
HAL Id: hal-03597598
https://hal.science/hal-03597598

Submitted on 4 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Behavioral simulation for smart contracts
Sidi Beillahi, Gabriela Ciocarlie, Michael Emmi, Constantin Enea

To cite this version:
Sidi Beillahi, Gabriela Ciocarlie, Michael Emmi, Constantin Enea. Behavioral simulation for
smart contracts. 41st ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI ’20), Jun 2020, Londres, United Kingdom. pp.470-486,
�10.1145/3385412.3386022�. �hal-03597598�

https://hal.science/hal-03597598
https://hal.archives-ouvertes.fr

Behavioral Simulation for Smart
Contracts

Sidi Mohamed Beillahi∗
Université de Paris, IRIF, CNRS

Paris, France
beillahi@irif.fr

Gabriela Ciocarlie
SRI International
New York, USA

gabriela.ciocarlie@sri.com

Michael Emmi
SRI International
New York, USA

michael.emmi@gmail.com

Constantin Enea
Université de Paris, IRIF, CNRS, Institut Universitaire de

France (IUF)
Paris, France
cenea@irif.fr

Abstract
While smart contracts have the potential to revolutionize
many important applications like banking, trade, and supply-
chain, their reliable deployment begs for rigorous formal
verification. Since most smart contracts are not annotated
with formal specifications, general verification of functional
properties is impeded.

In this work, we propose an automated approach to verify
unannotated smart contracts against specifications ascribed
to a few manually-annotated contracts. In particular, we
propose a notion of behavioral refinement, which implies in-
heritance of functional properties. Furthermore, we propose
an automated approach to inductive proof, by synthesizing
simulation relations on the states of related contracts. Em-
pirically, we demonstrate that behavioral simulations can be
synthesized automatically for several ubiquitous classes like
tokens, auctions, and escrow, thus enabling the verification
of unannotated contracts against functional specifications.

CCS Concepts: • Software and its engineering → For-
mal software verification; • Theory of computation→

Automated reasoning.

Keywords: Blockchain, Smart contracts, Refinement, Simu-
lation

∗This work was conducted during an internship at SRI International.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’20, June 15–20, 2020, London, UK
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7613-6/20/06. . . $15.00
https://doi.org/10.1145/3385412.3386022

ACM Reference Format:
Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Con-
stantin Enea. 2020. Behavioral Simulation for Smart Contracts.
In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation (PLDI ’20),
June 15–20, 2020, London, UK. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3385412.3386022

1 Introduction
Smart contracts are programs that execute on cryptograph-
ically-secure distributed ledgers, i.e., blockchains, to perform
trackable and irreversible transactions. As they offer auton-
omy for arbitrarily-complex transactions between multiple
parties, smart contracts are already powering a sizable econ-
omy: applications include banking [4], insurance [2], auction,
trade, and supply chain. This rapid adoption has been closely
followed by exploitation, including millions of US dollars
lost due to vulnerabilities in smart contract code [1, 3, 5].
Formal verification has the potential to mitigate such ex-

ploitation significantly. However, scaling verification efforts
to a large number of smart contracts is an important chal-
lenge. In particular, while specifications that are specialized
to each individual smart contract are useful for proving cus-
tomized functional properties [55], generic specifications that
can be applied to large classes of smart contracts would facil-
itate verifying contracts en masse. Ideally, the specification
for a given class of smart contracts could be written once,
and reused for the verification of each contract of that class.

Truly generic specifications must be sufficiently weak so
that every correct contract in the given class adheres to its
functional properties. Moreover, truly generic specifications
must be independent from the state variables of any partic-
ular contract, since the state variables of other contracts in
the same class generally differ in name, number, and type.
Such generic specifications are however unsuited for existing
verification tools like solc-verify [36] and VerX [55], which
suppose that input contracts are annotated with expressions
that refer to state variables, e.g., pre- and post-conditions.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3385412.3386022
https://doi.org/10.1145/3385412.3386022

PLDI ’20, June 15–20, 2020, London, UK Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea

This poses a scalability problem since deriving such annota-
tions for each contract from class-wide generic specifications
would be a manual labor-intensive process.

In this work, we address this scalability challenge and
introduce an approach for verifying unannotated smart con-
tracts via automated semantic comparison against annotated
smart contracts. Our approach is motivated by the insight
that many of the smart contracts instantiated on popular
blockchains (e.g., Ethereum [72]) are variations on a rela-
tively small number of canonical contracts and libraries im-
plementing concepts like tokens, ownership, auctions, and
escrow. Intuitively, many of these variations obey the princi-
ple of substitutability [43], meaning that they adhere to the
functional properties captured by the annotations of their
canonical counterparts.

With a notion of comparison that implies substitutability,
we can thus amortize the cost of manually annotating these
canonical contracts by verifying a vast number of unanno-
tated contracts. Our notion of behavioral refinement relates
the input-output behavior of contracts’ transactions, i.e., pa-
rameters and effects on storage, ignoring internal details
like local memory and control flow. By proving that a given
contract is a behavioral refinement of another, we guarantee
the inheritance of behavioral properties, and in particular
that the effects of any sequence of transactions obeys its
canonical counterpart’s functional properties.

Establishing behavioral refinement for unbounded transac-
tion sequences relies on induction. Akin to inductive invari-
ants for safety properties, proofs of behavioral refinement
use induction hypotheses called simulation relations [46].
Essentially, a behavioral simulation relation identifies states
of two contracts such that initial states are related; the same
transaction applied to related states yields related states and
identical effects; and related states are observationally equiv-
alent, i.e., any function applied to both yields identical values.
While simulation relations are known to be incomplete for
establishing refinement [45], they have the advantage of
guaranteeing inheritance of its canonical counterpart’s hy-
perproperties [8, 10]. Hyperproperties [19], described as sets
of sets of behaviors (as opposed to standard safety/liveness
properties which can be thought of as sets of behaviors),
capture many interesting security properties, e.g., the classic
noninterference [32], which are relevant in the context of
smart contracts [34, 65].
Accordingly, our automated verification approach boils

down to the synthesis of behavioral simulation relations in
two steps: a passive learning step generates candidate sim-
ulation relations, and a deductive verification step checks
the validity of each candidate. Candidate generation can be
demand-driven according to counterexample guided induc-
tive synthesis [61], e.g., initially proposing the trivial simula-
tion relating each pair of contract states, and incrementally
proposing candidates which rule out spurious counterexam-
ples from prior validation steps. In this work, we consider

a simplification which suffices empirically: generating and
validating one single candidate simulation.

To generate candidate simulation relations, we adopt a
paradigm of learning from examples [47]. In this work, we
consider only passive learning, which assumes that the set of
examples is fixed a priori, as opposed to being generated on
learner demand. In the context of simulation, an example is
a pair of states, i.e., one state of each contract: positive exam-
ples are pairs of states which must be similar, and negative
examples are pairs which must not be similar. To generate ex-
amples, we consider sequences of transactions, executed on
a blockchain, starting from the initial states of each contract.
Intuitively, negative examples correspond to pairs of states
which yield distinct observations, and positive examples cor-
respond to pairs of states reached by identical transaction
sequences, unless such a pair yields distinct observations,
in which case it is a counterexample to simulation. We then
leverage off-the-shelf learning algorithms [54] by providing
an oracle to evaluate candidate expressions against pairs of
states, i.e., by executing such expressions on the blockchain.

To verify candidate simulation relations, we adopt a notion
of product programs inspired by relational verification [13].
In particular, we generate an auxiliary simulation-checking
contract whose verification implies the validity of a given
simulation relation. Intuitively, for each function f of the
given unannotated contract, the simulation-checking con-
tract provides a function which executes f in lockstep with
its canonical contract’s counterpart. Besides asserting the
equality of effects and return-values, this function includes
the candidate simulation as pre- and post-conditions, ulti-
mately implying inductiveness. We verify the simulation-
checking contract using an existing verifier [36], which trans-
lates Solidity smart contracts to Boogie programs [11], and
ultimately to satisfiability modulo theories (SMT) queries.

Empirically, we validate our approach by collecting dozens
of Solidity-language smart contracts, identifying canonical
contracts for several classes, annotating and verifying these
canonical contracts with precise formal specifications, and
synthesizing simulation relations from multiple variations
of each class. Our implementation can correctly synthesize
nontrivial simulation relations for many classes, and inte-
grates off-the-shelf tools for example-guided learning and
Solidity verification.

In summary, this work makes the following contributions:

• We demonstrate an application of behavioral simula-
tion to smart contracts (§3-4).

• We develop an algorithm for synthesizing behavioral
simulation relations (§5-6).

• We develop a smart contract benchmark suite includ-
ing variations of identified canonical contracts (§8).

• We evaluate our approach, verifying functional prop-
erties for dozens of unannotated smart contracts (§9).

Behavioral Simulation for Smart Contracts PLDI ’20, June 15–20, 2020, London, UK

Aside from the aforementioned technical sections, we outline
our approach in Section 2, and discuss related work and
conclusions in Sections 10 and 11.

2 Overview
In this section, we overview the methodology formalized
in Sections 3-6 for synthesizing behavioral simulations. We
illustrate behavioral refinement on a running example (§2.1),
describe behavioral simulation for proving refinement (§2.2),
and demonstrate synthesis on the running example (§2.3).

2.1 Motivation
We illustrate the concept of behavioral refinement on two
contracts implementing an auction (written in the Solidity
language of Ethereum), which are partially listed in Figure 1.
These excerpts focus on the initialization and the bidding
parts of an auction. The contract RefAuction1 plays the role
of an annotated canonical implementation of an auction (we
omit the exact postconditions for brevity) while Auction is
a particular variation. We generally refer to canonical im-
plementations as reference (smart) contracts while variations
like Auction are called simply (smart) contracts.

The fields of RefAuction store information about the ben-
eficiary and the ending time of the auction, the current high-
est bidder and its bid, and the bids of previous highest bidders
(the owners of these bids have the right to reclaim them at
any point during the auction – for brevity, this functional-
ity is excluded from these excerpts). While the constructor
initializes the beneficiary and the ending time of the auc-
tion, the bid function allows a participant to pose a new
bid which is accepted only if it is bigger than the current
highest bid and the timeout did not expire. Otherwise, the
bid function has no effect on the state of the contract – if the
condition inside a require statement fails, the invocation is
reverted and is semantically equivalent to skip. This contract
also contains several functions that allow to read its fields,
in particular a bid that has been superseded by a higher one
(function PendingReturns) and the highest bid.

The contract Auction is a variation that changes the rep-
resentation of the auction ending time decomposing it into
an auction start time and a bidding duration. The handling of
revert conditions in the bid function is syntactically distinct,
but semantically equivalent to the require in RefAuction.

Despite syntactic and state representation differences, ev-
ery sequence of transactions calling methods of Auction has
the same effect as if they were calling RefAuction instead.
This relationship can be stated as Auction being a behav-
ioral refinement of RefAuction, i.e., that its behaviors are
subsumed by RefAuction. We use the term behavior to refer
to a summary of the inputs and outcomes, e.g., return values,
of a sequence of invocations.

1Extracted from the documentation page of Solidity [62].

