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Abstract—This paper introduces a theoretically-rigorous sound
source localization (SSL) method based on a robust extension
of the classical multiple signal classification (MUSIC) algorithm.
The original SSL method estimates the noise eigenvectors and the
MUSIC spectrum by computing the spatial covariance matrix of
the observed multichannel signal and then detects the peaks from
the spectrum. In this work, the covariance matrix is replaced with
the positive definite shape matrix originating from the elliptically
contoured o-stable model, which is more suitable under real
noisy high-reverberant conditions. Evaluation on synthetic data
shows that the proposed method outperforms baseline methods
under such adverse conditions, while it is comparable on real
data recorded in a mild acoustic condition.

Index Terms— sound source localization, MUSIC, «-stable
theory, covariation

I. INTRODUCTION

Sound source localization (SSL) aims at determining the
source position in the space. It is essential for various machine
listening applications such as sound event localization and de-
tection [1], sound source separation [2] and speech enhance-
ment [3]. Although it is a well-studied problem that benefits
from decades of literature, the task of SSL still challenges to-
day’s technologies under adverse conditions due to noise [4],
long reverberation and acoustic reflections [5], [6]. Most SSL
state-of-the-art algorithms exploit the correlation between the
observed data and build a function with respect to candidate
source locations. For instance, the popular steered response
power phase transform (SRP-PHAT) approach [7] computes
correlation coefficients considering only the phase information
of the signal. Then, the SSL is achieved by finding maxima
through a grid search of potential locations.

Alternatively, the multiple signal classification (MUSIC)
method aims to separate the noise and source subspaces via
eigenvalue decomposition of the observed covariance matrix.
Then, the so-called pseudo spectrum function exhibits peaks
corresponding to the source positions. Therefore, most stud-
ies on SSL have investigated extensions of such methods to
face real-world challenging scenarios. Under a low signal-to-
noise ratio (SNR) condition, for instance, the work of [4] pro-

All the code used to produce the results of this paper is available at https:
//github.com/matfontaine/alphaMUSIC.

poses a normalization along the frequency axis of the MUSIC
pseudo-spectrum that increases the SSL accuracy. The work
of [8] proposed an extension of the MUSIC method in the
presence of multiple highly-correlated sources. Moreover, the
generalized eigenvalue decomposition (GEVD-MUSIC) [9] in-
troduced a notable improvement to deal with noise stronger
than the source signal. This approach was later extended for
real-time applications in [10], [11]. Finally, the work of [12]
outlines recent development in deep learning-based approaches
that provide robust data-driven extensions of such well-known
baseline methods.

A basic assumption of the MUSIC approach is that the source
and noise subspaces are orthogonal to each other. In practice,
this concerns with the estimation of the underlying true mixture
covariance matrix which may be strongly biased when dealing
with non-stationary noise and reverberation. Therefore, another
research direction comprises models to surrogate such matrix
or its components. In [13], the authors propose a generalized
covariance (GC) framework that summarizes a plethora robust
estimators, including the covariation method [14] and new non-
linear function-based GC (e.g., hyperbolic tangent). Besides, a
natural way to get a positive definite shape matrix was designed
in [15] for various complex elliptically contoured distributions.
Recent researches also focused on using complex multivari-
ate elliptically contoured a-stable (a-EC) distributions for SSL
where parameters are estimated through the empirical charac-
teristic function (ECF) [16]. However, ECF-based algorithm
can be tricky to estimate [17]. The «a-stable distributions gather
all random vectors that satisfies the reproductive property [18],
while a-EC is a subclass of multivariate distribution parame-
terized by a positive definite shape matrix and a tail-index « €
(0, 2] measuring the heaviness of the distribution. A description
of other a-based SSL algorithms can be found in [19], [20].

In this paper, we propose to exploit the a-EC through
a covariation-based parameter estimation on the observation
shape matrix that does not require to compute the ECF. More-
over, we include the proposed estimation in [21] of the tail-
index « to capture the dynamic range of the signal and show
the performance and time consumption in several SSL scenar-
ios on both synthetic and real data.



II. MUSIC: THE BASIC APPROACH TO SSL

This section outlines SSL methods based on the MUSIC al-
gorithm. We first recall the pioneering one [22] in Section II-A
and then overview the variants in Section II-B. Let us assume
that the observed signal is captured by a microphone array com-
posed of M sensors and represented in the short-time Fourier
transform (STFT) domain as xy; £ [I1ft, RV .I]\4ft]T eCM,
where f € {1,...,F} and ¢t € {1,...,T} are the frequency
and frame indexes, respectively. Here £ denotes the equality
by definition and " the transposition.

