈ Hs(Rd) \ {0} with ‖v1‖Hs > ca
1/θ
0 b1−1/θ and (x1

n) ⊂ R
d such that

un(· − x1
n) ⇀ v1 in Hs(Rd). Recall that we then define r1n := un − v1(· + x1

n) so that

r1n(· − x1
n) ⇀ 0 and thus we have

‖un‖
2
Hs = ‖un(· − x1

n)‖
2
Hs = ‖v1 + r1n(· − x1

n)‖
2
Hs = ‖v1‖2Hs + ‖r1n‖

2
Hs + on→∞(1),

which is (1) for J = 1. To obtain (2) for J = 1, one can use that r1n(· − x1
n) ⇀ 0 together

with the boundedness of (r1n) in Hs and the Rellich-Kondrachov theorem to infer that, up

to a subsequence, r1n(· − x1
n) → 0 a.e. on Rd. Then, by the Brézis-Lieb lemma we obtain for

any r ∈ (2, 2d/(d− 2s),

‖un‖
r
Lr = ‖un(· − x1

n)‖
r
Lr = ‖v1 + r1n(· − x1

n)‖
r
Lr = ‖v1‖rLr + ‖r1n‖

r
Lr + on→∞(1),

which is (2) for J = 1. If limn→∞ ‖r1n‖Lq = 0, then we define vj = 0 for all j > 2 and pick any

(xj
n)j>2 so that (3) is satisfied, and then we get the result. If a1 := lim supn→∞ ‖r1n‖Lq > 0

we continue by applying the previous procedure to (r1n) instead of (un). By the property

(1) for J = 1, we have lim infn→∞ ‖r1n‖Hs 6 lim infn→∞ ‖un‖Hs = b so that by Proposition

A.2, there exist v2 ∈ Hs(Rd) \ {0} with ‖v2‖Hs > ca
1/θ
1 b1−1/θ and (x2

n) ⊂ R
d such that

r1n(· − x2
n) ⇀ v2 in Hs(Rd). With r2n = r1n − v2(·+ x2

n), we thus have as previously that

‖r1n‖
2
Hs = ‖v2‖2Hs + ‖r2n‖

2
Hs + on→∞(1),

‖r1n‖
r
Lr = ‖v2‖rLr + ‖r2n‖

r
Lr + on→∞(1), r ∈ (2, 2d/(d− 2s))

which when inserted in (1), (2) for J = 1 give (1), (2) for J = 2. Let us now check that

|x1
n − x2

n| → ∞. Assume by contradiction that some subsequence of (x1
n − x2

n) is bounded;

then up to subsequence we may assume that yn := x1
n − x2

n → y∞ ∈ Rd. Recall that, by

construction, r1n(· − x2
n) ⇀ v2 so that r1n(· − x1

n) = r1n(· − x2
n − yn) ⇀ v2(· − y∞). This is

a contradiction with v2 6= 0 and r1n(· − x1
n) ⇀ 0. We thus obtain (3) for j = 1 and j′ = 2.

We can iterate this construction by again distinguishing between limn→∞ ‖r2n‖Lq = 0 and
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a2 := lim supn→∞ ‖r2n‖Lq > 0 to build all the profiles (vj) and the centers (xj
n). It remains

to check (4), which is non-trivial only in the case where all the profiles (vj) are non-zero

(that is, aJ > 0 for all J). Assume by contradiction that (4) fails in this case, that is there

exist ε > 0 and a sequence (Jk) such that aJk > ε for all k. We deduce that for all k,

‖vJk‖Hs > cε1/θb1−1/θ > 0 (where we recall that c, ε, b are independent of k), a contradiction

with
∑∞

j=1 ‖v
j‖2Hs 6 b2 which is a consequence of (1). �
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