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POTENTIAL METHOD AND PROJECTION THEOREMS FOR
MACROSCOPIC HAUSDORFF DIMENSION

LARA DAW AND STÉPHANE SEURET

Abstract. The macroscopic Hausdorff dimension DimH (E) of a set E ⊂ Rd was
introduced by Barlow and Taylor to quantify a "fractal at large scales" behavior
of unbounded, possibly discrete, sets E. We develop a method based on potential
theory in order to estimate this dimension in Rd. Then, we apply this method to
obtain Marstrand-like projection theorems: given a set E ⊂ R2, for almost every
θ ∈ [0, 2π], the projection of E on the straight line passing through 0 with angle
θ has dimension equal to min(DimH (E) , 1).

AMS MSC: 28AXX, 31C40
Keywords: Macroscopic Hausdorff dimension; Fine properties of sets; Potential

theory for dimensions; Marstrand-Mattila projection theorem.

1. Introduction

Fractal geometry provide a general framework for studying sets possessing ei-
ther irregular or self-reproducing (deterministic or random, self-similar or self-affine)
properties. Most definitions of fractal dimensions of sets included in Rd are based
on the local properties (also known as microscopic) of the set. Taking into consider-
ation that many statistical physics models are built on discrete spaces, Barlow and
Taylor [1,2] introduced a new notion of dimension to study unbounded "fractal-like"
sets on discrete space. This so-called macroscopic Hausdorff dimension (see Defi-
nition 2.2 below) has proved to be useful in quantifying the behavior at infinity of
several objects, beyond the transient range of random walks in Zd which was the
original motivation of Barlow and Taylor in [2].

Macroscopic Hausdorff dimension is actually defined for every set (not only dis-
crete) in Rd [2]. It is a discrete analog of Hausdorff dimension, and the word macro-
scopic comes from the fact that this dimension ignores the local structure of the sets.
At the same time, the macroscopic Hausdorff dimension assesses the asymptotic be-
havior at infinity of the sets, so it is very relevant when one is interested in the
description of infinite objects, how they fill the space "at large scale". The macro-
scopic Hausdorff dimension was a key tool used by Xiao et Zheng [17] in studying the
range of a random walk in random environment. It is related to [12] where Khosh-
nevisan and Xiao are concerned with the macroscopic geometry of other random
sets. In [11], Khoshnevisan, Kim and Xiao found out a multifractal behavior for the
macroscopic dimension of tall peaks of solutions to stochastic PDEs. Georgiou et
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el [8] solved Barlow and Taylor question [2, Problem, p. 145] by qualifying the range
of an arbitrary transient random walk. The macroscopic Hausdorff dimension was
also useful for studying the large scale structure of sojourn sets associated to the
Brownian motion [16], the fractional Brownian motion [3, 15], and the Rosenblatt
process [4].

In this paper we are interested in building various methods for estimating the
macroscopic Hausdorff dimension. Recalling the fact that macroscopic Hausdorff
dimension is a discrete analog of the Hausdorff dimension, we start by stating the
estimating methods used for the Hausdorff dimension. In most cases, when esti-
mating the Hausdorff dimension of a set E, the difficult part consists in finding a
suitable lower bound for dimH(E). Various methods exist to find lower bounds for
the standard Hausdorff dimension, and it is a natural question to ask whether these
methods have their counterparts for the macroscopic Hausdorff dimension. The
two usual techniques are the mass distribution principle and the potential theoretic
method.

The mass distribution principle, see for instance [7, page 67], states that if a set
E ⊂ Rd and a Borel finite measure µ are such that µ(E) = 1 and µ(B(x, r)) ≤ Crs

for every x ∈ Rd and r > 0, then the s-dimensional Hausdorff measure Hs(E) is
larger than µ(E)/C, and so E has at least Hausdorff dimension s.

The potential theoretic method is based on an integral analysis: if for some prob-

ability measure µ, µ(E) = 1 and the integral
∫∫

(Rd)2

dµ(x)dµ(y)

‖x− y‖s2
is finite, then again

E has at least Hausdorff dimension s. In addition to bounding the Hausdorff di-
mension from below, the potential theoretic method plays a key role in proving the
projection theorem.

The first aim of this paper is to establish similar results for the macroscopic Haus-
dorff dimension. This happens to be very easy for the mass distribution principle,
and follows essentially from previous works. It is much more challenging for the
potential theoretic method, and a careful analysis is needed.

As an application of the new potential theoretic method, we obtain a Marstrand-
like projection theorem, describing the dimension of almost all projections on lines
of sets E ∈ R2. Dealing with the dimensions of projections of Borel sets is a line of
research that has a long history. It started with the investigation by Marstrand [13]
of the projection theorem associated to the Hausdorff dimension. He dealt with
orthogonal projections on linear subspaces and proved that

for every Borel set E ⊂ R2, dimH(projVE) = min{dimHE, 1}

for almost every 1-dimensional subspaces V , where projV denotes the orthogonal
projection onto V and dimHE denotes the Hausdorff dimension of E. Afterwards
Marstrand’s results was proved by Kaufman but using potential theoretic methods
[10]. Subsequently in 1975 Mattila extended these results to Borel sets E ⊂ Rn and
almost all V in the Grassmannian G(n,m) [14]. We prove analog results for the
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macroscopic Hausdorff dimension, using the potential theory method we developed
above.

2. Definitions and statements of the results

Here and in the reset of the paper, let (Rd, ‖.‖2) be the d-dimensional Euclidean
space equipped with the L2- norm.

2.1. The macroscopic Hausdorff dimension. For x ∈ Rd and r > 0, B(x, r)
denotes the Euclidean ball with center x and radius r. For E ⊂ Rd, the diameter of
a set E is denoted by |E|.

Let us recall the definition of the Barlow-Taylor macroscopic Hausdorff dimension
DimH (E) of a set E ⊆ Rd, developed in [1, 2].

Define, for all integer n ∈ N, the n-th shell of Rd by

S0 = B(0, 1) and Sn := B(0, 2n) \B(0, 2n−1) for all n ≥ 1. (2.1)

Like the standard Hausdorff dimension, the macroscopic Hausdorff dimension
DimH(E) aims at describing how a set E can be efficiently covered by balls. Since
DimH is concerned only with large scale behaviors, Barlow and Taylor proposed to
study the covers of the intersections E ∩ Sn by balls, for every n ∈ N, and the balls
used to cover the sets E∩Sn will all be of diameter at least 1. Again this is justified
by the fact that this dimension is supposed to describe discrete sets (so small balls
are not relevant).

To this end, let us introduce, for E ⊆ Rd, the set of covers of E restricted to Sn
defined by

C̃n(E) =
{
{B(xi, ri)}mi=1 : m ∈ N, xi ∈ Sn, ri ≥ 1, E ∩ Sn ⊂

⋃m
i=1B(xi, ri)

}
.

Finally, for s ≥ 0 and n ∈ N, set

ν̃sn(E) = inf

{
m∑
i=1

( ri
2n

)s
: {Bi = B(xi, ri)}mi=1 ∈ C̃n(E)

}
. (2.2)

Observe that ν̃sn is sub-additive, i.e. ν̃sn(A ∪B) ≤ ν̃sn(A) + ν̃sn(B) for every sets A
and B, but is not a measure (because of the constraints on ri).

Definition 2.1. When ν̃sn(E) =
∑m

i=1

( ri
2n

)s
and E ∩Sn ⊂

⋃m
i=1B(xi, ri), the finite

family of balls {Bi = B(xi, ri)}mi=1 is called an s-optimal cover of E ∩ Sn.

The existence of optimal covers is not guaranteed. We will deal with this issue in
Section 3.

We are now ready to define the Barlow-Taylor macroscopic Hausdorff dimension.

Definition 2.2. For every s ≥ 0 and E ⊂ Rd, define

ν̃s(E) =
∑
n≥1

ν̃sn(E).
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The macroscopic Hausdorff dimension of E ⊂ Rd is defined by

DimH (E) = inf {s ≥ 0 : ν̃s(E) < +∞} . (2.3)

One easily checks that DimH (E) ∈ [0, d] for all E ⊂ Rd, that DimH (E) = 0 when
E is bounded, and that an alternative definition for DimH (E) is

DimH (E) = sup {s ≥ 0 : ν̃s(E) = +∞} ,

where sup ∅ = 0 by convention. It is also standard that DimH (f(E)) ≤ DimH (E)
for every Lipschitz mapping f : Rd → Rd.