Behavioral refinement is consistent with Liskov’s substi-
tutability principle [43], i.e., any contract can be replaced
with any of its refinements in any context, as long as a behav-
ior records all the outcomes (effects) which are observable
in a context. For the sake of this example, we will focus on
return values. Other observable effects which are relevant in
a Blockchain environment, e.g., changes on the state of other
contracts or Blockchain global variables like the balances of
external accounts, are discussed in Section 3.

For instance2,
constructor(5, a) · bid(b, 20) · bid(c, 30) · HighestBid() ⇒ 30
constructor(5, a) · bid(b, 20) · bid(c, 10) ⇒ ⊥ · HighestBid() ⇒ 20

are two possible behaviors of Auction which are also pos-
sible when calling methods of RefAuction instead (we use
the⊥ return value to signal a reverted bid invocation). More
generally, refinement holds because the conditions under
which a new bid is accepted are semantically the same even
though the two contracts use different representations of the
ending time. The constructors of these contracts ensure that
the two representations are “consistent” in the sense that

auctionEnd = auctionStart + biddingTime (1)

which implies that the timing conditions in function bid are
equivalent. Note that even though bid has no return value,
using different conditions for accepting a bid would have
been “observable” because of the “getter” method that allows
to read the highest bid at any point during an execution.

2.2 Behavioral Simulation Relations
Establishing refinement usually relies on an induction argu-
ment based on a (behavioral) simulation relation, which in
our context, is a relation between the states of the two con-
tracts supporting a proof that the reference contract mimics
every method invocation of the other contract. The simula-
tion relation supporting such a proof is defined as follows
(the fields of Auction are prefixed by # to distinguish them
from fields of the reference auction having the same name):

Sim
def
= auctionStart + biddingTime = auctionEnd (2)

∧ #beneficiary = beneficiary ∧ #highestBidder = highestBidder

∧ #highestBid = highestBid ∧ #pendingReturns = pendingReturns

This states that the fields recording bids and the beneficiary
are the same in the two contracts (pendingReturns fields
are equal when they have the same mappings), while the
fields concerning the ending time are related as mentioned
above (Equation 1). Environment (global) variables like now
are assumed to be equal in any two states related by Sim. This
models the fact that the two contracts refine one another
when embedded in the same context (where the environment
variables evolve in the same way). To simplify the technical

2For bid invocations, the caller identity and the amount of Ether it sends
are written as explicit arguments, and the return value of an invocation
(e.g., to HighestBid()) is written after ⇒. Also, we use small cap letters a,
b, c to represent values of type address.

PLDI ’20, June 15–20, 2020, London, UK Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea

// @notice invariant ...

contract RefAuction {

uint public auctionEnd, highestBid;

address payable public beneficiary;

address public highestBidder;

mapping(address => uint) pendingReturns;

// @notice postcondition ...

constructor(uint _bidTime, address payable _benefic) public {

beneficiary = _benefic;

auctionEnd = now + _bidTime;

}

// @notice postcondition ...

function bid() public payable {

require(now <= auctionEnd && msg.value > highestBid);

if (highestBid != 0)

pendingReturns[highestBidder] += highestBid;

highestBidder = msg.sender;
highestBid = msg.value;

}

// @notice postcondition ...

function PendingReturns() public view returns (uint) {

return pendingReturns[msg.sender];
}

// @notice postcondition ...

function HighestBid() public view returns (uint) {

return highestBid;

}

}

contract Auction {

uint public auctionStart, biddingTime, highestBid;

address payable public beneficiary;

address public highestBidder;

mapping(address => uint) pendingReturns;

constructor(uint _bidTime, address payable _benefic) public {

beneficiary = _benefic;

auctionStart = now;
biddingTime = _bidTime;

}

function bid() public payable {

if (now > auctionStart + biddingTime || msg.value <= highestBid)

revert();
if (highestBidder != address(0))
pendingReturns[highestBidder] += highestBid;

highestBidder = msg.sender;
highestBid = msg.value;

}

function PendingReturns() public view returns (uint) {

return pendingReturns[msg.sender];
}

function HighestBid() public view returns (uint) {

return highestBid;

}

}

Figure 1. A canonical auction contract (left) and a variation (right), omitting withdrawal, auction-ending, and other view
functions. Implicit variables now, msg.value, and msg.sender yield block timestamps, Ether sent, and callers’ addresses.

exposition, we omit them from simulation relations. Also,
in this section, we ignore the issues related to bid being a
payable function which transfers Ether.

The initial states of the two contracts (produced after exe-
cuting the constructor) are obviously related by Sim and also,
given any two states (of Auction and RefAuction, respec-
tively) related by Sim, executing an arbitrary invocation in
Auction can be mimicked by an invocation in RefAuction
of the same method with the same arguments and return
values. Moreover, the states reached at the end of the two
invocations are again related by Sim. The latter enables an
extension of this proof to an arbitrary number of invocations.

The existence of this simulation relation implies that Auction
is a behavioral refinement of RefAuction, which implies
that it satisfies any property of RefAuction characterizing
its behaviors. Even more, since the simulation relates the
states of the two contracts, it also supports deriving valid-
by-construction inductive invariants or pre/post-condition
annotations for methods. For instance, an inductive invari-
ant of a reference contract (that holds before and after ev-
ery method invocation) can be used to define a valid-by-
construction inductive invariant for any contract that it sim-
ulates. In the context of our running example, the following
inductive invariant of the reference auction

Inv
def
= ∀i .pendingReturns[i] ≤ highestBid

implies that Sim ∧ Inv is an inductive invariant for Auction.

2.3 Simulation Relation Synthesis
We propose methodology for synthesizing such simulation
relations automatically that consists of two parts: a learn-
ing procedure for guessing simulation relation candidates
from examples (§2.3.1), and using deductive verification for
establishing the validity of the inferred candidates (§2.3.2).

2.3.1 Learning Simulations FromExamples. To gener-
ate candidate simulation relations we use a procedure based
on learning from examples, where the goal is learning a (first-
order) formula that “separates” a set of positive examples
from a set of negative examples, i.e., satisfied by all positive
examples and falsified by all negative ones. In our context,
examples are pairs of states of the contract and reference con-
tract, respectively. The positive examples must be included
in any simulation relation while the negative ones must be
excluded from any simulation. Classifying examples as posi-
tive or negative enables the re-use of any existing learning
algorithm that can produce formulas separating between the
two, e.g., [27, 28, 54, 57, 59].
The positive examples are pairs of states obtained by ex-

ecuting the same sequence of invocations (with the same
arguments) from the initial state of both the contract and
the reference contract. Such pairs of states are necessar-
ily included in every simulation under the assumption that
contracts are deterministic, which roughly, means that the
state reached by a contract when executing a sequence of
invocations is unique. These two auction contracts satisfy
this determinism assumption (this is rather straightforward

Behavioral Simulation for Smart Contracts PLDI ’20, June 15–20, 2020, London, UK

when the global variable now is assumed to be a constant;
otherwise, it is required that any modification of the envi-
ronment variable now is modeled explicitly as an invocation
to a fictitious method – see Section 3 for more details). For
instance, the following pair of states is obtained by running
constructor(2, a) · bid(b, 10) · bid(c, 20) in both contracts
(we write only the keys of pendingReturns that changed
with respect to the initial state):

©«

beneficiary = a
now = 0

auctionStart = 0
biddingTime = 2
highestBid = 20
highestBidder = c

pendingReturns[b] = 10

,

beneficiary = a
now = 0

auctionEnd = 2

highestBid = 20
highestBidder = c

pendingReturns[b] = 10

ª®®®®®®®®®¬
(3)

We generate positive examples by enumerating invocation
sequences and producing the pairs of states reached by exe-
cuting them in the two contracts.
The definition of negative examples relies on a relation

between states which compares return values of read-only
methods. As a base case, a negative example is any pair
of states that are distinguished by a read-only method, i.e.,
invoking this method on each of the two states results in
different return values. For instance, the following pair of
states are distinguished by the HighestBid method:

©«

beneficiary = a
now = 0

auctionStart = 0
biddingTime = 2
highestBid = 20
highestBidder = c

pendingReturns[b] = 10

,

beneficiary = a
now = 0

_auctionEnd = 2

highestBid = 30
highestBidder = b

ª®®®®®®®®®¬
(4)

The first state is obtained by calling constructor(2, a) ·
bid(b, 10) · bid(c, 20) in the Auction contract while the sec-
ond one is obtained by calling constructor(2, a)·bid(b, 30)·
bid(c, 20) in the reference auction. The difference between
the two sequences, i.e., the argument to the second bid, is
written in bold font (the last bid in the reference auction
sequence is not accepted because it is smaller than the pre-
vious one). Such pairs of states should be excluded from
any simulation relation because otherwise, the reference
contract cannot mimic the invocation of that particular read-
only method in the other contract. Going further, any pair
of states from which executing the same sequence of in-
vocations leads to states that are distinguishable by some
read-only method is also a negative example (this again re-
lies on the assumption that contracts are deterministic). For
instance, the predecessors of the pair of states in (4), reached
before making the last bid (i.e., bid(c, 20)), which is the same
in both contracts, is such an example:

©«

beneficiary = a
now = 0

auctionStart = 0
biddingTime = 2
highestBid = 10
highestBidder = b

,

beneficiary = a
now = 0

_auctionEnd = 2

highestBid = 30
highestBidder = b

ª®®®®®®®¬

contract SimulationCheck is Auction, ReferenceAuction {

// @notice postcondition Sim
constructor(uint _biddingTime, address payable _beneficiary)

Auction(_biddingTime, _beneficiary)

ReferenceAuction(_biddingTime, _beneficiary) public { }

// @notice precondition Sim
// @notice postcondition Sim
function checkBid() public payable {

r0 = Auction.bid();

r1 = ReferenceAuction.bid();

assert (r0 == r1);

}

}

Figure 2. Validating the simulation relation Sim.

As we hinted above, negative examples can also be iden-
tified based on invocation sequences, in this case two dis-
tinct ones. Therefore, their generation is oblivious to state
representations and based on an enumeration of pairs of
invocation sequences.

Note that Sim in Equation 2 is indeed a separator between
the examples described above.

2.3.2 Verifying Simulation Relations. To verify that a
simulation candidate is indeed valid we rely on deductive
verification.We generate a simulation-checking contract with
one function for each of the functions common to the input
contracts, invoking each version in turn. Figure 2 lists an
excerpt of this contract for our running example. The inheri-
tancemechanism ensures that each state of SimulationCheck
is a disjoint union of a state of Auction and RefAuction, re-
spectively. The simulation-checking contract lists the given
candidate simulation relation, in this case Sim in Equation 2,
as both a pre- and post-condition to each function (as well
as a post-condition of the constructor), and asserts that both
versions of each function yields the same results. Sim is a
valid simulation relation if all the pre/post-conditions and
assertions are satisfied by SimulationCheck.
This deductive verification step completes the proof that

Auction is a behavioral refinement of RefAuction and that
it inherits all its behavioral properties, e.g., a bid is accepted
only if it is bigger than every previous bid.

3 Behavioral Refinement
The formalization of behavioral refinement between con-
tracts relies on a simple yet universal model of computation,
namely labeled transition systems. A labeled transition sys-
tem (LTS)A = (Q, Σ, s0,δ) over the possibly-infinite alphabet
Σ is a possibly-infinite setQ of states with initial state s0 ∈ Q ,
and a transition relation δ ⊆ Q × Σ ×Q . The ith symbol of a
sequence τ ∈ Σ∗ is denoted τi , and ϵ is the empty sequence.
An execution of A is an alternating sequence of states and
transition labels (also called actions) ρ = s0,a0, s1 . . . ak−1, sk
for some k > 0 such that δ (si ,ai , si+1) for each 0 ≤ i < k .