A. MUSIC Framework

Assuming the STFT window length is larger than the rever-
beration time, for all f,¢ the STFT of the recorded observed
signals read [23]

Xft:Afot+l’1ft, (1)

where s;; € CN are the N < M punctual sources, Ay €
CM>N s the mixing matrix, and n, is an additive white noise
component with variance o2 uncorrelated to the signal s ;. We
assume that the sources are located sufficiently far from the
array to hold the plane wave assumption. In this context, the
SSL task reduces to estimate the angle of arrival (AOA) of target
sources. From Eq. (1), the covariance matrix Ry r; of x; reads

Ry st 2 E [x;xl,] = AfRs 1A +0°Ly, ()

where " is the Hermitian transposition, Ry f¢ is the covariance
matrix of sy; and I,/ is the identity matrix of size M x M.
Assuming stationary sources, Eq. (2) is then time-averaged

T

~ 1

Rx,f £ T fotx?t' (3)
t=1

The full column rankness of Ay, the positive definiteness of
Ry, s+ and f{x7 ¢ implies that the N largest eigenvalues of f{x, !
are associated to the signal space and the N — M other ones
to the noise space. Let {v,, f}N ~M be the noise eigenvectors

p=1
spanning the noise space Qn, f £ [Vi,f,---, VN—n,f]. Then

Allvip=0 4)

can be proved and means that the steering vectors associated
to their AOAs are orthogonal to the noise eigenvectors. We
obtain the so-called pseudo-spectrum function for an arbitrary
angle of arrival 6 and its steering vector as(6):
1
PMUSIC (9) — . (5)
! alf (0) Q11 Q1 25 (0)

From Eq. (4), the denominator in Eq. (5) is supposed to be
closed to zero when the angular direction 6 is one of the sources
resulting in a peaked function. Therefore, assuming that the
number of sources N is known, the SSL task is performed by
selecting the N highest peaks of 3, P}'US'C(6) evaluated on
a set of candidate sources’” AOA {6,};- .

B. MUSIC Variants

The performance of MUSIC is known to decrease in case
of coherent sources occurring in complex audio scenarios [8],
and several works have tried to improve its robustness to
different environments. NormMUSIC [4] reduces the incorrect
response power estimation due to the SNR variations at different
frequencies by arithmetic mean normalization of Eq. (5), i.e.,

F P}\/IUSIC (9)

PNormMUSIC (0) _ )
le  nax PRCSIC(0)

GC-MUSIC [13] deals with impulsive noises that do not
fit the Gaussian assumption in Eq. (1), and thus degrades the
covariance matrix estimation. It replaces Ry r; in Eq. (2) by a

(6)

generalized covariance (GC) matrix R)({Gf(i) whose entries are
defined as
[R(GC):| _ l: g1 (xftm)g2 ('rftm’) (7)
x,ft mm/’ hl(xftm7mftm’)h2(xftm’7xftm/)

with ¢1,g2 are two single-variable functions while hq, ho
are two dual-variable functions. The covariance occurs when
g1(u) = u,g2(u) = u*,hy = hy = 1, where * is the conju-
gate operator. GC includes covariation-based matrix that we
discuss further in the next section.

III. «-MUSIC: THE PROPOSED APPROACH TO SSL

The a-stable random vectors are the one that preserve the
law under a finite linear combination [18]. The heaviness of the
distribution is controlled by a tail-index « € (0, 2] for whose
a =2, =1 and a = 0.5 represent the Gaussian, Cauchy and
Levy case ranging from lightest to heaviest respectively. Most
of those distributions however are not parameterized with a GC
matrix but rather via a spectral measure [18]. For 1 < a < 2,
the so-called covariation [18] provides a correlation information
controlled by the spectral measure of two «-stable variables.