A key ingredient when working with the standard Hausdorff dimension is the
existence of s-sets, i.e. sets E ⊂ Rd with Hausdorff dimension dimH(E) = s and
such that its s-Hausdorff measure Hs(E) is finite. We introduce a similar notion for
the macroscopic Hausdorff dimension.

Definition 2.3. Let s ≥ 0. A set E ⊂ Rd is called a macroscopic s-set when
DimH (E) = s and ν̃s(E) < +∞.

We prove the existence of macroscopic s-sets.

Theorem 2.4. Let E ⊂ Rd be such that ν̃s(E) = +∞. Then there exists a macro-
scopic s-set Ẽ such that Ẽ ⊂ E.

This extraction theorem is a key ingredient at various places in our proofs.

2.2. Methods to find lower bounds for DimH (E). For every set B and every
measure µ, µ|B stands for the restriction of µ on B, i.e. µ|B(A) = µ(A ∩B).

As recalled above, the mass distribution principle is a powerful, albeit simple, tool
allowing to find a lower bound of the Hausdorff dimension by considering measures
supported on the set, see [7, page 67]. We prove a similar result for the macroscopic
Hausdorff dimension DimH .

Proposition 2.5 (Macroscopic mass distribution principle). Let E be a Borel subset
of Rd and s > 0. Suppose that there exists a Radon measure µ on Rd such that
µ(E) = +∞ and a constant c > 0 such that for all n ∈ N , x ∈ Sn and 1 ≤ r ≤ 2n,

µ|Sn(B(x, r)) ≤ c
( r

2n

)s
.

Then, for all n ∈ N, ν̃sn(E) ≥
µ|Sn(E)

c
and DimH (E) ≥ s.

The proof of the macroscopic mass distribution principle is not complicated. Al-
though it was not exactly stated before as we write it, it essentially follows directly
from previous results, and so it is not so innovative.

This is not the case for the potential method below. Let us first introduce the
macroscopic s-energy of a measure.
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Definition 2.6. Let s ≥ 0, and let µ be a finite mass distribution on Rd. The
macroscopic (µ, s)-potential at a point x is defined as

φsµ(x) :=

∫
Rd

dµ(y)

‖x− y‖s2 ∨ 1
. (2.4)

The macroscopic s-energy of µ is

Is(µ) :=

∫
Rd
φsµ(x)dµ(x) =

∫∫
(Rd)2

dµ(x)dµ(y)

‖x− y‖s2 ∨ 1
. (2.5)

In the case of standard Hausdorff dimension, in the integrals (2.4) and (2.5), the
quantity ‖x− y‖s2 ∨ 1 is simply ‖x− y‖s2. This modification is justified by the fact
that DimH is not concerned with local behavior, so we are not interested in small
interactions ‖x− y‖2 < 1.

Theorem 2.7. Let E be a subset of Rd.

(1) If there exists a Radon measure µ on Rd such that µ(E) = +∞ and if∑
n≥0

2nsIs(µ|Sn) < +∞,

then ν̃s(E) = +∞ and DimH (E) ≥ s.
(2) If ν̃s(E) = +∞, then for all 0 < ε < s there exists a Radon measure µε on

Rd such that µε(E) = +∞ and
∑
n≥0

2n(s−ε)Is−ε(µ
ε
|Sn) < +∞.

The potential theoretic methods we demonstrated in Theorem 2.7 are very com-
parable to the ones established for the standard Hausdorff dimension [6, Theorem
4.13]. Unlike the standard Hausdorff dimension case, for the macroscopic Hausdorff
dimension, we consider the measure µ is define on Rd, and we focus on the restriction
of µ on every annulus Sn. For this reason, we deal with sums over n.

2.3. Application to projections. Projection theorems for Hausdorff dimensions
have recently regained a lot of attention after some breakthroughs by M. Hochman
and P. Shmerkin [9] and others, who used these theorems to tackle many long-
standing questions in geometric measure theory and dynamical systems. It is quite
satisfactory that they have natural counterparts in terms of macroscopic Hausdorff
dimensions, as stated in the following theorem.

Theorem 2.8. Let E ⊂ R2 be a Borel set. Define Lθ as the straight line passing
through 0 with angle θ, and projθE as the orthogonal projection of E onto Lθ.

(a) If DimH (E) < 1, then DimH (projθE) = DimH (E) for Lebesgue almost every
θ ∈ [0, π].

(b) If DimH (E) ≥ 1, then DimH (projθE) = 1 for Lebesgue almost every θ ∈
[0, π].
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As in the standard Hausdorff dimension case, the proof is based on a subtle use
of the potential method and Theorem 2.7.

It can be expected that Theorem 2.8 can be extended in higher dimensional spaces,
and that both Theorem 2.7 and Theorem 2.8 are useful in other situations that the
one we describe here.

The structure of the paper is as follows. The main three results, Theorems 2.4,
2.7 and 2.8 are established in Sections 4, 5, and 6 respectively. Some necessary
technical properties of the macroscopic Hausdorff dimension are proved in Section
3.

3. First properties of Macroscopic Hausdorff Dimension

3.1. An alternative definition for the macroscopic Hausdorff dimension.
We will use an alternative, easier to handle with, definition for the macroscopic
Hausdorff dimension, based on a simple modification of the ν̃sn quantities. We restrict
ourselves to covers centered on integer points, with integer radii. We show that,
up to a constants, this does not modify the values of the quantities involved in
the computations, and the value of the macroscopic Hausdorff dimension is left
unchanged.

We introduce for E ⊆ Rd and n ≥ 0, the set of proper covers of E restricted to
Sn by

Cn(E) =
{
{B(xi, ri)}mi=1 : m ∈ N, xi ∈ Zd ∩ Sn, ri ∈ N∗, E ∩ Sn ⊂

⋃m
i=1B(xi, ri)

}
.

Definition 3.1. For every s ≥ 0, n ≥ 0 and E ⊂ Rd, define

νsn(E) = inf

{
m∑
i=1

( ri
2n

)s
: {Bi = B(xi, ri)}mi=1 ∈ Cn(E)

}
(3.1)

and

νs(E) =
∑
n≥1

νsn(E). (3.2)

Due to the fact that the xi are (multi)-integers, as well as the ri, the above infimum
(3.1) in νsn(E) is reached for some cover {Bi = B(xi, ri)}mi=1 ∈ Cn(E).

Observe that νsn is still sub-additive, i.e. νsn(A ∪ B) ≤ νsn(A) + νsn(B) for every
sets A and B.

Lemma 3.2. For every n ≥ 0, every set E ⊂ Rd, one has

ν̃sn(E) ≤ νsn(E) ≤ (2 +
√
d)sν̃sn(E). (3.3)

In particular, one still has

DimH (E) = inf {s ≥ 0 : νs(E) < +∞} = sup {s ≥ 0 : νs(E) = +∞} . (3.4)
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Proof. The fact that Cn(E) ⊂ C̃n(E) implies directly that ν̃sn(E) ≤ νsn(E).
Now, let {B(x̃i, r̃i)}mi=1 ∈ C̃n(E). Each ball B(x̃i, r̃i) is included in a ball B(xi, r̃i+√
d), where xi ∈ Zd ∩ En. So

{
B
(
xi,
⌈
r̃i +
√
d
⌉)}m

i=1
∈ Cn(E), and using that⌈

r̃i +
√
d
⌉
≤ r̃i +

√
d+ 1 ≤ (2 +

√
d)r̃i (since r̃i ≥ 1), one has

m∑
i=1

(
r̃i +
√
d

2n

)s

≤ (2 +
√
d)s

m∑
i=1

(
r̃i
2n

)s
.

This holds for any cover {B(x̃i, r̃i)}mi=1 ∈ C̃n(E), so νsn(E) ≤ (2 +
√
d)sν̃sn(E). �

Lemma 3.2 shows in particular that the convergence/divergence properties of
ν̃s(E) and νs(E) are identical.

The main advantage of dealing with νs(E) is the existence of optimal proper
s-covers, i.e. covers {Bi = B(xi, ri)}mi=1 ∈ Cn(E) such that νsn(E) =

∑m
i=1

( ri
2n

)s
.