PLDI ’20, June 15–20, 2020, London, UK Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea

We write si
ai ...aj−1
−−−−−−−→A sj as shorthand for the subsequence

si ,ai , ..., sj−1,aj−1, sj of ρ. (in particular si
ϵ
−→ si). The pro-

jection τ |Γ of a sequence τ is the maximum subsequence of
τ over the alphabet Γ. This notation is extended to sets of
sequences as usual. A trace of A is the projection ρ |Σ of an
execution ρ of A. The set of traces of an LTS A is denoted by
T (A). An LTS is deterministic if for any state s and sequence
τ ∈ Σ∗, there is at most one state s ′ such that s

τ
−→ s ′.

A contract is interpreted as an LTS whose traces represent
sequences of invocations to the contract’s methods together
with their inputs and observable outcomes. A typical ex-
ample of an observable outcome is the return value, which
can be read through invocations from other contracts. Other
examples include effects like gas consumption, changes on
the state of other contracts, changes on Blockchain global
variables like the balances of external accounts, etc. To sim-
plify the technical exposition, we will mostly focus on return
values but this is not a limitation. This LTS interpretation
is used to formalize and reason about the soundness of our
methodology. It is not intended to be constructed explicitly.

Essentially, the states of the LTS are composed of an inter-
nal part represented as assignments to the contract’s fields
and the balance of the address at which the contract is de-
ployed, and an environment part represented as assignments
to environment variables, e.g., now in Figure 1, which in-
fluence the contract’s behavior. The transitions represent
invocations to the contract’s methods or updates of the en-
vironment variables, e.g., increasing the value of now3. The
labels record method names, arguments, and observable out-
comes. For uniformity, updates of environment variables are
modeled as invocations to some fictitious methods.
Formally, an invocation label m(®u) is a method name m

along with a vector ®u of argument values. An operation label
ℓ =m(®u) ⇒ v is an invocation labelm(®u) along with a return
value v . We assume a fixed, but unspecified, domain Vals
of argument or return values. Vals includes a distinguished
return value ⊥ associated to invocations that revert. We use
inv(ℓ) to refer to the invocation label in an operation label ℓ.
This notation is extended to sequences or sets of operation
labels as expected. An interface Σ is a set of operation labels
over a finite set of method names. We use Σ✓ to denote the
subset of Σ that excludes operation labels with ⊥ as a return
value, andMeths(Σ) to denote the method names in Σ.

Definition 3.1. A (smart) contract is an LTSC = (Q, Σ, s0,δ)
over an interface Σ.

Example 3.2. Figure 3 pictures a fragment of the LTS inter-
pretation of RefAuction. This LTS contains an initial state

3This LTS can be thought of as a composition between an LTS defining the
evolution of the variables controlled by the contract and an LTS defining
the evolution of the environment variables (whose states are valuations
of these variables). The states of the two LTSs share the valuation of the
environment variables (read by the first LTS and updated by the second).

Initial
state:

now = 0

beneficiary = d
_auctionEnd = 10

…

beneficiary = a
_auctionEnd = 5

…

constructor(10, d)

constructor(5, a)

bid(b, 20)

bid(c, 30)

highestBidder = b
highestBid = 20

balance[this] = 20
…

highestBidder = c
highestBid = 30

balance[this] = 30
…

bid(b, 20) => ⊥
HighestBid() => 30

add_now(7)

now = 7
…

bid(c, 10) => ⊥

Figure 3. A fragment of the LTS interpretation of
RefAuction. Boxes represent states and arrows represent
transitions. The representation of states emphasizes the fields
changed by the incoming transition.

from where a number of transitions corresponding to con-
structor invocations are enabled. These different transitions
correspond to different sets of arguments passed to the con-
structor. As mentioned above, a state of this LTS consists of a
valuation of all the fields of RefAuction, e.g., beneficiary
and _auctionEnd, the balance of the address at which this
contract is deployed, written as balance[this], and the en-
vironment variable now. Invocations that revert, e.g., bidding
10 when the highest bid is 20, marked using the ⊥ return
value, or invocations to read-only methods like HighestBid
are represented as self-loops. Transitions also represent up-
dates of now, e.g., increasing its value by 7.

Modeling updates of environment variables as labeled LTS
transitions is important to ensure that the resulting LTS
is deterministic. For instance, assuming that such updates
are ϵ transitions in the LTS interpretation of RefAuction
(Figure 3), the singleton sequence constructor(5, a) leads
to two distinct states, where now = 0 and now = 7, respectively.
Determinism is important for the soundness of our learning
procedure (see Section 5).

Remark 3.1. The notion of contract in Definition 3.1 con-
siders the return value as the only observable outcome of
an invocation. This notion can be extended to include other
observable effects by enriching the structure of transition
labels. For instance, it is quite frequent that the methods of a
contract invoke Solidity primitives like send for transferring
Ether, or methods of other contracts, and possibly even check
their return values. An invocation to such a methodm can be
represented by a transition labeled bym(®u) ⇒ I ,v where ®u
and v are the arguments and return value of this invocation,
and I is a sequence of operation labels corresponding to the
“internal” calls made during this invocation (e.g., a call to
send with its arguments and return value).

The standard refinement relation between two LTSs is
defined as the inclusion between the set of traces produced by
the two LTSs. For practical reasons, we consider an extension
of this notion that allows a contract to refine another even if

Behavioral Simulation for Smart Contracts PLDI ’20, June 15–20, 2020, London, UK

contract PAX {

mapping(address => uint256) public balances;

address public owner;

constructor() public {

owner = msg.sender;
}

function mint(address to, uint val) public {

require(msg.sender == owner);

balances[to] = balances[to] + val;

}

function transfer(address to, uint val) public {

require(val <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender] - val;

balances[to] = balances[to] + val;

}

function transferOwnership(address _newOwner) public {

require(msg.sender == owner);

owner = _newOwner;

}

}

Figure 4. A contract managing a set of tokens.

contract ERC20 {

mapping(address => uint256) public balances;

function mint(address to, uint val) public {

balances[to] = balances[to] + val;

}

function transfer(address to, uint val) public {

require(val <= balances[msg.sender]);
balances[msg.sender] = balances[msg.sender] - val;

balances[to] = balances[to] + val;

}

}

Figure 5. An excerpt from the ERC20 reference contract.

(1) it has a larger interface (it defines a larger set of methods)
or (2) invocations revert more often (this is sound since any
update of a reverted invocation is discarded).

For instance, Figure 4 lists several functions of a contract
called PAX4 that allows an owner to mint some set of tokens
for some specific address (function mint), transfer tokens be-
tween different addresses (function transfer), and change
ownership (function transferOwnership). Also, Figure 5
lists an excerpt from the ERC20 reference contract in Open-
Zeppelin [53]. PAX defines the method transferOwnership
that does not occur in ERC20 and the method mint in PAX
can revert if it is not called by the owner while its counter-
part in ERC20 can not. We consider PAX to be a refinement
of ERC20 because any sequence of non-reverted invocations
to methods of PAX that exist in both is admitted by ERC20
as well (when looking only at arguments and return values
as in the LTS interpretation). This extension of the notion
of refinement also allows that a contract is a refinement of
several reference contracts. For instance, PAX is also a re-
finement of the contract Ownable from the OpenZeppelin
library, which implements an ownership mechanism.

Definition 3.3. A contract C1 over interface Σ1 refines an-
other contract C2 over interface Σ2 when T (C1)|Σ

✓
2 ⊆ T (C2).

4A variation of a contract extracted from [64].

4 Behavioral Simulations
The standard methodology for proving refinement is based
on simulation relations, which are the analog of inductive
invariants in proofs of safety. Simulation relations enable an
induction scheme to prove inclusion of traces which gener-
ally can go forward, from initial states towards end states,
or backward, from end states towards initial states. While
both types of reasoning, forward or backward, are sound for
proving refinement, forward reasoning is easier to automate
while being complete for proving refinement of determin-
istic LTSs only [45]. Since smart contracts are most often
deterministic, we focus on forward reasoning in this work.
Let C1 = (Q1, Σ1, s

1
0,δ1) and C2 = (Q2, Σ2, s

2
0,δ2) be two

contracts. A simulation relation R relates states of C1 and
C2, respectively, in particular their initial states, such that
any transition of C1 from a state q (corresponding to a non-
reverted invocation) can be reproduced by C2 from a state
related by R to q (i.e., C2 has a transition with the same
label from the state related by R to q). The end states of the
two transitions in C1 and C2, respectively, must again be
related by R5. Formally, a relation6 R ⊆ Q1 ×Q2 is called a
(behavioral) simulation from C1 to C2 iff R(s10, s

2
0) and for all

s1, s
′
1 ∈ Q1, a ∈ Σ1, and s2 ∈ Q2,

s1
a
−→C1 s

′
1 ∧ R(s1, s2) =⇒ ∃s ′2 ∈ Q2. s2

a |Σ✓2
−−−−→C2 s

′
2 ∧ R(s ′1, s

′
2)

We adapted the standard definition of a simulation relation to
take into account the restriction to non-reverted invocations
and that Σ1 is not necessarily included in Σ2. Transitions
with labels that exist only in C1 should be mimicked by ϵ
(skip) transitions of C2.

Example 4.1. The relation Sim1
def
= #balances = balances

is a simulation relation from PAX in Figure 4 to ERC20 in Fig-
ure 5 (the field balances of PAX is prefixed by #). This holds
because in particular, executing a method of PAX which is
not defined by ERC20 does not affect balances.

The following statement follows from standard results
relating simulation relations and refinement [45].

Theorem 4.2. If there exists a simulation relation from a
contractC1 to a contractC2, thenC1 refinesC2. Moreover, ifC1
refinesC2 andC2 is deterministic, then there exists a simulation
relation from C1 to C2.

5This is a variation called forward simulation relation, which corresponds
to the forward reasoning mentioned above, from initial states towards end
states. In general, proving refinement may also require establishing the
existence of a backward simulation, which is similar but the preservation of
steps is defined in the reverse direction, i.e., for any transition of C1 leading
to a state q and any state q′ ofC2 related by R to q , there exists a transition
of C2 with the same label leading to q′ and starting from a state related by
R to the source state of C1’s transition.
6For readability, we write binary relations as predicates, e.g., R(s1, s2) in-
stead of (s1, s2) ∈ R .

PLDI ’20, June 15–20, 2020, London, UK Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea

Theorem 4.2 reduces refinement proofs to synthesizing
simulation relations. The next section shows that a simula-
tion relation can be seen as a “separator” between two sets of
pairs of states (of the two contracts), analogous to an induc-
tive invariant being a separator between “safe” and “unsafe”
states. This enables a learning from examples approach for
computing simulation relation candidates.