A complex multivariate elliptically contoured a-stable distri-
bution («-EC) [24], [25] vector u of size M is an a-stable vec-
tor which naturally designs a so-called positive definite shape
matrix R(®) € CM*M and will be denoted u ~ S&(R(®)).
Contour plot of a-EC are represented in Fig. 1. A link between
the shape matrix coefficients [R(O‘)]mm, and the covariation

coefficients denoted rig‘y)n, was established [18]:

(a) 2/0‘ . !
2 (Thin fm =
[R(a)] / (T Z“)) e
mm 20/2p(*) [R(a)]mwi/ otherwise

Our main purpose is to build a natural positive definite matrix
estimator essential for MUSIC to work in practice. As recently
shown in [16], a MUSIC-based a-EC model as follows:

xpi~ S2(RE) 9)

S~ S¢ (Diag [o‘fft, cee 7U%ft] 2 Rgaf)t> )

l’lft ~ Sg (O'?t]:]u)

(10)
(1)
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Fig. 1. Contour plot from Gaussian (in red) and o-EC (in blue) samplings.

combined with Eq. (1) and Eq. (9 - 11) leads to
R, = e (A/RELAT + 0Ly

x,ft
2—«a

12)

with g, £ 25" [oj%t + Zle Ugft} “ . In[16], Eq. (12) is
estimated using the empirical characteristic function (ECF). We
rather propose a covariation-based estimation in order to avoid
drawing representative sampling i 1ssue 1n ECF computation [17].
From Eq. (8), the shape matrix R t estimation is equivalent
to compute covariation coefﬁc1ents between all xy; entries.
The sources immobile assumption motivates to use a time-
independent covariation estimator 7} , between all z
p fymm/ ftm
and 2 f¢,. The estimation is processed through the following
fractional lower order moment technique [17]:

/

exp [a‘l(T_l Zthl In|z 4| — n)} iftm=m

?‘(faglm’: ST pem|x P 22%
) = zf:;_l ﬂi: T LT o otherwise
(13)
where 1 < p < aandn = y(a™ ! —1) —In2 w1th( 7 ~
A

0.577 the Euler constant. An empirical estimator R,
[A(a) is obtained by combining Eq. (13) and Eq. (8)

f smm/ :| m,m’

along the frequency axis. We force R( J)c
R (@) (@)

R+ [Rx,f}

observed model, the tail-index « can be estimated as in [21].

The positive deﬁmteness of R( } and Ry f, leads to a fractional

to be Hermitian by

considering Rio‘} —1 . Due to an a-EC

noise space Qn 7 and the following pseudo-spectrum function

1 & 1

le 10)Q) () a(6)
f af( )Q Qn,f af( )
The proposed «-MUSIC can be easily extend to a-

NormMUSIC by combining Eq. (14) and Eq. (6). All MUSIC
algorithms variants are outlined in Algorithm 1.

pPe— MUSIC(Q) (14)

IV. EXPERIMENTS

We investigate the SSL performances of both proposed a-
MUSIC and a-NormMUSIC with MUSIC [22], NormMU-
SIC [4] and SRP-PHAT [26] as baselines.! Two types of

las available in pyroomacoustics library [27].

Algorithm 1 MUSIC algorithms and variants
1) Input

a) Number of sources N and observed signal x;;
b) Candidate AOAs {6;},-, and related steering vec-
tors ay (0;).
2) (fractional) pseudo-spectrum function estimation
a) Optional: estimation of « using xy; as in [21];
b) Compute ﬁf according to Eq. (2) or Eq. (13) for
MUSIC or a-MUSIC respectively;
c) Estimate the noise eigenspace Qy, ¢ (or Q( })
d) Compute Vi, P (6;) according to Eq.(5) or Eq (14)
for MUSIC or a-MUSIC respectively;
e) Optional: Apply Eq. (6) to get "Norm” extension.
3) Apply pick detection on P (6;).

dataset are used: a synthetic dataset made with LibriSpeech
utterances [28] to generate microphones recordings through
pyroomacoustics simulator [27] corrupted by various real
noise coming from DEMAND dataset; and a real dataset com-
ing from LOCATA Challenge. The tail-index « in proposed
SSL algorithms is estimated with the same setting as in [21]
and 1 < p < 2 in Eq. (13) is set to O‘T“ The SSL perfor-
mances are evaluated in terms of angular error in degree. As a
proof of concept, only the azimuth estimation for single and
multiple sources are considered. In case of N > 1, the mean
error is computed first over the N sources and then averaged
over all the observations.

A. Experiments on the Synthetic Data

The synthetic dataset exploits 4 settings summarized in Ta-
ble I for whose one of the following key scenario conditions
is varying and the other ones are fixed: the number of mi-
crophones M, reverberation time (RT60), signal-to-noise ratio
(SNR) and energy of acoustic reflections.’