These optimal covers exists because xi and ri are positive integers.
In our further analysis, the size of the balls of optimal covers will matter, justifying

the following definition.

Definition 3.3. For E ⊂ Zd, n ∈ N and 0 < s < d, define

βsn(E) := max

{
max
1≤i≤p

ri
2n

: (B(xi, ri))
p
i=1 is an s-optimal proper cover of E ∩ Sn

}
.

The quantity βsn(E) will be important, in particular for Theorem 2.7 about po-
tential methods and for the projection Theorem 2.8.

3.2. Some preliminary results. We first prove two propositions that will be
needed later.

Proposition 3.4. Let µn be a Borel measure on Sn, E ⊂ Rd be a Borel set and
0 < c < +∞ be a constant.

a) If max
r∈N∗

µn (B(x, r))

(r/2n)s
≤ c for all x ∈ E ∩ Sn, then νsn(E) ≥ µn(E)

c2s
.

b) If max
r∈N∗

µn (B(x, r))

(r/2n)s
> c for all x ∈ E∩Sn, then νsn(E) ≤ (5(1 +

√
d/2))s

c
µn(Sn).

Proof. a) Let {B(xi, ri)}mi=1 ∈ Cn(E). For each 1 ≤ i ≤ m, there exists yi ∈
B(xi, ri) ∩ E ∩ Sn such that B(xi, ri) ⊂ B(yi, 2ri), so

µn(B(xi, ri)) ≤ µn(B(yi, 2ri)) ≤ c

(
2ri
2n

)s
= c2s

( ri
2n

)s
.

Then,

µn(E ∩ Sn) ≤
m∑
i=1

µn(B(xi, ri)) ≤ c2s
m∑
i=1

( ri
2n

)s
,
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which is true for all covers {B(xi, ri)}mi=1 ∈ Cn(E). Finally, taking the infimum over
all elements of Cn(E), one gets

µn(E) = µn(E ∩ Sn) ≤ c2sνsn(E).

b) Consider the family of balls

Bn =
{
B(x, r) : x ∈ E ∩ Sn, r ∈ {1, 2, ..., 2n} and µn(B(x, r)) > c

( r
2n

)s}
.

Then

E ∩ Sn ⊂
⋃

B(x,r)∈Bn

B(x, r).

Now, we invoke the following 5r-covering Lemma [5, Lemma 4.8].

Lemma 3.5. Let B be a family of balls in RN and suppose that supB∈B d(B) <∞.
Then there exists a countable sub-family of disjoint balls B0 of B such that⋃

B∈B

B ⊂
⋃
i∈B0

5Bi.

Using the previous lemma, there exists a finite family (Bi = B(xi, ri))i=1,...,m of
disjoint balls, all elements of Bn, such that

⋃
B∈Bn B ⊂

⋃m
i=1 5Bi. The finiteness of

the family comes from the boundedness of Sn and the fact that the balls all have a
diameter greater than 1. Up to a small translation of each xi by a vector of length
at most

√
d/2, one can assume that xi ∈ Zd and that⋃

B∈Bn

B ⊂
m⋃
i=1

5B
(
xi,
⌈
ri +
√
d/2
⌉)

.

With the translations that we added, some balls B ∈ Bn may intersect, but this
does not affect our argument.

Using the definition of νsn(E), one finally gets

νsn(E) ≤
m∑
i=1

5
⌈
ri +
√
d/2
⌉

2n

s

≤ (5(2 +
√
d/2))s

m∑
i=1

( ri
2n

)s
≤ (5(2 +

√
d/2))s

c

m∑
i=1

µn(Bi) ≤
(5(2 +

√
d/2))s

c
µn(Sn),

where the last equality comes from the disjointness of the Bis. �

The following proposition guarantees that given a measure µ on a set E, there
exists a smaller set F ⊂ E such that the measure µ has a controlled local scaling
behavior on F .

Proposition 3.6. Let E ⊂ Rd be a Borel set. Then, for every 0 < s ≤ d there
exists a constant cs > 0 (depending only on s) and a set ∅ 6= F ⊂ E such that for
every n ≥ 1,
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(a)
4

5
νsn(E) ≤ νsn(F ) ≤ νsn(E)

(b) νsn (F ∩B (x, r)) ≤ cs

( r
2n

)s
for all x ∈ Zd ∩ En and r ≥ 1.

Proof. Let E ⊂ Rd and set for every n ≥ 1

Fn :=

{
x ∈ E ∩ Sn : max

r≥1

νsn (E ∩B(x, r))

(r/2n)s
> 5(5(2 +

√
d/2))s

}
.

Using Proposition 3.4 (b) applied to the set Fn and the measure µn(A) = νsn(E∩A),
one gets

µn(Fn) ≤ (5(2 +
√
d/2))s5−1(2 +

√
d/2))−sµn(Sn) =

1

5
µn(E).

Then µn(E\Fn) ≥ 4
5
µn(E), i.e. as soon as E ∩ Sn is not empty, (E\Fn) ∩ Sn 6= ∅.

Finally, the set F =
⋃
n≥0

E\Fn satisfies the two conditions mentioned above, with

the constant cs = 5(5(2 +
√
d/2))s. �

3.3. Proof of the mass distribution principle : Proposition 2.5. For n ∈ N,
let {B(xi, ri)}mi=1 ∈ C̃n(E), then

µ|Sn(E ∩ Sn) ≤ µ|Sn

(
m⋃
i=1

B(xi, ri)

)
≤

m∑
i=1

µ|Sn(B(xi, ri)) ≤ c
m∑
i=1

( ri
2n

)s
.

Taking infimum over all proper covers {B(xi, ri)}mi=1 ∈ C̃n(E), one gets

µ|Sn(E ∩ Sn)

c
≤ νsn(E).

Then ν̃s(E) ≥
∑

n≥0 µ|Sn(E)

c
=
µ(E)

c
= +∞ and so DimH (E) ≥ s.

Observe that the same proof works if C̃n(E) and ν̃sn(E) are replaced respectively
by Cn(E) and νsn(E).

4. Subsets of finite macroscopic measure

In this section, we prove a stronger version than Theorem 2.4, more precisely:

Theorem 4.1. Let E ⊂ Rd such that νs(E) = +∞. Then there exists a macroscopic
s-set Ẽ such that Ẽ ⊂ E and limn→+∞ supt∈[0,d] β

t
n(Ẽ) = 0.

Observe that we can either work with ν̃s or νs, since (ν̃s(E) < +∞)⇔ (νs(E) <

+∞). We choose to work with νs, and in this case βsn(Ẽ) is defined without ambi-
guity.

We start with three technical lemmas, that will later help us extract a macroscopic
s-set and prove the projection theorem.
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Lemma 4.2. Let (an)n≥1 be a bounded sequence of positive real numbers, such that

lim
n→+∞

An :=
+∞∑
k=1

ak = +∞. For every ε > 0,
+∞∑
n=1

an
A1+ε
n

< +∞ and
+∞∑
n=1

un
An

= +∞.

This is a standard exercise, we prove it for completness.

Proof. Let ε > 0. For n ≥ 2 and ε > 0, one has ]
∫ An

An−1

dx

x1+ε
≥
∫ An

An−1

dx

A1+ε
n

=
un
A1+ε
n

.

Then,
1

ε

1

Aε1
≥ 1

ε

(
1

Aε1
− 1

Aεn

)
=

∫ An

A1

dx

x1+ε
≥

n∑
k=2

ak

A1+ε
k

. So the sums
n∑
k=1

an
A1+ε
n

are

uniformly bounded and the series converges. Similarly, ln(An)− ln(A1) =

∫ A1

An

dx

x
≤

n∑
k=2

ak
Ak−1

. Since An → +∞ as n → +∞, the series
n∑
k=2

ak
Ak−1

diverges. Also, since

(an) is bounded, An ∼ An−1 and the series
n∑
k=2

ak
Ak

diverges. �

Lemma 4.3. Let (an)n≥1 be a positive sequence converging to zero, (bn)n≥1 be a
bounded sequence of positive real numbers, such that

∑
n≥1 anbn = +∞. Then, there

exists a sequence (cn)n≥1 such that:

(1) either cn = bn, or cn = 0,
(2)

∑
n≥1 ancn = +∞,

(3)
∑

n≥1 a
2
ncn < +∞.