5 Learning Simulations From Examples
We describe a learning procedure for simulation relations
which relies on a classification of pairs of states (of the two
contracts) as positive, included in every simulation, or nega-
tive, excluded from every simulation. This classification is
based on a notion of observational distinguishability between
states which holds when two states can be distinguished
by return values of read-only methods. We say that an in-
vocation labelm(®u) is read-only in a contract C when it is
enabled in every state, i.e., for any trace σ1 · σ2 ∈ T (C),
there exists v ∈ Vals such that σ1 · (m(®u) ⇒ v) · σ2 ∈ T (C),
and it does not enable other invocations, i.e., for any value
v ∈ Vals and trace σ1 · (m(®u) ⇒ v) · σ2 ∈ T (C), we have that
σ1 · σ2 ∈ T (C) as well. A method m is read-only in a con-
tract C when every invocation labelm(®u) is read-only. For
instance, the methods PendingReturns and HighestBid of
the contract RefAuction in Figure 1 are read-only, while
bid is not read-only.
Let C1 and C2 be two contracts over interfaces Σ1 and

Σ2, respectively. A methodm ∈ Meths(Σ1) ∩Meths(Σ2) is
called an observation method when it is read-only in both C1
and C2. Given a set of observation methods Obs, two states
s1 and s2 of C1 and C2, respectively, are (observationally)
distinguishable w.r.t. Obs, denoted by s1 ▷◁Obs s2, if

∃m ∈ Obs, ®u ∈ Vals∗,v ∈ Vals.

s1
m(®u)⇒v
−−−−−−−→C1 s1 ∧ ¬s2

m(®u)⇒v
−−−−−−−→C2 s2

Wewill omit the set of methodsObs from the notations when
they are not important or understood from the context.

Example 5.1. PendingReturns and HighestBid in Figure 1
are observation methods for the pair of contracts Auction
and RefAuction. The pair of states in Equation 4 are distin-
guishable with respect to these two observation methods
(HighestBid in particular).

The following result shows that any pair of distinguishable
states is excluded from any simulation. It follows from an
instantiation of the definition of a simulation on transitions
corresponding to observation method invocations.

Lemma 5.2. Let C1 and C2 be two contracts and Obs a set of
observation methods. For any simulation R from C1 to C2,

s1 ▷◁Obs s2 =⇒ ¬R(s1, s2)

We define two relations P and N over states of C1 and C2
representing positive and negative examples for simulation

relations, respectively:

P(s1, s2) : ∃σ ∈ (Σ✓2)
∗. s10

σ
−→C1 s1 ∧ s20

σ
−→C2 s2

N (s1, s2) : ∃s ′1, s ′2, ∃σ ∈ (Σ✓2)
∗. s1

σ
−→C1 s

′
1

∧ s2
σ
−→C2 s

′
2 ∧ s ′1 ▷◁ s

′
2

where s10 and s
2
0 are the initial states ofC1 andC2, respectively.

This classification is sound under the assumption that C2 is
deterministic. For negative examples, assuming by contra-
diction that (s1, s2) ∈ N is included in a simulation relation,
the state s ′2 reached by C2 when mimicking some sequence
of invocations σ of C1 should “simulate” the corresponding
state s ′1 ofC1. However, this cannot be the case since the two
states are distinguishable (by Lemma 5.2).

Theorem 5.3. For any simulation relation R from a contract
C1 to a deterministic contract C2, we have that:

P ⊆ R ⊆ ¬N .

Example 5.4. Positive and negative examples for the pair
of contracts Auction and RefAuction (listed in Figure 1) are
given in Equation 3 and Equation 4, respectively.

The reverse of Theorem 5.3 does not hold, i.e., there exist
relationsR that separate P fromN and that are not simulation
relations. For instance, if the set of observation methodsObs
is empty, then N is also empty. However, not every superset
of P satisfies the inductiveness requirement of a simulation
relation. This is similar to the fact that not every superset
of the reachable set of states in a program is an inductive
invariant. This source of incompleteness can be removed by
adapting the approach used in the ICE framework [27] for
inductive invariant synthesis.
Theorem 5.3 implies that there exists no simulation rela-

tion when the set of positive and negative examples intersect.

Corollary 5.5. If P ∩ N , ∅, then there exists no simulation
from C1 to C2, provided that C2 is deterministic.

For deterministic contracts where the return value of an
invocation in a given state is unique, positive and negative
examples can be represented precisely using invocation se-
quences. This enables a procedure for enumerating such ex-
amples which consists in enumerating (pairs of) invocation
sequences and which is oblivious to state representations.
A contract C is return-value deterministic if it is deter-

ministic and for any methodm, arguments ®u, and admitted
trace σ ∈ T (C), there is a single labelm(®u) ⇒ v such that
σ · (m(®u) ⇒ v) ∈ T (C). Determinism does not imply unique-
ness of return values. For instance, an extension of Auction
(Figure 1) with a read-only method foo that returns a ran-
dom value, computed using block.difficulty for instance,
remains deterministic. The following result shows that states
of return-value deterministic contracts can be represented
precisely using invocation sequences.

Behavioral Simulation for Smart Contracts PLDI ’20, June 15–20, 2020, London, UK

Lemma 5.6. For any return-value deterministic contract C ,
the following holds:

∀s, s ′. s0 σ
−→ s ∧ s0

σ ′

−−→ s ′ ∧ inv(σ) = inv(σ ′) =⇒ s = s ′

Based on Lemma 5.6, each positive example can be rep-
resented by a single invocation sequence (the pair of states
being reproducible by running this sequence of invocations
in both contracts) and each negative example can be repre-
sented by two invocation sequences, each sequence repre-
senting a state in one of the two contracts. Also, checking
that a pair of states is a negative example reduces to checking
whether by running the same (possibly-empty) sequence of
invocations on the two states, irrespectively of the return
values, leads to two states which are distinguishable. This is
sound under the return-value determinism assumption.
The classification of simulation examples we presented

above makes it possible to leverage off-the-shelf learning
algorithms that compute formulas that are satisfied by pos-
itive examples and falsified by negative ones, e.g., [27, 28,
54, 57, 59], up to a bounded enumeration of such examples.
The problem of checking whether such a formula is a valid
simulation relation is discussed in the next section.

6 Verifying Simulations
We reduce the problem of verifying that a simulation can-
didate is valid to checking that it is an inductive invariant
for a composition of contracts, which is formalized using a
slight variation of the standard product construction for their
LTS interpretations. Therefore, the product C1 ×C2 of two
contracts is defined as follows: the states are pairs of states
of C1 and C2, respectively, and a state (s1, s2) can perform a
transition labeled by a ∈ Σ✓1 to one of the following states:

• (s ′1, s
′
2) if s1 and s2 can perform a transition labeled by

a to s ′1 and s
′
2, respectively

• (s ′1, s2) if a < Σ
✓
2 and s1 can perform a transition labeled

by a to s ′1, and
• a fail state if a ∈ Σ✓2 and only s1 can perform an a
transition.

The second case is required for simulation relations towards
reference contracts that have a smaller interface while the
last case makes it possible to detect invalid simulation candi-
dates. Note also thatC1×C2 excludes transitions correspond-
ing to reverted invocations of C1. An inductive invariant for
a contract C = (Q, Σ, s0,δ) is a set of states I such that (1)
s0 ∈ I and (2) if s ∈ I and s

a
−→ s ′, for some symbol a, then

s ′ ∈ I . The following theorem shows that any inductive in-
variant of the product (that does not contain the fail state)
is also a simulation relation. The reverse holds when C2 is
deterministic.

Theorem 6.1. LetC1 andC2 be two contracts. If R is an induc-
tive invariant forC1×C2 such that < R, then R is simulation

contract A {

...

function foo(uint x) public view returns (uint) { require(x>42); ... }

function bar() public view returns (uint) { ... }

}

contract B {

...

function foo(uint x) public view returns (uint) { ... }

}

contract AxB is A, B {

...

function sync_foo(uint x) public {

r0 = A.foo(x);

r1 = B.foo(x);

require(r0 != ⊥);

assert (r0 == r1);

}

function sync_bar() public {

A.bar();

}

}

Figure 6. A contract AxB representing the product of the
LTS interpretations of two contracts A and B.

from C1 to C2. Moreover, if C2 is deterministic and R is a sim-
ulation from C1 to C2, then R is an inductive invariant for
C1 ×C2 and < R.

In the following, we discuss a concrete instantiation of the
results above that relies on source code instead of LTS inter-
pretations. The most important point is defining a contract
that represents the product of the LTS interpretations of two
contracts. As hinted in Section 2.3.2, such a contract can be
defined using the inheritance mechanism of Solidity. The
more subtle issues are related to enforcing transitions with
the same label, since the label includes an invocation and
a return value, and dealing with reverted invocations and
methods that are defined in only one of the two contracts.
We explain these issues using the contracts A and B in

Figure 6, where B is intended to simulate A (their fields are
omitted). The method foo is defined in both contracts, but
A’s version contains a require that may revert certain invo-
cations, while the method bar is defined only in contract A.
Note that methods defined only in B can be ignored while
checking whether it simulates another contract.
The contract AxB is used to represent the product of the

LTS interpretations of A and B. Since foo is defined in both
contracts, the method sync_foo represents synchronous in-
vocations of foo in A and B while also ensuring equality of
return values, unless foo fails in A. Transitions of the prod-
uct corresponding to bar invocations are represented using
the method sync_bar. If AxB verifies the assertion, then its
LTS interpretation restricted to invocations of sync_foo and
sync_bar is the product of the LTS interpretations of A and
B. Note that AxB can fail the assertion although B is deter-
ministic and it simulates A. This is possible when A is not
return-value deterministic, e.g., foo can return two values
in both A and B when executed from the initial state.

PLDI ’20, June 15–20, 2020, London, UK Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea

By Theorem 6.1, if a relation R between states of A and B
is an inductive invariant of AxB restricted to sync_foo and
sync_bar (it holds before and after every invocation) and
AxB verifies the assertion, then R is simulation from A to B.

Remark 6.1. This construction can be extended to handle
certain specificities of Solidity. For instance, to deal with
payable functions like bid in the auction contracts from Fig-
ure 1, it is sufficient to introduce a ghost variable in the refer-
ence contract that tracks the value of the balance (i.e., adding
the amount in msg.value). Then, a simulation relation re-
lates this ghost variable and the balance of the simulated
contract instead of the two balances. Also, to establish the
fact that a reference contract invocation makes the same
“external ” calls (to Solidity primitives like send or to other
contracts) as the invocation of the contract it simulates (see
Remark 3.1) we rely on auxiliary variables that record the
sequence of calls with their arguments in each of the two
invocations. We then assert the equality between these aux-
iliary variables and assume that these calls have the same
return values. This models the fact that the two contracts
refine one another when placed in the same context where
the environment produces the same responses.

7 Implementation
In this section we describe an implementation of our method-
ology for Solidity smart contracts. Our implementation con-
sists of four main components: an example generator, an
example-guided synthesizer, a blockchain oracle, and a deduc-
tive verifier. As input, our implementation requires a pair
of Solidity smart contracts with overlapping function signa-
tures, and parameters to limit example generation, including
the sets of values to use for transaction parameters, and the
number of contract states to explore.
Given these inputs, the example generator provides the

synthesizer with positive and negative examples, where each
example corresponds to a pair of contract states. In turn,
the synthesizer provides the verifier with a candidate sim-
ulation relation separating positive and negative examples.
Since examples correspond to contract states on an Ethereum
blockchain, the synthesizer relies on an oracle to evaluate
expressions on examples. Finally, the verifier validates can-
didate simulation relations.