Otherwise specified, we considered a shoebox room of size
6 x 5 x 3 m in mild acoustic conditions (SNR = 10 dB, RT60
= 0.5 s). Here N € {1, 2,3} sound sources are deployed at a
fixed distance of 1 m and elevation of 0° with respect to a linear
uniform array with an inter-microphone spacing of 8 cm. For
a fixed value N, 180 observations are generated by randomly
drawing sources’ azimuth and the free scenario parameter. The
sampling rate of microphone signals is 16 kHz. The STFT of
the data is computed with a window length of 32 ms, overlap
of 50% and 513 real frequencies. Only the frequency range
500 - 4000 Hz was considered for a more robust estimation.
Finally, the resolution of candidate azimuths grid is 1°.

At first, we study the influence of the tail-index a for more
insight on this parameter. The results in Fig. 3 show that o
increases when the RTg increases in DRTe0 and the SNR de-
creases in DSNR, respectively. Since no significant trend is ex-

2If RT60, room size, and array position are fixed, then increasing the
reflections energy corresponds to “sending” the sources closer to the room
reflectors. The source-to-array distance is then used as a proxy for studying
the robustness to acoustic reflections.
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Fig. 2. Angular Error (in degree) as function of different acoustic parameters (SNR, RT60 and sources-to-microphone distance) involving 3 sources and a
linear microphone array of 4 sensors. Details of the dataset used to study each parameter are reported in Tab. L.

TABLE I
DATASET CONDITION FOR SYNTHETIC EVALUATION.

M mics RT60 [s] SNR [dB] Sources’ dist. [m]
prmics [4, 6] 0.5 10 1
DRT60 4 1[0.25:0.25:2] 10 1
DSNR 4 0.5 U[-30:5:20] 1
DEcho 4 0.5 10 U[1:0.5:3]
20 DSNRRT60 = 0.5 s, d = 1 m)
S —— =t ——r— % %
1.0
-30.0 -20.0 -10.0 0.0 10.0 20.0
SNR [dB]
9.0 PRICO [d=1m, SNR = 10 dB]
15 % % % % % %I
1.0
0.25 0.5 0.75 1.0 1.25 15
RTG60 [second]

Fig. 3. Value of « as function of the SNR (top) and RT60 (botton).

hibited when varying the echo energy in the D®°'°, the figure
is not reported. Previous studies in [29], [30] pointed out that
the clean speech is better modelled with o = 1.2, following
our results. A small variability of the a values is noted regard-
ing extreme SNR scenarios and could be explained by a low
dynamic range of the observed signal.
Fig. 4 show the results in terms of MAE for the proposed
a-MUSIC with either a tail-index estimation or a fixed a €
{1.5,1.8,2} for N € {1,2,3} sources in the D™ setting.
Note that when a = 2, it corresponds to the vanilla MUSIC
case. The estimated a-MUSIC version is slightly better than
other variants in terms of 95% confidence interval and median
value in multiple speaker scenarios. The gap between MUSIC
and a-MUSIC is growing as the number of microphones in-
creases. As the SSL performances increase with the number
of microphones, no significant difference between the different
methods is, hence, not reported here.

Results in term of MAE of retrieved azimuths for the differ-

number of mics = 2 on D™ number of mics = 4 on D™

100

sub_alpha

¢ H o =2 (= MUSIC)
80 e 18
= ¢ N =15
¢ - o
‘e
¢
¢ )
e vt ‘e
L3 +
[ I R I ‘e,
‘e
too A
¢
L]

1.0 2.0 3.0 1.0 2.0 3.0
Number of Sources Number of Sources

Fig. 4. Angular Error (in degree) for N € {1, 2,3} sources and M € {2,4}
microphones in the uniform linear array.

TABLE I
TIME ELAPSED IN SECONDS. FASTEST IS BOLDED.
\ MUSIC ~ NormMUSIC  SRP-PHAT «a-MUSIC  «a-NormMUSIC
M =21 0.008 0.008 0.018 0.016 0.016
M=4| 0015 0.015 0.028 0.030 0.030
M=6 | 0.024 0.023 0.041 0.049 0.049

ent acoustic parameters of DSNR, RTgo and DFeP° for N = 3
sources and M = 4 microphones are shown in Fig. 2. In gen-
eral, it can be noticed that the proposed approach slightly out-
performs the standard MUSIC approaches in case of strong
adverse conditions (SNR < - 10 dB, RT60 > 0.25, distance
> 1.5 m). While SRP-PHAT outperforms both MUSIC and
a-MUSIC in terms of MAE of the retrieved angles, it fails at
recovering more than 2 sources in more than 57% of the ob-
servations. Conversely, all MUSIC-based algorithms always
estimated N different sources. Nevertheless, a noticeable dif-
ference is reported in the RTgy scenario, confirming that o-
NormMUSIC is better suited in case of strong reverberation.