Proof. We assume without loss of generality that 0 ≤ an, bn < 1 for every n, and
that (an)n∈N is a non-increasing sequence.

For j ≥ 0, let us call Dj = {n ≥ 0 : 2−j−1 ≤ an < 2−j}, and Bj =
∑

n∈Dj bn. We
call dj = max(Dj), which is finite since an → 0. Observe that the integer sets Dj

are arranged in increasing order: dj + 1 = min(Dj+1). Also, one has

1

2

+∞∑
j=0

2−jBj ≤
∑
n≥0

anbn =
+∞∑
j=0

∑
n∈Dj

anbn ≤
+∞∑
j=0

2−jBj,

so that
∑+∞

j=0 2−jBj = +∞.
We put n1 = 0, j1 = 1, and cn = 0 for every n ∈ D0 ∪D1.

Remark that
∑

n≥d1+1 anbn ≥ 1/2
∑

j≥2 2−jBj = +∞.
Let us call n2 the first integer n such that

∑n2

n=d1+1 anbn > 1/2. Observing that
for n ≥ d1 + 1, anbn ≤ 2−1, one necessarily has 1/2 <

∑n2

n=d1+1 anbn < 1.
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We call j2 the unique integer such that n2 ∈ Dj2 , and we put cn = bn for every
n ∈ {d1 + 1, ..., n2}, and cn = 0 for every n ∈ {n2 + 1, ..., dj2}. By construction,

1/2 <

j2∑
j=j1+1

∑
n∈Dj

ancn < 1.

We iterate the construction. Assume that we have built two finite sequences of
integers (nk)k=1,...,p and (jk)k=1,...,p such that:

(1) for k = 1, ..., p− 1, jk+1 > jk, and for k = 1, ..., p, nk ∈ Djk

(2) for k = 1, ..., p, cn = bn if n ∈ {djk−1
+ 1, ..., nk}, and cn = 0 if n ∈ {nk +

1, ..., djk},
(3) for k = 1, ..., p, one has

1/(k + 1) <

jk∑
j=jk−1+1

∑
n∈Dj

ancn < 2/k. (4.1)

Let us call np+1 the first integer such that
∑np+1

n=dp+1 anbn > 1/(p + 2). Observing
that for n ≥ dp + 1, anbn ≤ 2−jp ≤ 1/(p + 1) (since jp ≥ p), one necessarily has
1/(p+ 2) <

∑np+1

n=dp+1 anbn < 1/(p+ 2) + 1/(p+ 1) ≤ 2/(p+ 1).
We call jp+1 the unique integer such that np+1 ∈ Djp+1 , and we put cn = bn for

every n ∈ {dp + 1, ..., np+1}, and cn = 0 for every n ∈ {np+1 + 1, ..., djp+1}. Clearly,
these np+1 and jp+1 satisfy the recurrence properties.

Now, gathering the information, we deduce by (4.1) that

∑
n≥0

ancn =
+∞∑
k=1

jk∑
j=jk−1+1

∑
n∈Dj

ancn ≥
+∞∑
k=1

1/(k + 1) = +∞

and, using that an ≤ 2−jwhen n ≥ Dj, and that jk−1 ≥ k − 1,

∑
n≥0

a2ncn =
+∞∑
k=1

jk∑
j=jk−1+1

∑
n∈Dj

a2ncn ≤
+∞∑
k=1

jk∑
j=jk−1+1

2−j
∑
n∈Dj

ancn

≤
+∞∑
k=1

2−k+1/(k + 1) < +∞.

This concludes the proof. �

The same lines of computations can certainly be adapted to impose
∑

n≥0 ancn =

+∞ and
∑

n≥0 h(an)cn < +∞ for any map h : R+ → R+ such that h(x) = o(x)

when x→ 0+.

As a first step toward Theorem 4.1, we reduce the problem to sets that can be
covered by small sets only.
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Proposition 4.4. Let E ⊂ Rd such that νs(E) = +∞. Then, given α > 0, there
exists a set Ē such that νs(Ē) = +∞ and limn→+∞ supt∈[0,d] β

t
n(Ẽ) = 0.

Proof. It is an application of Lemma 4.2.
Call An =

∑n
k=1 ν

s
k(E) and αn = A−1n . By assumption, αn → 0 when n→ +∞.

For every n ≥ 1, Sn can be covered by at most 2α−1n balls of diameter 2nα
1/d
n .

Call An such a family of sets. One obviously has

νsn(E) ≤
∑
A∈An

νsn(E ∩ A)

Thus there must exist An ∈ An such that νsn(E ∩An) ≥ αnν
s
n(E). Then one defines

the set Ẽ as
Ẽ =

⋃
n≥1

E ∩ An.

By Lemma 4.2, ∑
n≥0

νsn(Ẽ) ≥
∑
n≥0

νsn(E ∩ An) ≥
∑
n≥0

αnν
s
n(E) = +∞.

Now, it is clear that for every n, |Ẽ ∩ Sn| ≤ 2nα
1/d
n , so by Definition 3.3, for every

t > 0

βtn(Ẽ) ≤ α1/d
n .

Actually, this implies more: necessarily νsn(Ẽ) ≤ α
s/d
n . In particular, βtn(Ẽ) → 0 as

n→ +∞ uniformly in t.
�

Finally, we prove Theorem 4.1.

Proof. Let E be such that νs(E) = +∞. By Proposition 4.4, one also assumes that
limn→+∞ sups∈[0,d] β

s
n(Ẽ) = 0, and that item (3) holds for some α > 0. This two

facts will not be used in this proof, but will be key in the next section.

Observe that since for every n νsn(E) ≤ 1, then An :=
n∑
k=0

νsk(E) ≤ n.

The idea consists in replacing E by a set Ẽ such that νsn(Ẽ) ∼ bnν
s
n(E), such that∑

n≥1 ν
s
n(Ẽ) < +∞ but bn is "as large as possible". Lemma 4.2 helps to build such

a sequence.
First, for every ε > 0, denote by

Bε
n =

∑
k≥n

νsk(E)

A1+ε
k

By Lemma 4.2, one knows that Bε
n → 0 as n→∞, for every ε > 0.

We build iteratively a non-increasing sequence (εn)n≥0 ⊂ R+, and a sequence of
integers (nk)k≥1.
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Consider n1 as the smallest positive integer such that B
1
4
n1 ≤ 1 and set εn = 1

2
for

all 0 ≤ n ≤ n1.
Next we proceed by induction to build (εn)n≥0 and (nk)k≥1.
Assume that n1 < n2 < ... < np are defined.
Define np+1 as the smallest integer such that

np < np+1 and B
1
2p
np+1 ≤

1

2p
. (4.2)

Put εn =
1

2p+1
for all np < n ≤ np+1. Finally, let

bn = min
{

1/2, (An)−(1+εn)
}
. (4.3)

Then by construction of εn, one has:

(i) εn → 0 as n→ +∞,

(ii) By (4.2), and the fact that B
1

2k+1
nk ≤ B

1

2k
nk ≤ 2−k−1,

∑
n≥0

bnν
s
n(E) ≤

∑
n≥0

νsn(E)

A1+εn
n

≤
n1∑
n=0

νsn(E)

A
1+ 1

2
n

+
∑
k≥1

nk+1∑
n=nk+1

νsn(E)

A
1+ 1

2k+1
n

(4.4)

≤
n1∑
n=0

νsn(E)

A
3
2
n

+
∑
k≥1

B
1

2k+1
nk ≤

n1∑
n=0

νsn(E)

(An)
3
2

+
∑
k≥1

1

2k−1
< +∞. (4.5)

Next, we construct a set Ẽ ⊂ E such that for all n ∈ N, one has

|νsn(Ẽ)− bnνsn(E)| ≤ 2−ns.

To achieve this, observe that by Definition 2.1, Sn contains a finite number of lattice
points, and denote by Mn,d their cardinality. These points are denote by xi for
i ∈ {1, . . . ,Mn,d}.