While this simple scheme sufficed for our empirical study,
in principle, the selection of input parameters could be auto-
mated in a refinement loop from spurious verifier counterex-
amples, i.e., following counterexample guided inductive syn-
thesis [61]. Furthermore, although we assume the annotated
contract against which the given unannotated contract is
compared is identified a priori, in principle this identification
might be performed, e.g., via machine learning classifiers.

7.1 Example Generation
Our example generator executes transaction sequences on
the Ganache [26] personal blockchain for Ethereum using
the Web3 Ethereum JavaScript API [71] and Solidity com-
piler [63]. Given limits transaction parameters, e.g., small
sets of integer and address values, the example generator
systematically explores every transaction sequence in lex-
icographic order up to the given threshold on the number
of contract states. For each state we record as observations
the return values for each read-only (view) function over the
given parameter limits. In case the states reached in some
transaction sequence yield different observations, we return
the transaction sequence and observations as a counterexam-
ple refuting simulation. Otherwise, the example generator
yields positive and negative examples according to Section 5.

Two notable issues that the example generator must over-
come are potential nondeterminism, e.g., due to account
creation and transaction block mining, and controlling trans-
action parameters, e.g., the message sender parameter. While
the former can be managed via parameters to Ganache, the
latter required instantiating auxiliary contracts at various
addresses to invoke target functions - effectively setting the
sender to the auxiliary contract’s address.

7.2 Synthesis
Our synthesizer component extends the Precondition Infer-
ence Engine (PIE) [54], a tool which learns a set of features,
i.e., atomic predicates, (and a Boolean combination of these
features) separating positive and negative examples by enu-
merating candidate features of increasing complexity. We
extend PIE along two principle axes. First, we extend its
grammar to include types and operations to handle Solidity
language features like addresses, arrays, and maps. Second,
instead of concrete examples on which to evaluate candidate
features, we make examples symbolic, and delegate evalua-
tion of features on examples to a blockchain oracle.

As an optimization we provide the synthesizer with a set
of seed features generated from the given pair of contracts. In-
tuitively, the seed features correspond to equalities between
terms over the respective contracts’ fields that are likely to
hold. For instance, when contracts each have a read-only
(view) function f which evaluates terms t1 and t2, respec-
tively, we generate the equality t1 = t2. While this is not
generally feasible for view functions with complex control
flow, it is useful in practice, since many view functions have
simple bodies, e.g., a single return statement.

7.3 Verification
Our verifier consists of the reduction from simulation check-
ing to deductive verification, described in Section 6, along
with the solc-verify verifier [36], which in turn reduces Solid-
ity contract verification to Boogie verification (and ultimately

Behavioral Simulation for Smart Contracts PLDI ’20, June 15–20, 2020, London, UK

Contract Source Variations

Auction Ethereum 3
CrowdSale (token offering) OpenZepplin 3
ERC 20 (token) OpenZepplin 5
ERC 165 (interface detection) OpenZepplin 4
ERC 721 (non-fungible token) OpenZepplin 3
Escrow (payment) OpenZepplin 3
Gambling dice2.win 1
LifeCycle (life cycle) OpenZepplin 5
Lottery Etherscan 1
MultiSigWallet ConsenSys 1
Ownable (ownership) OpenZepplin 5
Roles (access control) OpenZepplin 5
Voting Etherscan 2

Total 41

Figure 7. Collection of smart contracts.

SMT solving). We have contributed only GitHub issues and
feature requests to solc-verify.
Besides the nuances described in Section 6 relating to ef-

fects on global state, e.g., balances, verifying the simulation-
checking contract with solc-verify involved one key nuance
regarding modular verification. In particular, while invoca-
tions to the annotated reference contract can be verified
modularly, i.e., using only its pre- and post-conditions, invo-
cations to the unannotated contract are verified inline, i.e., ex-
plicitly reasoning about the statements in its implementation.
Besides helping to virtualize potentially-conflicting global
effects between the two invocations, such modularity gener-
ally improves tractability.

8 Case Study of Solidity Smart Contracts
In this section we outline our case study of Solidity smart
contracts, including collection methodology, a partial taxon-
omy, and an analysis of syntactic similarities. Our starting
points for sourcing canonical contracts included the Solidity
documentation [63], the Etherscan block explorer and ana-
lytics platform [22], the State of the DApps curated directory
for decentralized applications [52], and the OpenZepplin
contracts library [53].
A first observation is that a vast number of contracts on

the, e.g., Ethereum blockchain are variations on a relatively-
small number of canonical contacts like those listed in the
first column in Figure 7. We found that more than half of the
47 398 contracts extracted from the Ethereum blockchain and
studied in [21], which cover each of the eighteen Ethereum
application categories from State of the DApps, contain key-
words associated with these canonical contracts. This finding
seems consistent with common practice, since standardiza-
tion mechanisms such as Ethereum Request for Comment
(ERC) are widely used.

In order to use these canonical contracts as targets for our
verification methodology, we manually annotated them with

full functional specifications, and verified the annotations
with solc-verify [36].

To source contract variations, we collected contracts from
Etherscan, as well as popular Blockchain platforms includ-
ing Moloch Ventures [70], 0xcert [7], Sirin Labs [60], Bit
Nation [16], and Crypto Kitties [20]. Overall we collected a
set of 43 unannotated contracts, 41 of these contracts are cat-
egorized in Figure 7 based on which canonical contract they
implement. The remaining two contracts are referred to as
multi-contracts as they simultaneously implement multiple
canonical contracts. The collected contracts can be found at
[14].
Finally, to assess the need for the automated synthesis

procedure described in Section 5, we considered weaker syn-
tactic approaches with varying degrees of sophistication. For
example, simply considering the conjunction of equalities
between fields with the same names could work for simple
single-field contracts, like ownership. In case contracts re-
named fields, some field-name similarity heuristic would be
required. For contracts with multiple fields, more sophisti-
cated field-matching heuristics would be required, and so on.
Then there are contracts whose simulation involves arith-
metic expressions, further complicating heuristics. While the
current generation of smart contracts we’ve studied are rela-
tively simple, future generations could render such heuristics
fairly useless. As noted in Section 11, our approach is rela-
tively complete, and, as demonstrated in Section 9, capable
of synthesizing simulations for many non-trivial contracts.

9 Experimental Evaluation
In this section we outline an empirical study of our auto-
mated verification approach applied to the Solidity smart
contracts described in Section 8 using the implementation
described in Section 7. We are able to run our tool on all con-
tracts from Figure 7 except MultiSigWallet and Gambling,
which require generating non-primitive transaction param-
eters, including addresses of deployed token contracts and
components of cryptographic signatures.
The overview of Figure 8 summarizes our results, listing

the generated simulation relations (omitting atomic terms)
and verification outcomes. Each row, labeled c × n corre-
sponds to n unannotated contracts compared against one
canonical annotated contract c , e.g., auction × 3 corresponds
to 3 distinct unannotated auction contracts compared with
one canonical auction contract. (The rows labeled multi-i × 3
are exceptions; in these cases we consider one unannotated
contract compared against 3 distinct canonical contracts,
corresponding to cases of multiple inheritance/interfaces.)
In all but 3 cases we are able to generate plausible candidate
simulation relations, and in all but 3 cases we are able to
verify these relations – see Section 9.1.

In the "simulation relations" column, we list the learned
simulation relations in prefix notation, omitting atomic terms,

PLDI ’20, June 15–20, 2020, London, UK Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea

i.e., contract fields and constants. In the verified column, we
list the number of canonical-and-unannotated-contract pairs
for which a candidate simulation relation was:

• computed and verified, e.g., T × 3 in the auction row
indicates success for 3 contract pairs;

• computed but not verified, e.g., F × 1 in the crowd-
sale row indicates a candidate simulation relation our
implementation did not verify; and

• not computed, e.g., ⊥ × 2 in the erc20 row indicates 2
pairs for which our implementation did not compute
plausible candidate relations.

Our approach synthesizes simulation relations which are
notably simpler than the inductive invariants which would
be required to verify the functional properties of unannotated
contracts by other means. For example, the inductive invari-
ants for typical auction contracts would require disjunctions
over auction phases, e.g., active vs. completed, while simula-
tion relations between typical auction contracts need only
conjunctions of equalities (see Figure 8). Previous works on
relational verification make the same observation [13, 23].

For each phase we summarize runtimes, in seconds. Distri-
butions with mean µ, standard deviation σ , and population
count n are represented as µ ± σ : k , where σ is omitted
when 0, and k is omitted when equal to the subject count n
of the row labeled c × n. Among the three phases, synthesis
generally takes much longer, e.g., minutes, than example
generation, e.g., seconds, and verification, e.g., one second.

9.1 Cases Where Simulation Was Not Proved
Our implementation only failed to compute candidate simu-
lation relations in 3 cases. However, each failure is due to the
discovery of genuine counterexamples to simulation (and
refinement). Counterexamples arise in 2 out of 5 ERC-20
variations and in the multi-1 contract which simultaneously
implements three canonical contracts: ERC-20, Ownable, and
Pausable.
The first counterexample arises due to the transferFrom

function of ERC-20. The canonical contract subtracts the
transferred amount from the sender balance before adding
it to the receiver balance, reverting when the subtraction
underflows, while the variation contract does the reverse.
Thus after executing the following transactions:

a1: approve(a2, 2); a2: transferFrom(a1, a1, 2)

the function allowance(a1, a2) returns 2 in the first case,
since a2’s allowance has not decreased, but 0 in the second.
Since the transferFrom function is present in the ERC-20
token standard [6] this counterexample corresponds to a
vulnerability of the unannotated contract.

The remaining two cases arise from ERC-20’s decreaseAl-
lowance function. While the canonical contract reverts the
transaction if the requested decrease is greater than the
current allowance, the variation contract simply sets the

allowance to zero without reverting the transaction. Thus
after executing the following transactions:

a1: increaseAllowance(a2, 1)
a1: decreaseAllowance(a2, 2)

the function allowance(a1, a2) returns 1 in the first case, but
0 in the second. Note that the decreaseAllowance function
is not present in the ERC-20 token standard but only in the
OpenZeppelin implementation that we use as the canonical
ERC-20 contract.
Our implementation is limited since it does not automat-

ically generate loop and contract invariants for verifying
candidate simulation relations. Generally speaking, loop in-
variants on otherwise-unannotated contracts are necessary
for methods with loops; contract invariants can be required
in cases where the unannotated-contract state invariants
are not implied by the combination of canonical-contract
state invariants (which are given) and candidate simulation
relations (which are computed by our synthesizer). While
our experiments never required loop invariants, contract
invariants were required in one case, to characterize fields
of the unannotated contracts which have no direct corre-
spondence to canonical-contract fields. In particular, one
of whitelisted’s unannotated contracts maintains a length
field equal to the number of elements in an array; the corre-
sponding canonical contract has no such length field. Such
relationships hold equally in all positive and negative exam-
ples since examples only include reachable contract states.
In contrast, invariant-generation for individual contracts
would distinguish a contract’s reachable and unreachable
states. We consider generating contract and loop invariants
orthogonal to simulation relations, and standard techniques
exist [55].