Finally,the empirical time elapsed in seconds is reported
in Tab. II. The proposed extension is two times slower than
the baselines and scales linearly with the number of sensors,
mainly due to the « estimation step. Nevertheless, as the overall
latency is in the order of milliseconds, the proposed algorithm
is suitable for real-time applications.



TABLE III
MEAN ANGULAR ERROR & STANDARD DEVIATION FOR TASK #1 (SINGLE STATIC
SOURCE) AND TASK #2 (MULTIPLE STATIC SOURCES) ON THE LOCATA DATASET

[7] M. Brandstein and D. Ward, Microphone arrays: signal processing
techniques and applications. Springer Science & Business Media, 2001.
[8] Y. Gao, W. Chang, Z. Pei, and Z. Wu, “An improved music algorithm

Task Algorithm DICIT array Robot Head Hearing aids
MUSIC 3.09 £ 7.91 2.14 £ 1.66 7.77 £ 16.62
NormMUSIC 2.74+ 6.85 2.00 £ 6.64 1.25 + 3.46
SRP_PHAT 4.42 +£10.92 1.84 £2.13 1.77 £ 5.06
«-MUSIC 4.07 £ 9.57 2.91 £+ 3.43 6.77 £ 15.80
a-NormMUSIC 3.34 +£9.40 1.83 +6.25 1.27 + 3.71
MUSIC 10.86 + 13.73 15.61 £+ 15.93 24.56 £+ 15.26
NormMUSIC 10.39 £+ 14.45 16.35 + 14.71 22.30 £ 15.68
2 SRP_PHAT 16.19 + 14.18 20.29 +16.24 17.35 + 16.09
a-MUSIC 12.48 + 13.87 15.39 +£ 15.15 24.31 +£15.23
a-NormMUSIC 10.81 + 14.12 17.43 + 15.45 23.04 £+ 15.38

[9]

[10]

(1]

for doa estimation of coherent signals,” Sensors and Transducers, vol.
175, no. 7, pp. 75-82, 2014.

K. Nakamura, K. Nakadai, F. Asano, Y. Hasegawa, and H. Tsujino,
“Intelligent sound source localization for dynamic environments,” in Proc.
Int. Conf. Intell. Rob. Syst., 2009, pp. 664—669.

K. Nakamura, K. Nakadai, and G. Ince, “Real-time super-resolution
sound source localization for robots,” in Proc. Int. Conf. Intell. Rob.
Syst., 2012, pp. 694-699.

F. Grondin and J. Glass, “Fast and robust 3-D sound source localization
with DSVD-PHAT,” in Proc. Int. Conf. Intell. Rob. Syst., 2019, pp. 5352—

B. Experiments on the Real Data

The LOCATA dataset comprises recordings from a room
of size 7.1x9.8x3 m with RT60= 0.55 s affected by some
low noise. We use the development tasks # 1 and #2 featuring
single and multiple static speakers, respectively, for the DICIT
array, Robot head and Hearing aids. As in LOCATA challenge,
the scores are computed on speech-only frames, using the voice
activity detection annotations provided within the ground-truth
data. The data are processed with the same parameters as above.

Results are reported in Table III. We observed that the
proposed methods do not consistently outperform the baselines.
Interestingly, this trend is common to the normalized-version
of MUSIC. Therefore, these results confirm that our methods
should be tested on a real dataset featuring a stronger level of
noise and reverberation, such as the one envisioned in [31].

V. CONCLUSION

This paper proposes a-MUSIC, a theoretically justified adap-
tive sound source localization (SSL) method based on a variant
of the classical multiple signal classification (MUSIC) method
with the complex multivariate elliptically contoured «-stable
model. We show that in case of multiple static sources and high
reverberation, high distance or low SNR a-MUSIC is more
robust. Future work includes a-MUSIC with time-varying tail-
indexes and a real-time implementation.
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