Consider the following function:

gn : {0, 1, . . . ,Mn,d} −→ R+

m 7−→ νsn

(
m⋃
i=1

E ∩B(xi, 1)

)
.

where gn(0) = 0 by convention. It is clear that gn is non-decreasing, and ranges
from 0 to νsn(E). Moreover, for all m ∈ {1, . . . ,Mn,d − 1}, if {B(yj, rj)}pj=1 is an

s-optimal cover of
m⋃
i=1

E ∩ B(xi, 1), then
{

(B(yj, rj))
p
j=1 , B(xm+1, 1)

}
is a proper
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cover of
m+1⋃
i=1

E ∩B(xi, 1) (not necessarily optimal). Using these two covers, one gets

gn(m+ 1)− gn(m) ≤

(
p∑
j=1

( rj
2n

)s
+

1

2ns

)
−

p∑
j=1

( rj
2n

)s
≤ 2−ns.

Hence, gn has only small increments.
Recalling (4.3), 0 = gn(0) ≤ bnν

s
n(E) ≤ νsn(E) = gn(Mn,d), so there must exist an

integer mn ∈ {1, . . . ,Mn,d} such that

bnν
s
n(E) ≤ gn(mn) ≤ bnν

s
n(E) + 2−ns.

Put

Ẽn =
mn⋃
i=1

E ∩B(xi, 1) and Ẽ =
⋃
n≥0

Ẽn. (4.6)

Then by construction, Ẽ ⊂ E, and for all n ∈ None has

bnν
s
n(E) ≤ νsn(Ẽ) ≤ bnν

s
n(E) + 2−ns.

And so, by (4.5),

νs(Ẽ) =
∑
n≥0

νsn(Ẽ) ≤
∑
n≥0

(
bnν

s
n(E) + 2−ns

)
< +∞.

To complete the proof, it is enough to show that for all ε > 0, νs−ε(Ẽ) = +∞. To
this end, fix ε > 0, and let (B(xi, ri))

m
i=1 be an optimal (s− ε)-cover of Ẽ ∩ Sn, and

assume that for this specific cover, βs−εn (Ẽ) is reached, i.e. there exists i ∈ {1, ...,m}
such that ri = 2nβs−εn (Ẽ). In particular, νs−εn (Ẽ) ≥ (βs−εn (Ẽ))s−ε.

One sees that

νs−εn (Ẽ) =
m∑
i=1

( ri
2n

)s−ε
≥

m∑
i=1

( ri
2n

)s
· (βs−εn (Ẽ))−ε ≥ (βs−εn (Ẽ))−ε · νsn(Ẽ). (4.7)

Two cases are separated.

On the one hand, If βs−εn (Ẽ) ≤ s

√
νsn(E)

An
, then (4.7) yields

νs−εn (Ẽ) ≥
(

An
νsn(E)

)ε/s
· νsn(Ẽ) ≥

(
An

νsn(E)

)ε/s
· bn · νsn(E) (4.8)

≥ (νsn(E))1−ε/s

A
1+εn−ε/s
n

≥ νsn(E)

A
1+εn−ε/s
n

.

where the fact that νsn(E) ≤ 1 has been used in the last step.
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On the other hand, if βs−εn (Ẽ) ≥ s

√
νsn(E)

An
, one has

νs−εn (Ẽ) ≥ (βs−εn (Ẽ))s−ε ≥ (νsn(E))1−ε/s

A
1−ε/s
n

≥ νsn(E)

A
1−ε/s
n

(4.9)

Finally, using the fact that εn → 0 together with the lower bounds (4.8) and (4.9),

one gets that for every large n, νs−εn (Ẽ) ≥ νsn(E)

An
. By Lemma 4.2,

∑
n≥0

νsn(E)

An
= +∞,

hence νs−ε(Ẽ) =
∑

n≥0 ν
s−ε
n (Ẽ) = +∞.

This holds for every ε > 0, so DimH

(
Ẽ
)

= s. �

5. Potential Methods

5.1. First part of Theorem 2.7. Consider E ⊂ Rd, and assume that there exists
a Radon measure µ on Rd such that µ(E) = +∞ and

∑
n≥0

2nsIs(µ|Sn) < +∞. We

prove that νs(E) = +∞, which implies that ν̃s(E) = +∞ and DimH (E) ≥ s.
For n ∈ N, we write µn = µ|Sn , and define

φsµn :=

∫
Rd

dµn(y)

‖x− y‖s2 ∨ 1
and En =

{
x ∈ E ∩ Sn : max

r≥1

µn (B(x, r))(
r
2n

)s ≤ 1

}

For every x ∈ Ec
n, there exists an integer rx such that

µn (B(x, rx))(
rx
2n

)s ≥ 1. One has

φsµn(x) =

∫
Rd

dµn(y)

‖x− y‖s2 ∨ 1
≥
∫
B(x,rx)

dµn(y)

‖x− y‖s2 ∨ 1
≥ µn (B(x, rx))

rsx
≥ 1

2ns
.

Then Is(µn) ≥
∫
Ecn

φsµn(x)dµn(x) ≥ 1

2ns
µn(Ec

n), which implies that∑
n≥0

µn(Ec
n) ≤

∑
n≥0

2nsIs(µn) < +∞.

But as E ∩ Sn = En ∪ Ec
n and

∑
n≥0

µn(E ∩ Sn) = +∞, then
∑
n≥0

µn(En) = +∞.

Moreover, by Proposition 3.4 a), one has νsn(En) ≥ µn(En)
2s

. Finally, νs(E) =∑
n≥0 ν

s
n(En) = +∞ which gives that DimH (E) ≥ s.

5.2. Second part of Theorem 2.7. This is the most delicate part. Assume now
that ν̃s(E) = +∞, and fix 0 < ε < s.

Our goal is to build a Radon measure µε on Rd such that µε(E) = +∞ and∑
n≥0

2n(s−ε)Is−ε(µ
ε
|Sn) < +∞. We are going to build each measure µεn = µε|Sn .
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For this, we use the results we previously proved.
By Theorem 4.1 there exists a set E1 ⊂ E such that limn→+∞ supt∈[0,d] β

t
n(E1) = 0

and νs(E1) = +∞.
Then by Theorem 2.4, there exists a macroscopic s-set E2 ⊂ E1 such that

DimH (E2) = s and νs(E2) < +∞.
Consider an optimal (s− ε

2
)-cover {B(xi, ri)}mi=1 of E2 ∩ Sn. One sees that

(
βs−ε/2n (E2)

) ε
4 ν

s− ε
2

n (E2) =
(
βs−ε/2n (E2)

) ε
4

m∑
i=1

( ri
2n

)s− ε
2

=
(
βs−ε/2n (E2)

) ε
4

m∑
i=1

( ri
2n

)s− ε
4
( ri

2n

)− ε
4

≥
m∑
i=1

( ri
2n

)s− ε
4 ≥ ν

s− ε
4

n (E2),

where we used that βs−ε/2n (E2) ≥
ri
2n

. Recalling that DimH (E2) = s, it follows that∑
n≥

(
βs−ε/2n (E2)

) ε
4 ν

s− ε
2

n (E2) = +∞. Moreover as E2 ⊂ E1, then β
s−ε/2
n (E2) → 0 as

n→ +∞.
Setting an =

(
β
s−ε/2
n (E2)

) ε
4 and bn = νns− ε

2
(E2), one then sees that the sequences

(an)n≥1 and (bn)n≥1 satisfies the assumptions of Lemma 4.3. Consider the sequence
(cn)n≥1 given by this Lemma, and define the set E3 ⊂ E2 as follows: for every n ≥ 1,

• if cn = 0, then E3 ∩ Sn = ∅,
• if cn = bn, then E3 ∩ Sn = E2 ∩ Sn.

It is immediate from the construction and Lemma 4.3 that cn = ν
s−ε/2
n (E3) and∑

n≥

(
β
s− ε

2
n (E2)

) ε
4
ν
s− ε

2
n (E3) = +∞

and
∑
n≥

(
β
s− ε

2
n (E2)

) ε
2
ν
s− ε

2
n (E3) < +∞ (5.1)

Finally, by Proposition 3.6, there exists ∅ 6= E4 ⊂ E3 ⊂ E such that for all n ∈ N,

4

5
ν
s− ε

2
n (E3) ≤ ν

s− ε
2

n (E4) ≤ ν
s− ε

2
n (E3) (5.2)

and ν
s− ε

2
n (E4 ∩B(x, r)) ≤ cs

( r
2n

)s− ε
2 (5.3)

for all x ∈ Zd and r ≥ 1.
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Define the measures µεn(A) :=
(
β
s− ε

2
n (E2)

) ε
4
ν
s− ε

2
n (E4 ∩A). Then by our construc-

tion and (5.2), one has∑
n≥0

µεn(E ∩ Sn) =
∑
n≥0

(
β
s− ε

2
n (E2)

) ε
4
ν
s− ε

2
n (E4)

≥4

5

∑
n≥0

(
β
s− ε

2
n (E2)

) ε
4
ν
s− ε

2
n (E3) = +∞.