9.2 Example Generation Phase
For the example generation phase we count blockchain trans-
actions executed, transaction sequences (traces), states en-
countered, and positive and negative examples. Our imple-
mentation usually learns simulation relations from a rela-
tively small set of examples: 100 examples usually suffice,
up to 450 in the worst cases. Another observation is that
the total number of positive and negative examples is sev-
eral times the number of explored states. This happens be-
cause negative examples arise not only from observationally-
inequivalent states encountered among the executed transac-
tion sequences, but also inductively from prefixes of longer
negative examples – see Lemma 5.6. The 3 cases where no
examples were generated correspond to genuine counterex-
amples to simulation.

9.3 Synthesis Phase
For the synthesis phase we count the fields and seed fea-
tures given to the synthesizer, non-atomic terms in the gen-
erated simulation relation, and the number of queries to

Behavioral Simulation for Smart Contracts PLDI ’20, June 15–20, 2020, London, UK

Overview
contracts simulation relations verified

auction × 3 (∧(∧(∧(∧(∧(=)(=))(=))(=))(=))(= (+)))×3 T×3
crowdsale × 3 (∧(∧(∧(∧(=)(=))(=))(=))(=))×3 F×1, T×2
erc165 × 4 (=)×4 T×4
erc20 × 5 (∧(=)(=))×3 T×3, ⊥×2
erc721 × 3 (∧(∧(∧(=)(=))(=))(=))×3 T×3
escrow × 3 (∧(=)(=))×3 T×3
finalizable × 2 (∧(=)(=))×2 T×2
lottery × 1 (∧(=)(=))×1 F×1
multi-1 × 3 (∧(=)(=))×1, (=)×1 T×2, ⊥×1
multi-2 × 3 (∧(=)(=))×2, (=)×1 T×3
ownable × 4 (=)×4 T×4
pausable × 3 (∧(=)(=))×3 T×3
signer-role × 2 (=)×2 T×2
voting × 2 (∧(=)(=))×2 T×2
whitelisted × 3 (∧(=)(=))×3 F×1, T×2

Example Generation
contracts transactions traces states positive negative time

auction × 3 174 47 78 47 370 33±1.6
crowdsale × 3 99.3±11.5 25 34 12.7±8.1 330 20±1
erc165 × 4 26 7 10 7 36 5.7±0.1
erc20 × 5 287.6±391.3 21±3.5: 3 38±6.9: 3 12.6±11.8 60±54.8 52.5±59.3
erc721 × 3 154 39 74 31.7±12.7 100 121.6±1.1
escrow × 3 76 19 34 19 100 10.2±0.1
finalizable × 2 28 7 10 6 28 4.4±0.1
lottery × 1 176 33 62 33 370 20.7
multi-1 × 3 212±322.2 7: 2 10: 2 3±2.6 14±14 53±66.2
multi-2 × 3 50±41.6 13±10.4 22±20.8 11±12.2 47.3±46.1 24.8±19.6
ownable × 4 26 7 10 5 28 5±0.1
pausable × 3 26 7 10 4 14 4.5±0.1
signer-role × 2 26 7 10 5 30 6.6±0.1
voting × 2 34 11 10 11 84 13.1±0.9
whitelisted × 3 66±8 17±2 30±4 15±1 118±39 10.8±0.9

Synthesis
contracts fields seeds terms queries time

auction × 3 15 5 7 10914 2561.8±11.3
crowdsale × 3 12 4.7±0.6 5 659.3±556.6 345.3±135.7
erc165 × 4 4 1 1 43 20.3±0.1
erc20 × 5 7.6±1.3 1.8±0.4 2: 3 121±3.5: 3 69.2±4.1: 3
erc721 × 3 18 4 4 131.7±12.7 104.4±10
escrow × 3 6 1 2 299±1.7 72.5±0.3
finalizable × 2 4 1 2 92 19.4±0.2
lottery × 1 6 1 2 840 353.7
multi-1 × 3 15±1 1 1.5±0.7: 2 46.5±19.1: 2 26.7±2.1: 2
multi-2 × 3 13±1 1.3±0.6 1.7±0.6 74±46.8 44.5±35.5
ownable × 4 2 1 1 33 15.7±0.2
pausable × 3 4 1 2 54 13.6
signer-role × 2 2 0 1 70 21.3±0.1
voting × 2 6±2.8 0 2 4037.5±4635.1 324±303
whitelisted × 3 4.3±0.6 0.7±0.6 2 2114±3105.9 172.6±152.5

Verification
contracts lines of code verified fns. unverified time

auction × 3 481.3±11.6 11 0 1.9±0.1
crowdsale × 3 527.7±31.6 19.7±0.6 0.3±0.6 2.1±0.2: 2
erc165 × 4 115.3±15.9 3 0 0.8
erc20 × 5 431±124.7: 3 11.7±1.5: 3 0: 3 1.2: 3
erc721 × 3 684.7±7.1 10 0 1.3
escrow × 3 227.7±11 7 0 1.1±0.1
finalizable × 2 146.5±20.5 5 0 0.8
lottery × 1 224 - - -
multi-1 × 3 408±5.7: 2 5.5±0.7: 2 0: 2 1.2±0.2: 2
multi-2 × 3 582±46.9 6.7±2.1 0 1.1±0.1
ownable × 4 185.3±25.2 4.5±0.6 0 0.8
pausable × 3 206.3±3.2 5 0 0.8
signer-role × 2 159.5±2.1 6 0 0.9
voting × 2 167±9.9 5 0 0.9
whitelisted × 3 177±5.3 5.7±0.6 0.3±0.6 1±0.1: 2

Figure 8. Summary of results. Overview: generated simulation relations (atomic terms omitted) and verification outcomes;
Example Generation: counting blockchain transactions executed, transaction sequences (traces), states, and generated
examples; Synthesis: counting contract fields and seed features passed as input, non-atomic terms in generated simulations,
and blockchain-oracle queries; and Verification: counting lines of Solidity code, verified functions, and unverified functions.

the blockchain oracle for evaluating new features against
examples. Note that the seed features were automatically
generated as explained in Section 7.2. The primary factors to
overall runtime, which is roughly proportional to the num-
ber of oracle queries, are the number and sizes of generated
terms.
Despite similarities between varying canonical contract

refinements, a naive syntactic strategy of listing equalities,
i.e., that used to generate seed features, would not suffice
(cf. §8). In most cases, the synthesizer is forced to gener-
ate terms that are not seed features while enumerating a
relatively small number of candidates (column "queries").

9.4 Verification Phase
For the verification phase we count the lines of Solidity
code, verified functions, and unverified functions. While
verification succeeds in most cases, current limitations in
solc-verify yield a few failures. The first two cases were
caused by skipping and reporting parsing errors for functions
which have Solidity features that are not supported by the
tool. The last case requires establishing a contract invariant
(see §9.1), yet we do not currently apply invariant-generation

to individual contracts. Note that for the auction contract, the
function which allows previous highest bidders to reclaim
their bids invokes the Solidity send function to transfer ether.
Thus, to prove that this function preserves the candidate
simulation relation, we apply the technique described in
Remark 6.1 where we use shadow variables to record the
status of the invocations of send.

10 Related Work
Analysis of Smart Contracts. A number of systems have
been proposed for detecting vulnerabilities in smart con-
tracts. These systems are based on static analysis, e.g. [33, 40,
66, 69], symbolic execution engines, e.g. [37, 41, 44, 51, 67],
or dynamic analysis, e.g., [35]. The systems based on static
analysis are designed to expose certain coding patterns that
are prone to critical bugs and cannot establish full functional
correctness. In contrast, our work makes it possible to estab-
lish behavioral simulations towards verified contracts which
implies full functional correctness. The systems based on
symbolic execution or dynamic analysis are incomplete and
can only establish correctness for bounded executions.

PLDI ’20, June 15–20, 2020, London, UK Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea

Functional Verification of Smart Contracts. Several pre-
vious works have developed methodologies for proving full
functional correctness of smart contracts using theorem
provers like Coq, F*, and Isabelle/HOL, e.g., [9, 15, 34, 39, 58],
SMT solvers, e.g, [36, 42], or predicate abstraction [55]. These
works rely on user-provided functional specifications while
our work, by establishing behavioral simulations, makes it
possible to verify contracts for which such specifications do
not exist (as long as the simulations relate them with verified
contracts).
ComputingRefinementRelationsBetween Finite-State
Systems. The complexity of computing simulation relations
between finite-state systems has been addressed quite exten-
sively in the literature, e.g. [17, 18, 29, 30, 38, 56]. Some of
these works extend to infinite-state systems as long as they
have finite similarity quotient which intuitively, means that
they are simulated by a finite-state system. This is not the
case for smart contracts which store infinite-domain inputs
in their state, e.g., the auction bids of Figure 1.
Synthesizing “Small-Step” SimulationRelations.An es-
tablished approach for proving the validity of compiler opti-
mizations consists in synthesizing simulation relations from
source to optimized programs, e.g., [12, 31, 48–50, 68]. These
simulation relations concern traces of a small-step opera-
tional semantics of the two programs while our approach
computes behavioral simulations which relate programs in
terms of operation sequences, ignoring local memory and
control-flow. Moreover, the simulation relations are synthe-
sized at compile time during the construction of the opti-
mized program. A reduction of simulation relation synthe-
sis to solving a set of Horn clauses has been investigated
in [24, 25]. This reduction has been evaluated only for vali-
dating compiler optimizations and applying it to smart con-
tracts would require modeling Solidity semantics with Horn
clauses, which is non-trivial.
Learning-Based Synthesis of Preconditions or Induc-
tive Invariants. Learning from examples has been used to
synthesize preconditions or inductive invariants that imply a
user-provided specification, e.g, [27, 28, 54, 57, 59]. Our work
addresses the verification problem when such specifications
are lacking. The learning procedures defined in these works
are however re-usable in our context. Our implementation
leverages the one defined by Padhi et al. [54].

11 Conclusion
Towards verifying unannotated smart contracts against pre-
cise functional specifications, we have proposed a notion of
behavioral refinement, along with an automated simulation-
based proofmethodology. As noted in Section 5-6, ourmethod
is complete modulo three (unavoidable) sources of incom-
pleteness: deductive verification, simulation for proving trace
refinement, and learning from a bounded set of examples.

For verifying candidate simulation relations, our current
implementation assumes manually-provided loop invariants,
and, in some cases (see §9.1), contract invariants. Thismanual
effort could likely be automated for many contracts of inter-
est using standard invariant-generation techniques, e.g., [55].
Regardless, we consider the cost of any such manual effort to
be offset by a significant benefit: the inheritance of arbitrary
specifications established by the corresponding canonical
contract(s). This includes hyperproperties like noninterfer-
ence [32, 34, 65], because we use simulation relations instead
of arbitrary trace refinement relations. The incompleteness
due to simulation relations is thus also counterbalanced by
the preservation of a larger class of specifications.
In the future we might extend our approach along a few

dimensions. First, we might eliminate the need to provide
example-generation parameters, e.g., using verifier coun-
terexamples to drive example generation. Second, we might
automate the identification of canonical contracts against
which to consider refinements, e.g., using machine-learning
classifiers. Finally, we might relax compatibility require-
ments on function signatures, e.g., to allow simulation among
similar functions with varying parameter types.

Acknowledgments
This work is partly supported by the European Research
Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation program (grant agreement No 678177).