We are left to prove that∑
n≥0

2n(s−ε)Is−ε(µ
ε
n) =

∑
n≥0

2n(s−ε)
∫
Rd
φs−εµεn

(x)dµεn(x) < +∞

For x ∈ Sn, one can write

φ
µεn
s−ε(x) =

∫
Sn

dµεn(y)

‖x− y‖s−ε2 ∨ 1

Every y ∈ Sn belongs to the ball B(x, 2n+1). For 1 ≤ r ≤ 2n+1, denote by mε
n(r) =

µεn(B(x, r)). By (5.3), one has

mε
n(r) =

(
β
s− ε

2
n (E2)

) ε
4
ν
s− ε

2
n (E4 ∩B(x, r)) ≤ cs

(
β
s− ε

2
n (E2)

) ε
4
( r

2n

)s− ε
2
. (5.4)

Using the fact that B(x, 2n+1) =
2n+1⋃
r=1

B(x, r) \B(x, r − 1), one has

φ
µεn
s−ε(x) ≤

2n+1∑
r=1

∫
B(x,r)\B(x,r−1)

dµεn(y)

‖x− y‖s−ε2 ∨ 1

= µεn(B(x, 1)) +
2n+1∑
r=2

∫
B(x,r)\B(x,r−1)

dµεn(y)

‖x− y‖s−ε2

.

One the one hand, by (5.2), µεn(B(x, 1)) ≤ cs

(
β
s− ε

2
n (E2)

) ε
4

2−n(s−
ε
2
). On the other

hand,
2n+1∑
r=2

∫
B(x,r)\B(x,r−1)

dµεn(y)

‖x− y‖s−ε2

=
2n+1∑
r=2

∫ r

r−1
tε−sdmε

n(t)

=
2n+1∑
r=2

([
tε−smε

n(t)
]r
r−1 + (s− ε)

∫ r

r−1
tε−s−1mε

n(t)dt

)
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≤ cs

(
β
s− ε

2
n (E2)

) ε
4

2−n(s−
ε
2
)

2n∑
r=1

([
t
ε
2

]r
r−1 + (s− ε)

∫ r

r−1
t
ε
2
−1dt

)

≤ cs

(
1 + 2

s− ε
ε

)(
β
s− ε

2
n (E2)

) ε
4

2−n(s−
ε
2
)

2n+1∑
r=1

(
r
ε
2 − (r − 1)

ε
2

)
≤ C

(
β
s− ε

2
n (E2)

) ε
4

2−n(s−ε).

for some constant C. So

φ
µεn
s−ε(x) ≤ cs,

(
β
s− ε

2
n (E2)

) ε
4

2−n(s−
ε
2
)+C

(
β
s− ε

2
n (E2)

) ε
4

2−n(s−ε) ≤ C̃
(
β
s− ε

2
n (E2)

) ε
4

2−n(s−ε).

Moving to the integral, one gets

Is−ε(µ
ε
n) =

∫
Rd
φ
µεn
s−ε(x)dµεn(x) ≤ C

(
β
s− ε

2
n (E2)

) ε
4

2−n(s−ε)µεn(E4).

Finally, recalling (5.1), (5.2), (5.3) and the definition of µεn, one has∑
n≥0

2n(s−ε)Is−ε(µ
ε
n) ≤ C

∑
n≥0

(
β
s− ε

2
n (E2)

) ε
4
µεn(E4)

≤ C
∑
n≥0

(
β
s− ε

2
n (E2)

) ε
2
νns− ε

2
(E4) < +∞

as desired.

6. Projection of a Set

In this section we are considering the orthogonal projection of sets in R2 and we
aim at proving the projection Theorem 2.8 for the macroscopic Hausdorff dimension.

Let us introduce some notations.
For every θ ∈ [0, 2π], call eθ = (cos θ, sin θ) the vector with angle θ, and Lθ the

straight line in R2 with angle θ passing through the origin.
Then, recall that projθ : R2 → Lθ is the orthogonal projection onto Lθ.

6.1. Case where DimH (E) ≥ 1. Let us start by proving item b) of Theorem 2.8,
assuming that item a) is proved.

Consider E ⊂ R2 with DimH (E) ≥ 1.
By Theorem 4.1, for every p ≥ 2, there exists Ep ⊂ E such that DimH (Ep) =

1− 1/p. For each set Ep, by item a), there exists a set Θp ⊂ [0, π] of full Lebesgue
measure such that for every θ ∈ Θp, DimH (projθ(Ep)) = 1−1/p. In particular, this
implies that DimH (projθ(E)) ≥ 1− 1/p.

Consider now the set Θ =
⋂
p≥2 Θp. The above arguments show that Θ is still

of full Lebesgue measure in [0, π], and that for every θ ∈ Θ, DimH (projθ(E)) ≥ 1.
Since obviously DimH (projθ(E)) is always less than 1 (since it is included in Lθ),
the result follows.
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6.2. First extractions when DimH (E) < 1. Fix a set E ⊂ R2 with 0 <
DimH (E) = s < 1. The rest of the section is devoted to prove that DimH (projθE) =
DimH (E) for almost every θ ∈ [0, π].

Writing Lθ = {λeθ : λ ∈ R}, we can define the n-th shells inside Lθ as Sθn =
{v = (x, y) ∈ Lθ : ‖v‖2 ∈ [2n−1, 2n]}. Identifying Lθ with R, the results we obtained
before in dimension 1 apply to Lθ and Sθn.

We are going to project 2-dimensional measures onto the lines Lθ. For this, let
us define for every n ≥ 0 the cylinders

Cθ
n := proj−1θ Sθn. (6.1)

We are going to prove that for every 0 < ε < s, the set

Θs−ε = {θ ∈ [0, π] : DimH (projθ(E)) ≥ s− ε} (6.2)

has full Lebesgue measure. The conclusion then follows using the same argument
as the one used to prove item b). More precisely, from the properties above, Θ :=⋂
p≥1 Θs−1/p has full Lebesgue measure, and for every θ ∈ Θ, DimH (projθ(E)) ≥ s.

But since projθ is a Lipschitz mapping, DimH (projθ(E)) ≤ s = DimH (E). Finally
one gets DimH (projθE) = DimH (E) for almost all θ ∈ [0, π].

Fix 0 < ε < s.
Applying Theorem 2.7(2), there exists a Borel measure µε supported by E such

that ∑
n≥0

µεn(E ∩ Sn) = +∞, (6.3)

and
∑
n≥0

2n(s−ε)Is−ε(µ
ε
n) < +∞, (6.4)

where µεn is a simplified notation for µε|Sn . Observe that in fact, via the finer Theorem
4.1 and Proposition 4.4, we can impose that limn→+∞ µ

ε
n(E ∩ Sn) = 0.

We need to impose an additional condition on µε, namely that∑
n≥0

2−nµεn(E ∩ Sn)

(
n∑
k=0

2kµεk(E ∩ Sk)

)
< +∞. (6.5)

This is achieved thanks to the following lemma.

Lemma 6.1. Let (an)n≥1 and (bn)n≥1 be two positive sequences converging to zero,
such that

∑
n≥1 an = +∞ and

∑
n≥1 anbn = +∞. There exists a sequence (cn)n≥1

such that:
(1) either cn = an, or cn = 0,
(2)

∑
n≥1 cn = +∞,

(3)
∑

n≥1 cnbn < +∞.
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Proof. Again, without loss of generality, we assume that 0 < an, bn < 1. Let us call
Dj = {n ≥ 0 : 2−j−1 ≤ bn < 2−j}, for j ≥ 0.

Put cn = 0 for every n ∈ D0 ∪D1, and n0 = 0, j0 = 1.
We know that

∑
j≥2
∑

n∈Dj anbn = +∞. We go through each Dj in increasing
order. Consider the first couple (n1, j1) such that n1 ∈ Dj1 and

∑j1−1
j=2

∑
n∈Dj anbn+∑

n∈Dj1 ,n≤n1
anbn ≥ 1/2. Put cn = an for all n ∈

⋃j1−1
j=2 Dj ∪{n ∈ Dj1 : n ≤ n1}, and

cn = 0 for all n ∈ {n ∈ Dj1 : n > n1}. By our choice,

1/2 ≤
j1∑
j=0

∑
n∈Dj

cnbn =

j1−1∑
j=2

∑
n∈Dj

anbn +
∑

n∈Dj1 ,n≤n1

anbn < 1.

We then iterate the process: assume that we have built two finite sequences of
integers (nk)k=1,...,p and (jk)k=1,...,p such that

(1) for k = 1, ..., p− 1, jk+1 > jk, and for k = 1, ..., p, nk ∈ Djk

(2) for k = 1, ..., p, cn = an if n ∈
⋃jk−1
j=jk−1

Dj ∪ {n ∈ Djk : n ≤ nk}, and cn = 0

for all n ∈ {n ∈ Djk : n > nk}.
(3) for k = 1, ..., p, one has

2−k ≤
jk∑

j=jk−1

∑
n∈Dj

cnbn < 2−k+1. (6.6)

We know that
∑

j≥jp+1

∑
n∈Dj anbn = +∞. Consider the first couple (np+1, jp+1)

such that np+1 ∈ Djp+1 and
∑jp+1−1

j=jp

∑
n∈Dj anbn +

∑
n∈Djp+1

,n≤np+1
anbn ≥ 2−(p+1).

Put cn = an for all n ∈
⋃jp+1−1
j=jp

Dj ∪ {n ∈ Djp+1 : n ≤ np+1}, and cn = 0 for all
n ∈ {n ∈ Djp+1 : n > np+1}. Then, since for all the selected integers n, anbn ≤
2−jp+1 ≤ 2−(p+1), (6.6) holds true.

Collecting the information, on one hand one has by (6.6)

∑
n≥0

cnbn =
∑
k≥1

jk∑
j=jk−1

∑
n∈Dj

cnbn ≤
∑
k≥1

2−k+1 < +∞.

On the other hand, since jk ≥ k+1, one sees that for each n ∈ Dj for j ∈ {jk−1, ...jk},
bn ≤ 2−k, so again by (6.6),

∑
n≥0

cn =
∑
k≥1

jk∑
j=jk−1

∑
n∈Dj

cn ≥
∑
k≥1

2k
jk∑

j=jk−1

∑
n∈Dj

cnbn ≥
∑
k≥1

1 = +∞,

hence the result. �
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Setting an = µεn(E), then (an)n≥0 tends to zero when n tends to infinity. Define
then

bn = 2−n
n∑
k=0

2kak.

Since
∑n

k=0 2k ∼ 2n, (bn)n≥0 is a generalized Caesaro mean associated with the
sequence (an)n≥0, and converges to zero when n tends to infinity.

So either
∑

n≥1 anbn < +∞, and (6.5) is true, or
∑

n≥1 anbn = +∞ and we are
exactly in the situation of Lemma 6.1: there exists a sequence (cn)n≥1 such that:

(1) either cn = an, or cn = 0,
(2)

∑
n≥1 cn = +∞,

(3)
∑

n≥1 cnbn < +∞.

Setting Ẽ =
⋃
n≥0:an=cn E ∩ Sn, by construction one has µε(Ẽ) =

∑
n≥1 cn = +∞,

and since µεk(Ẽ ∩ Sk) = ck ≤ ak = µεk(E ∩ Sk), one has∑
n≥0

2−nµεn(Ẽ ∩ Sn)

(
n∑
k=0

2kµεk(Ẽ ∩ Sk)

)
≤
∑
n≥1

cnbn < +∞,

hence (6.5) is obtained for Ẽ. This property will be used at the very end of the
proof of Proposition 6.4 only. It is obvious that if Theorem 2.8 is proved for this
smaller set E, it is also true for the original set.

Finally, observe that, replacing Ẽ by
⋃
n≥0 Ẽ ∩ S2n or

⋃
n≥0 Ẽ ∩ S2n+1, one can

assume in addition to (6.3), (6.4) and (6.5) that

if Sn 6= ∅, then Sn−1 = Sn+1 = ∅. (6.7)

To resume this section, we have proved that the original set E contains a subset,
still denoted by E for simplification, and a measure µε supported by E such that
(6.3), (6.4), (6.5) and (6.7) simultaneously hold.

6.3. Final proof of item a) of Theorem 2.8. Consider the set E obtained after
extraction above. For all θ ∈ [0, π], k ≥ n and A ⊂ Lθ, we focus on the restriction
of µεk on Cn(θ)

(µεk)|Cθn(A) := µεk(
{
x ∈ E ∩ Sk : projθx ∈ A ∩ Sθn

}
),

Equivalently for each non-negative function f , one has∫ +∞

−∞
f(t)d(µεk)|Cθn(t) =

∫
Cθn∩Sk

f(x.eθ)dµ
ε
k(x).

where x.eθ denotes the scalar product. Since eθ is unitary, we identify x.eθ with
projθx, the orthogonal projection of x onto Lθ.
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Definition 6.2. The projected measure µε,θ is defined as µε,θ =
∑

n≥1 µ
ε,θ
n , where

µε,θn =
∑
k≥n

(µεk)|Cθn . (6.8)

Note that each µε,θn is a measure supported on projθE ∩ Sθn.
We are going to prove that for almost all θ ∈ [0, π],∑

n≥0

µε,θn (projθE) = +∞ and
∑
n≥0

2n(s−ε)Is−ε(µ
ε,θ
n ) <∞. (6.9)

for almost all θ ∈ [0, π]. Then item a) of Theorem 2.7 will allow us to conclude that
the set Θs−ε defined by (6.2) has full Lebesgue measure, as announced.

This is the purpose of the next two propositions.

Proposition 6.3. For every θ ∈ [0, π],

µε,θ(projθE) = +∞. (6.10)

Proof. This simply follows from the observation that

µε,θ(projθE) =
∑
n≥0

µε,θn (projθE) =
∑
n≥0

∑
k≥n

(µεk)|Cθn(E) ≥
∑
n≥0

µεn(E) = +∞,

since the union of the (Cθ
n)n≥1 cover R2 (there are small overlaps (their borders)

between the Cθ
n). Hence the result. �

So the first part of (6.9) is proved.
Let us move to the second part. Observe that even if µε,θ(projθE) = +∞, it is

likely that projθE has dimension less than DimH (E). A trivial example is when the
s-dimensional set E is included in a straight line of angle φ passing through 0, and
θ = φ+ π/2.

Proposition 6.4. One has

Eθ

[∑
n≥0

2n(s−ε)Is−ε(µ
ε,θ
n )

]
< +∞. (6.11)

Proof. Remark that if (6.11) is proved, then
∑

n≥0 2n(s−ε)Is−ε(µ
ε,θ
n ) < +∞ for Lebesgue

almost every θ ∈ [0, π], so (6.9) and item a) of Theorem 2.8 are proved.

We start with the following lemma.

Lemma 6.5. There exists a constant C0 > 0 such that the following holds. Let
x ∈ Sk for some k ≥ 0. For all 0 ≤ n ≤ k, the set Jx,n = {θ ∈ [0, π] : x ∈ Cθ

k} is an
interval modulo π, and |Jx,n| ≤ C02

n−k.

Proof. The fact that Jx,k is an interval is obvious.
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Let x = (u, v) ∈ Sk. We study the case where x1 ≥ 0, the case x1 < 0 being
symmetric. Using polar coordinates, one has x = (r cos θ0, r sin θ0) for some 2k−1 ≤
r ≤ 2k and θ0 ∈ [−π

2
, π
2
]. Then the projection of x on Lθ is given by:

projθx = (r cos(θ − θ0) cos θ, r cos(θ − θ0) sin θ).