References
[1] 2016. theDAO. https://etherscan.io/address/

0xbb9bc244d798123fde783fcc1c72d3bb8c189413
[2] 2017. Blockchain is empowering the future of insurance.

https://techcrunch.com/2016/10/29/blockchain-is-empowering-
the-future-of-insurance/

[3] 2017. An In-Depth Look at the Parity Multisig Bug. http://
hackxingdistributed.com/2017/07/22/deep-dive-parity-bug

[4] 2017. Northern Trust uses blockchain for private equity record- keep-
ing. http://www.reuters.com/article/nthern-trust-ibm-blockchain-
idUSL1N1G61TX.

[5] 2017. Parity security alert. https://www.parity.io/security-alert-2/
[6] 2020. ERC-20 Token Standard. https://eips.ethereum.org/EIPS/eip-20
[7] 0xcert. 2019. https://github.com/0xcert
[8] Rajeev Alur, Pavol Cerný, and Steve Zdancewic. 2006. Preserving

Secrecy Under Refinement. In Automata, Languages and Programming,
33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14,
2006, Proceedings, Part II (Lecture Notes in Computer Science), Michele
Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener (Eds.),
Vol. 4052. Springer, 107–118. https://doi.org/10.1007/11787006_10

[9] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018.
Towards verifying ethereum smart contract bytecode in Isabelle/HOL.
In Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January
8-9, 2018, June Andronick and Amy P. Felty (Eds.). ACM, 66–77. https:
//doi.org/10.1145/3167084

[10] Hagit Attiya and Constantin Enea. 2019. Putting Strong Lineariz-
ability in Context: Preserving Hyperproperties in Programsthat Use
Concurrent Objects. In 33rd International Symposium on Distributed
Computing, DISC 2019, October 14-18, 2019, Budapest, Hungary (LIPIcs),

https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://techcrunch.com/2016/10/29/blockchain- is- empowering- the- future- of- insurance/
https://techcrunch.com/2016/10/29/blockchain- is- empowering- the- future- of- insurance/
http://hackxingdistributed.com/2017/07/22/deep-dive-parity-bug
http://hackxingdistributed.com/2017/07/22/deep-dive-parity-bug
http://www.reuters.com/article/ nthern- trust- ibm- blockchain- idUSL1N1G61TX.
http://www.reuters.com/article/ nthern- trust- ibm- blockchain- idUSL1N1G61TX.
https://www.parity.io/security-alert-2/
https://eips.ethereum.org/EIPS/eip-20
https://github.com/0xcert
https://doi.org/10.1007/11787006_10
https://doi.org/10.1145/3167084
https://doi.org/10.1145/3167084

Behavioral Simulation for Smart Contracts PLDI ’20, June 15–20, 2020, London, UK

Jukka Suomela (Ed.), Vol. 146. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2:1–2:17. https://doi.org/10.4230/LIPIcs.DISC.2019.2

[11] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier
for Object-Oriented Programs. In Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amsterdam, The
Netherlands, November 1-4, 2005, Revised Lectures (Lecture Notes in
Computer Science), Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem P. de Roever (Eds.), Vol. 4111. Springer, 364–387.
https://doi.org/10.1007/11804192_17

[12] Clark W. Barrett, Yi Fang, Benjamin Goldberg, Ying Hu, Amir Pnueli,
and Lenore D. Zuck. 2005. TVOC: A Translation Validator for
Optimizing Compilers. In Computer Aided Verification, 17th Inter-
national Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10,
2005, Proceedings (Lecture Notes in Computer Science), Kousha Etes-
sami and Sriram K. Rajamani (Eds.), Vol. 3576. Springer, 291–295.
https://doi.org/10.1007/11513988_29

[13] Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational
Verification Using Product Programs. In FM 2011: Formal Methods - 17th
International Symposium on Formal Methods, Limerick, Ireland, June
20-24, 2011. Proceedings (Lecture Notes in Computer Science), Michael J.
Butler and Wolfram Schulte (Eds.), Vol. 6664. Springer, 200–214. https:
//doi.org/10.1007/978-3-642-21437-0_17

[14] Smart Contracts Benchmark. 2019. https://github.com/beillahi/smart-
contract-simulation-data

[15] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kula-
tova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santi-
ago Zanella Béguelin. 2016. Formal Verification of Smart Contracts:
Short Paper. In Proceedings of the 2016 ACMWorkshop on Programming
Languages and Analysis for Security, PLAS@CCS 2016, Vienna, Austria,
October 24, 2016, Toby C. Murray and Deian Stefan (Eds.). ACM, 91–96.
https://doi.org/10.1145/2993600.2993611

[16] BitNation. 2019. https://github.com/Bit-Nation
[17] Doron Bustan and Orna Grumberg. 2003. Simulation-based mini-

mazation. ACM Trans. Comput. Log. 4, 2 (2003), 181–206. https:
//doi.org/10.1145/635499.635502

[18] Gérard Cécé. 2017. Foundation for a series of efficient simulation
algorithms. In 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer
Society, 1–12. https://doi.org/10.1109/LICS.2017.8005069

[19] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties.
Journal of Computer Security 18, 6 (2010), 1157–1210. https://doi.org/
10.3233/JCS-2009-0393

[20] Awesome CryptoKitties. 2019. https://github.com/cryptocopycats
[21] Thomas Durieux, Joao F. Ferreira, Rui Abreu, and Pedro Cruz. 2020.

Empirical Review of Automated Analysis Tools on 47,587 Ethereum
Smart Contracts. In International Conference on Software Engineering
(ICSE 2020).

[22] Etherscan. 2019. https://etherscan.io Retrieved November 19th, 2019.
[23] Azadeh Farzan and Anthony Vandikas. 2019. Automated Hypersafety

Verification. In Computer Aided Verification - 31st International Confer-
ence, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I (Lecture Notes in Computer Science), Isil Dillig and Serdar Tasiran
(Eds.), Vol. 11561. Springer, 200–218. https://doi.org/10.1007/978-3-
030-25540-4_11

[24] Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. 2015.
Automated Discovery of Simulation Between Programs. In Logic for
Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings
(Lecture Notes in Computer Science), Martin Davis, Ansgar Fehnker,
Annabelle McIver, and Andrei Voronkov (Eds.), Vol. 9450. Springer,
606–621. https://doi.org/10.1007/978-3-662-48899-7_42

[25] Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina. 2016.
Property Directed Equivalence via Abstract Simulation. In Computer

Aided Verification - 28th International Conference, CAV 2016, Toronto,
ON, Canada, July 17-23, 2016, Proceedings, Part II (Lecture Notes in Com-
puter Science), Swarat Chaudhuri and Azadeh Farzan (Eds.), Vol. 9780.
Springer, 433–453. https://doi.org/10.1007/978-3-319-41540-6_24

[26] Ganache. 2019. https://www.trufflesuite.com/docs/ganache/overview
[27] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider.

2014. ICE: A Robust Framework for Learning Invariants. In Computer
Aided Verification - 26th International Conference, CAV 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July
18-22, 2014. Proceedings (Lecture Notes in Computer Science), Armin
Biere and Roderick Bloem (Eds.), Vol. 8559. Springer, 69–87. https:
//doi.org/10.1007/978-3-319-08867-9_5

[28] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016.
Learning invariants using decision trees and implication counterexam-
ples. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, Rastislav Bodík and Rupak Majumdar
(Eds.). ACM, 499–512. https://doi.org/10.1145/2837614.2837664

[29] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. 2003. From
Bisimulation to Simulation: Coarsest Partition Problems. J. Autom. Rea-
soning 31, 1 (2003), 73–103. https://doi.org/10.1023/A:1027328830731

[30] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. 2015. Rank
and simulation: the well-founded case. J. Log. Comput. 25, 6 (2015),
1331–1349. https://doi.org/10.1093/logcom/ext066

[31] Rigel Gjomemo, Kedar S. Namjoshi, Phu H. Phung, V. N. Venkatakr-
ishnan, and Lenore D. Zuck. 2015. From Verification to Optimizations.
In Verification, Model Checking, and Abstract Interpretation - 16th In-
ternational Conference, VMCAI 2015, Mumbai, India, January 12-14,
2015. Proceedings (Lecture Notes in Computer Science), Deepak D’Souza,
Akash Lal, and Kim Guldstrand Larsen (Eds.), Vol. 8931. Springer,
300–317. https://doi.org/10.1007/978-3-662-46081-8_17

[32] Joseph A. Goguen and José Meseguer. 1982. Security Policies and
Security Models. In 1982 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, April 26-28, 1982. IEEE Computer Society, 11–20.
https://doi.org/10.1109/SP.1982.10014

[33] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. 2018. MadMax: surviving out-of-gas
conditions in Ethereum smart contracts. PACMPL 2, OOPSLA (2018),
116:1–116:27. https://doi.org/10.1145/3276486

[34] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A
Semantic Framework for the Security Analysis of Ethereum Smart
Contracts. In Principles of Security and Trust - 7th International Con-
ference, POST 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings (Lecture Notes in Computer Science),
Lujo Bauer and Ralf Küsters (Eds.), Vol. 10804. Springer, 243–269.
https://doi.org/10.1007/978-3-319-89722-6_10

[35] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky,
Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online detection
of effectively callback free objects with applications to smart contracts.
PACMPL 2, POPL (2018), 48:1–48:28. https://doi.org/10.1145/3158136

[36] Ákos Hajdu and Dejan Jovanovic. 2019. solc-verify: A Modular
Verifier for Solidity Smart Contracts. CoRR abs/1907.04262 (2019).
arXiv:1907.04262 http://arxiv.org/abs/1907.04262

[37] Jingxuan He, Mislav Balunovic, Nodar Ambroladze, Petar Tsankov,
and Martin T. Vechev. 2019. Learning to Fuzz from Symbolic Execution
with Application to Smart Contracts. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 531–548.
https://doi.org/10.1145/3319535.3363230

[38] Monika Rauch Henzinger, Thomas A. Henzinger, and Peter W. Kopke.
1995. Computing Simulations on Finite and Infinite Graphs. In 36th
Annual Symposium on Foundations of Computer Science, Milwaukee,

https://doi.org/10.4230/LIPIcs.DISC.2019.2
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11513988_29
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-642-21437-0_17
https://github.com/beillahi/smart-contract-simulation-data
https://github.com/beillahi/smart-contract-simulation-data
https://doi.org/10.1145/2993600.2993611
https://github.com/Bit-Nation
https://doi.org/10.1145/635499.635502
https://doi.org/10.1145/635499.635502
https://doi.org/10.1109/LICS.2017.8005069
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.3233/JCS-2009-0393
https://github.com/cryptocopycats
https://etherscan.io
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1007/978-3-662-48899-7_42
https://doi.org/10.1007/978-3-319-41540-6_24
https://www.trufflesuite.com/docs/ganache/overview
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1023/A:1027328830731
https://doi.org/10.1093/logcom/ext066
https://doi.org/10.1007/978-3-662-46081-8_17
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3276486
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1145/3158136
http://arxiv.org/abs/1907.04262
http://arxiv.org/abs/1907.04262
https://doi.org/10.1145/3319535.3363230

PLDI ’20, June 15–20, 2020, London, UK Sidi Mohamed Beillahi, Gabriela Ciocarlie, Michael Emmi, and Constantin Enea

Wisconsin, USA, 23-25 October 1995. IEEE Computer Society, 453–462.
https://doi.org/10.1109/SFCS.1995.492576