Recall (6.1), one sees that for 0 ≤ n ≤ k,

x ∈ Cθ
n ⇐⇒ 2n−1 ≤ r cos(θ − θ0) ≤ 2n

⇐⇒ 2n−1

r
≤ cos(θ − θ0) ≤

2n

r

⇐⇒ 2n−k ≤ cos(θ − θ0) ≤ min{1, 2n−k+1}
⇐⇒ θ ∈

[
θ0 + arccos

(
2n−k

)
, θ0 + arccos

(
min{1, 2n−k+1}

)]
mod π.

Denote by Jn,x :=

[
θ0 + arccos

(
1

2
2n−k

)
, θ0 + arccos

(
min{1, 2n−k+1}

)]
. The Tay-

lor development arccos(y) = π
2
− y + o(y) yields that |Jn,x| = 2n−k(1 + o(1)). �

From the proof, it also follows that |Jx,n| ∼ C2n−k when n/k is quite small.

Let us study (6.11). One has

Eθ

[∑
n≥0

2n(s−ε)Is−ε(µ
ε,θ
n )

]

=

∫ π

0

[∑
n≥0

2n(s−ε)Is−ε(µ
ε,θ
n )

]
dθ

=

∫ π

0

[∑
n≥0

2n(s−ε)
∫
Sθn

∫
Sθn

dµε,θn (u) dµε,θn (v)

|u− v|s−ε ∨ 1

]
dθ

=

∫ π

0

[∑
n≥0

2n(s−ε)
∑
j,k≥n

∫
E∩Sj∩Cθn

∫
E∩Sk∩Cθn

dµεk(x) dµεj(y)

|x · eθ − y · eθ|s−ε ∨ 1

]
dθ

:= I1 + 2I2

where

I1 =

∫ π

0

[∑
n≥0

2n(s−ε)
∑
k≥n

∫∫
(E∩Sj∩Cθn)2

dµεk(x) dµεk(y)

|(x− y) · eθ|s−ε ∨ 1

]
dθ

I2 =

∫ π

0

[∑
n≥0

2n(s−ε)
∑
k>j≥n

∫
E∩Sj∩Cθn

∫
E∩Sk∩Cθn

dµεk(x) dµεj(y)

|(x− y) · eθ|s−ε ∨ 1

]
dθ.
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Starting with I1, one has

I1 =

∫ π

0

[∑
n≥0

2n(s−ε)
∑
k≥n

∫∫
(E∩Sk∩Cθn)2

dµεk(x) dµεk(y)

|(x− y) · eθ|s−ε ∨ 1

]
dθ

=

∫ π

0

[∑
n≥0

2n(s−ε)
∑
k≥n

∫∫
(E∩Sk)2

1Cθn(x)1Cθn(y)

|(x− y) · eθ|s−ε ∨ 1
dµεk(x) dµεk(y)

]
dθ

=
∑
n≥0

2n(s−ε)
∑
k≥n

∫∫
(E∩Sk)2

∫ π

0

1Cθn(x)1Cθn(y)

|(x− y) · eθ|s−ε ∨ 1
dθdµεk(x) dµk(y)

≤
∑
n≥0

2n(s−ε)
∑
k≥n

∫∫
(E∩Sk)2

[∫ π

0

1x∈Cθn(θ)1y∈Cθn(θ)

|τx−y · eθ|s−ε
dθ

]
dµεk(x) dµεk(y)

‖x− y‖s−ε2 ∨ 1
,

where τx−y is the unit vector in the direction of x− y. By Lemma 6.5, when x ∈ Sk
one has 1x∈Cθn(θ) = 1Jn,x(θ). Then∫ π

0

1x∈Cθn(θ)1y∈Cθn(θ)

|τx−y · eθ|s−ε
dθ =

∫
Jn,x∩Jn,y

dθ

|cos( ̂τx−y, eθ)|s−ε
.

By Lemma 6.5, the interval Jn,x ∩ Jn,y has length smaller than C02
n−k. So the

integral above is taken over an interval of length at most C02
n−k. Moreover, as

s < 1, the integral reaches its largest value when θ close to
π

2
. Thus

∫ π

0

1x∈Cθn(θ)1y∈Cθn(θ)

|τx−y · eθ|s−ε
dθ ≤

∫ π
2
+C02n−k

π
2
−C02n−k

dθ

|cos(θ)|s−ε
≤
∫ C02n−k

−C02n−k

dθ

|θ|s−ε
= C2(n−k)(1−s+ε).

(6.12)

where C > 0 is some positive constant. Then going back to I1 and using 6.12, one
gets

I1 ≤ C
∑
n≥0

2n(s−ε)
∑
k≥n

2(n−k)(1−s+ε)
∫∫

(E∩Sk)2

dµεk(x) dµεk(y)

‖x− y‖ε2 ∨ 1

= C
∑
n≥0

∑
k≥n

2n+k(s+ε−1)
∫∫

(E∩Sk)2

dµεk(x) dµεk(y)

‖x− y‖s−ε2 ∨ 1

= C
∑
n≥0

2n(s+ε−1)
n∑
k=0

2k
∫∫

(E∩Sn)2

dµεn(x) dµεn(y)

‖x− y‖s−ε2 ∨ 1

≤ 2C
∑
n≥0

2n(s−ε)Is−ε(µ
ε
n) < +∞,

which is finite by (6.4).
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Moving to I2, the same manipulations as above for I1 yield

I2 =

∫ π

0

[∑
n≥0

2n(s−ε)
∑
k>j≥n

∫
E∩Sj∩Cθn

∫
E∩Sk∩Cθn

dµεk(x) dµεj(y)

|(x− y) · eθ|s−ε ∨ 1

]
dθ.

=

∫ π

0

[∑
n≥0

2n(s−ε)
∑
k>j≥n

∫
E∩Sj

∫
E∩Sk

1Cθn(x)1Cθn(y)

|(x− y) · eθ|s−ε
dµεk(x) dµεj(y)

]
dθ

=
∑
n≥0

2n(s−ε)
∑
k>j≥n

∫
E∩Sj

∫
E∩Sk

[∫ π

0

1Jn,x(θ)1Jn,y(θ)

|τx−y · eθ|s−ε
dθ

]
dµεk(x) dµεj(y)

‖x− y‖s−ε2

.

As before, by Lemma 6.5, |Jk,x| ≤ 2n−k and |Jj,y| ≤ 2n−j for all x ∈ Sk ∩ Cθ
n and

y ∈ Sj ∩ Cθ
n). Then, as k ≥ j + 1, the same argument as in (6.12) yields∫ π

0

1x∈Cθn(θ)1y∈Cθn(θ)

|τx−y · eθ|s−ε
dθ ≤ C2(n−k)(1−s+ε). (6.13)

for some C > 0.
Next, we make use of equation (6.7) : indeed, it is not possible that µεj and µεj+1 are

simultaneously non-zero. Hence, for x ∈ Sk and y ∈ Sj such that j < k and µεj and
µεk not both equal to zero, then necessarly |k − j| ≥ 2 and 2k−2 ≤ ‖x− y‖2 ≤ 2k+1.
This implies in particular that∫

E∩Sj

∫
E∩Sk

dµεk(x) dµεj(y)

‖x− y‖s−ε2

≤ C2−k(s−ε)µεk(E ∩ Sk)µεj(E ∩ Sj), (6.14)

the inequality being in fact close to be sharp.
Finally, combining (6.14) and (6.13)), one gets that for some C ′ > 0,

I2 ≤ C ′
∑
n≥0

2n(s−ε)
∑
k>j≥n

2(n−k)(1−s+ε)2−k(s−ε)µεk(E ∩ Sk)µεj(E ∩ Sj)

= C ′
∑
n≥0

2n
∑
k>j≥n

2−kµεj(E ∩ Sj)µεk(E ∩ Sk)

= C ′
∑
j≥0

(
j∑

n=0

2n

)
µεn(E ∩ Sn)

∑
k≥n+1

2−kµεk(E ∩ Sk)

≤ C ′
∑
n≥0

2nµεn(E ∩ Sn)
∑
k≥n+1

2−kµεk(E ∩ Sk)

≤ C ′
∑
n≥0

2−nµεn(E ∩ Sn)

(
n∑
k=0

2kµεk(E ∩ Sk)

)
.

This last double sum is finite, because the set E was chosen so that (6.5) holds true.
This concludes the proof. �
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