[39] Yoichi Hirai. 2017. Defining the Ethereum Virtual Machine for Interac-
tive Theorem Provers. In Financial Cryptography and Data Security - FC
2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and
TA, Sliema, Malta, April 7, 2017, Revised Selected Papers (Lecture Notes in
Computer Science), Michael Brenner, Kurt Rohloff, Joseph Bonneau, An-
drewMiller, Peter Y. A. Ryan, Vanessa Teague, Andrea Bracciali, Massi-
miliano Sala, Federico Pintore, andMarkus Jakobsson (Eds.), Vol. 10323.
Springer, 520–535. https://doi.org/10.1007/978-3-319-70278-0_33

[40] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018.
ZEUS: Analyzing Safety of Smart Contracts. In 25th Annual Net-
work and Distributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018. The Internet Soci-
ety. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/
25/2018/02/ndss2018_09-1_Kalra_paper.pdf

[41] Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at
Ethereum to Automatically Exploit Smart Contracts. In 27th USENIX
Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018, William Enck and Adrienne Porter Felt (Eds.).
USENIX Association, 1317–1333. https://www.usenix.org/conference/
usenixsecurity18/presentation/krupp

[42] Shuvendu K. Lahiri, Shuo Chen, Yuepeng Wang, and Isil Dillig. 2018.
Formal Specification and Verification of Smart Contracts for Azure
Blockchain. CoRR abs/1812.08829 (2018). arXiv:1812.08829 http:
//arxiv.org/abs/1812.08829

[43] Barbara Liskov and Jeannette M. Wing. 1994. A Behavioral Notion of
Subtyping. ACM Trans. Program. Lang. Syst. 16, 6 (1994), 1811–1841.
https://doi.org/10.1145/197320.197383

[44] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. 2016. Making Smart Contracts Smarter. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Se-
curity, Vienna, Austria, October 24-28, 2016, Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi
(Eds.). ACM, 254–269. https://doi.org/10.1145/2976749.2978309

[45] Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward
Simulations: I. Untimed Systems. Inf. Comput. 121, 2 (1995), 214–233.
https://doi.org/10.1006/inco.1995.1134

[46] Robin Milner. 1989. Communication and concurrency. Prentice Hall.
[47] Tom M. Mitchell. 1997. Machine learning. McGraw-Hill. http://www.

worldcat.org/oclc/61321007
[48] Kedar S. Namjoshi, Giacomo Tagliabue, and Lenore D. Zuck. 2013. A

Witnessing Compiler: A Proof of Concept. In Runtime Verification -
4th International Conference, RV 2013, Rennes, France, September 24-
27, 2013. Proceedings (Lecture Notes in Computer Science), Axel Legay
and Saddek Bensalem (Eds.), Vol. 8174. Springer, 340–345. https:
//doi.org/10.1007/978-3-642-40787-1_22

[49] Kedar S. Namjoshi and Lenore D. Zuck. 2013. Witnessing Program
Transformations. In Static Analysis - 20th International Symposium,
SAS 2013, Seattle, WA, USA, June 20-22, 2013. Proceedings (Lecture Notes
in Computer Science), Francesco Logozzo and Manuel Fähndrich (Eds.),
Vol. 7935. Springer, 304–323. https://doi.org/10.1007/978-3-642-38856-
9_17

[50] George C. Necula. 2000. Translation validation for an optimizing
compiler. In Proceedings of the 2000 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), Vancouver,
Britith Columbia, Canada, June 18-21, 2000, Monica S. Lam (Ed.). ACM,
83–94. https://doi.org/10.1145/349299.349314

[51] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, andAquinas
Hobor. 2018. Finding The Greedy, Prodigal, and Suicidal Contracts at
Scale. In Proceedings of the 34th Annual Computer Security Applications
Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018.
ACM, 653–663. https://doi.org/10.1145/3274694.3274743

[52] State of the DApps. 2019. https://www.stateofthedapps.com
[53] OpenZeppelin. 2019. https://github.com/OpenZeppelin

[54] Saswat Padhi, Rahul Sharma, and Todd D. Millstein. 2016. Data-driven
precondition inference with learned features. In Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, Chandra Krintz and Emery Berger (Eds.). ACM, 42–56. https:
//doi.org/10.1145/2908080.2908099

[55] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Chohen, and Martin Vechev. 2020. VerX: Safety Verification of Smart
Contracts. In IEEE Symposium on Security and Privacy (SP 2020).

[56] Francesco Ranzato and Francesco Tapparo. 2010. An efficient simula-
tion algorithm based on abstract interpretation. Inf. Comput. 208, 1
(2010), 1–22. https://doi.org/10.1016/j.ic.2009.06.002

[57] Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivancic, and
Aarti Gupta. 2008. Dynamic inference of likely data preconditions
over predicates by tree learning. In Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2008,
Seattle, WA, USA, July 20-24, 2008, Barbara G. Ryder and Andreas Zeller
(Eds.). ACM, 295–306. https://doi.org/10.1145/1390630.1390666

[58] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Temporal
Properties of Smart Contracts. In Leveraging Applications of Formal
Methods, Verification and Validation. Industrial Practice - 8th Inter-
national Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9,
2018, Proceedings, Part IV (Lecture Notes in Computer Science), Tiziana
Margaria and Bernhard Steffen (Eds.), Vol. 11247. Springer, 323–338.
https://doi.org/10.1007/978-3-030-03427-6_25

[59] Rahul Sharma, Aditya V. Nori, and Alex Aiken. 2012. Interpolants as
Classifiers. In Computer Aided Verification - 24th International Confer-
ence, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture
Notes in Computer Science), P. Madhusudan and Sanjit A. Seshia (Eds.),
Vol. 7358. Springer, 71–87. https://doi.org/10.1007/978-3-642-31424-
7_11

[60] Sirin-labs. 2019. https://github.com/sirin-labs
[61] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Se-

shia, and Vijay A. Saraswat. 2006. Combinatorial sketching for fi-
nite programs. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006,
John Paul Shen and Margaret Martonosi (Eds.). ACM, 404–415. https:
//doi.org/10.1145/1168857.1168907

[62] Solidity. 2019. https://solidity.readthedocs.io/en/v0.4.24/solidity-by-
example.html#blind-auction Retrieved November 19th, 2019.

[63] the Contract-Oriented Programming Language Solidity. 2019. https:
//solidity.readthedocs.io/en/v0.5.0/

[64] Paxos Standard ERC20 stablecoin PAX. 2019.
https://github.com/paxosglobal/pax-contracts/blob/
3d50aa32c4691c46d2bf3f8150fff270849e8dbe/contracts/
PAXImplementation.sol Retrieved November 19th, 2019.

[65] Samuel Steffen, Benjamin Bichsel, Mario Gersbach, NoaMelchior, Petar
Tsankov, and Martin T. Vechev. 2019. zkay: Specifying and Enforc-
ing Data Privacy in Smart Contracts. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2019, London, UK, November 11-15, 2019, Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM, 1759–1776.
https://doi.org/10.1145/3319535.3363222

[66] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. 2018.
SmartCheck: Static Analysis of Ethereum Smart Contracts. In 1st
IEEE/ACM International Workshop on Emerging Trends in Software
Engineering for Blockchain, WETSEB@ICSE 2018, Gothenburg, Sweden,
May 27 - June 3, 2018. ACM, 9–16. http://ieeexplore.ieee.org/document/
8445052

[67] Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris:
Hunting for Integer Bugs in Ethereum Smart Contracts. In Proceedings
of the 34th Annual Computer Security Applications Conference, ACSAC

https://doi.org/10.1109/SFCS.1995.492576
https://doi.org/10.1007/978-3-319-70278-0_33
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-1_Kalra_paper.pdf
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
https://www.usenix.org/conference/usenixsecurity18/presentation/krupp
http://arxiv.org/abs/1812.08829
http://arxiv.org/abs/1812.08829
http://arxiv.org/abs/1812.08829
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1006/inco.1995.1134
http://www.worldcat.org/oclc/61321007
http://www.worldcat.org/oclc/61321007
https://doi.org/10.1007/978-3-642-40787-1_22
https://doi.org/10.1007/978-3-642-40787-1_22
https://doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1007/978-3-642-38856-9_17
https://doi.org/10.1145/349299.349314
https://doi.org/10.1145/3274694.3274743
https://www.stateofthedapps.com
https://github.com/OpenZeppelin
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1145/2908080.2908099
https://doi.org/10.1016/j.ic.2009.06.002
https://doi.org/10.1145/1390630.1390666
https://doi.org/10.1007/978-3-030-03427-6_25
https://doi.org/10.1007/978-3-642-31424-7_11
https://doi.org/10.1007/978-3-642-31424-7_11
https://github.com/sirin-labs
https://doi.org/10.1145/1168857.1168907
https://doi.org/10.1145/1168857.1168907
https://solidity.readthedocs.io/en/v0.4.24/solidity-by-example.html#blind-auction
https://solidity.readthedocs.io/en/v0.4.24/solidity-by-example.html#blind-auction
https://solidity.readthedocs.io/en/v0.5.0/
https://solidity.readthedocs.io/en/v0.5.0/
https://github.com/paxosglobal/pax-contracts/blob/3d50aa32c4691c46d2bf3f8150fff270849e8dbe/contracts/PAXImplementation.sol
https://github.com/paxosglobal/pax-contracts/blob/3d50aa32c4691c46d2bf3f8150fff270849e8dbe/contracts/PAXImplementation.sol
https://github.com/paxosglobal/pax-contracts/blob/3d50aa32c4691c46d2bf3f8150fff270849e8dbe/contracts/PAXImplementation.sol
https://doi.org/10.1145/3319535.3363222
http://ieeexplore.ieee.org/document/8445052
http://ieeexplore.ieee.org/document/8445052

Behavioral Simulation for Smart Contracts PLDI ’20, June 15–20, 2020, London, UK

2018, San Juan, PR, USA, December 03-07, 2018. ACM, 664–676. https:
//doi.org/10.1145/3274694.3274737

[68] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Eval-
uating value-graph translation validation for LLVM. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011,
Mary W. Hall and David A. Padua (Eds.). ACM, 295–305.

[69] Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur
Gervais, Florian Bünzli, and Martin T. Vechev. 2018. Securify: Practical

Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM, 67–82.

[70] Moloch Ventures. 2019. https://github.com/MolochVentures
[71] web3.js Ethereum JavaScript API. 2019. https://web3js.readthedocs.

io/en/v1.2.4/
[72] Gavin Wood. 2016. Ethereum: a Secure Decentralised Generalised

Transaction Ledger.

https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
https://github.com/MolochVentures
https://web3js.readthedocs.io/en/v1.2.4/
https://web3js.readthedocs.io/en/v1.2.4/

	Abstract
	1 Introduction
	2 Overview
	2.1 Motivation
	2.2 Behavioral Simulation Relations
	2.3 Simulation Relation Synthesis

	3 Behavioral Refinement
	4 Behavioral Simulations
	5 Learning Simulations From Examples
	6 Verifying Simulations
	7 Implementation
	7.1 Example Generation
	7.2 Synthesis
	7.3 Verification

	8 Case Study of Solidity Smart Contracts
	9 Experimental Evaluation
	9.1 Cases Where Simulation Was Not Proved
	9.2 Example Generation Phase
	9.3 Synthesis Phase
	9.4 Verification Phase

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

