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KHAOS: a Kinematic Human Aware Optimization-based System for
Reactive Planning of Flying-Coworker

Jérome Truc!, Phani-Teja Singamaneni', Daniel Sidobre!, Serena Ivaldi? and Rachid Alami!

Abstract—The use of drones in human-populated areas is
increasing day by day. Such robots flying in close proximity
to humans and potentially interacting with them, as in object
handover or delivery, need to carefully plan their navigation
considering the presence of humans. We propose a human-
aware 3D reactive planner based on stochastic optimization
for drone navigation. Besides considering the kinematics con-
straints of the drone, we propose two criteria to produce
socially acceptable trajectories. The first, called discomfort,
considers the unease caused to the humans spatially close to
fast-moving drones. The second, called visibility, promotes the
drone’s visibility for humans. We demonstrate the planner’s
performance and adaptability in various simulated experiments.

I. INTRODUCTION

Drones use is increasing in our society, with new appli-
cations in human-populated areas which go beyond leisure
and visual inspection. With increased payload and interaction
capabilities, they are now considered for object delivery and
collaboration with workers in civil and industrial applica-
tions. Safety is paramount. However, navigation and interac-
tion in close proximity to humans call for the consideration
of some specific social skills, such as producing legible and
acceptable motions [1], [2], [3].

In this paper, we address navigation planning in the
scenario of the “Flying Co-Worker”3: a multi-rotor drone that
collaborates with workers to fetch small objects. The robot
must fly in a human-populated area, where only a handful
of human workers may be “aware” of the robot’s current
task and mission, and a fraction of them may be involved
in the physical interaction (e.g., object delivery): the robot
must assume that most humans are “observers”, i.e., they
ignore its current mission and are not involved with it. In
such conditions, the drone needs to carefully plan its 3D
motion in a reactive way to navigate and act safely in close
proximity to humans. Beyond safety, the drone should aim at
exhibiting navigation strategies that are, as much as possible,
socially aware: for example, it should avoid fast movements
close or toward humans which could scare the observers; it
should maximize its visibility for workers, especially when
engaging in an interaction.
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Fig. 1: Conceptual representation of the Flying Coworker with the
3DoF arm in a handover operation with a human worker. Human-2
(H2) has the tool required by Human-1 (H1) and the drone (FCW
- Flying Coworker) carries the tool from H2 to H1. The picture on
top right corner is the 3D visualisation of this handover by H2.

We propose a Kinematic Human-Aware Optimization
System (KHAOS) for reactive navigation planning which
addresses the requirements mentioned above by synthesizing
trajectories in the 3D space satisfying the kinematic con-
straints of the drone and ensuring the visibility and ease of
the humans present in the environment. The human-aware
behavior is realized by proposing a visibility cost and a novel
discomfort cost and including these along with the kinematic
constraints into a stochastic optimization process inspired by
the STOMP algorithm [4]. These measures for the social
navigation of the drones, together with the new reactive
planning system, KHAOQOS, are the main contributions of this
paper. In this work, we consider only multi-rotor drones,
and throughout this paper, the term drone always refers to a
multi-rotor drone.

The organization of the rest of the paper is as follows. We
briefly review related work in section II, and then we describe
in section III the different costs and constraints used by our
trajectory optimizer after giving some details on its operation.
We show in section IV the behavior of the obtained reactive
planner through several illustrative examples. Finally, section
V is dedicated to a discussion about the planner performance
and potential improvements, followed by conclusions in
section VL.

II. RELATED WORK

Human-aware robot navigation needs to consider addi-
tional constraints on the plan as well as the motion of the
robot [1] to navigate safely around the humans. Most of the
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human-aware navigation planners mainly use only the so-
called proxemics [1], [2] criteria. The work of Ferrer. et al
[5] and, Repiso et. al [6] uses a social force model (SFM)
based controller to navigate in the crowd and to accompany
humans. Truong et. al [7] extended this to human-object
and human-group interactions by proposing the proactive
social motion model. Inspired by these, Garell et. al [§]
proposes an Aerial Social Force Model (ASFM), a 3D
SFM, that allows the drones to safely accompany humans.
Some recent works in ground robot navigation use Graph
Convolutional Networks [9] and reinforcement learning [10]
to learn acceptable navigation behaviors for the robot. A
recent contribution uses optimization to produce more legible
robot trajectories along with modality shifting to address
multi context navigation [11]. In case of drone navigation,
the recent work of Garell et. al [12] focuses on using
neural networks to learn the non-linear ASFM to address
the problem of human accompaniment. Unlike the ASFM
which focuses on a reactive controller, we present a reactive
planning approach in this paper inspired by the STOMP
algorithm [4] which is highly flexible and can be adapted
to various situations.

When the robot needs to approach a human for interaction,
new motion criteria such as approach the user from the
front [13], [14] and at a reduced speed, [15] are introduced.
The noise and the wind generated by the propellers of
drones cause significant additional annoyance for people as
mentioned in [16]. A user study carried out by Duncan et
al. [17] evaluating the approach distance and height of the
drone towards a human concluded that the human-human
proxemics might not be directly transferable to human-aerial
robot interactions. Yeh et al. [18] also performed a user study
for evaluating proxemics in human-drone interaction and
showed that the personal space of the humans varied based
on social cues, like greeting and the design of the drone. A
more recent work by Jensen et al. [19] studied the drone’s
interaction distance with a human to signal its presence and
concluded that humans feel acknowledged between 2m to
4m. At this point, one could also wonder what is the best
angle of approach to interact with a human as studied for
a mobile robot by Koay et al. [14] who show a preference
of the users for a frontal approach, in the visual field of the
human. In our work, the field of view of humans, the effort
to get the drone visible, and the discomfort caused to the
humans by the drone’s motion are considered to propose
a plan that is less disturbing for the interacting humans
(professionals) while avoiding the observers in a safe and
friendly way.

Pertinent communication of intentions by the robot can
also improve legibility [20] and safety. These intentions
can be communicated by a more ’'readable’ trajectory of
the robot as discussed by Dragan et al. [20] or with some
gestures [21] or through gaze [22], [23]. A recent work
by Bevins and Duncan [24] studies the human perception
of different drone paths and their responses to them. They
generated several types of paths and based on a 3 phase user
study, they proposed some guidelines on the design of robot

paths for communication. Works by Kruse et. al [25] and
Sisbot et al. [26] studied the effect of directional costs and
visibility to produce more legible paths for robot navigation.
The approach presented in [27], [28] proposed proactive
trajectory planning for co-operative human-robot navigation
and introduced time_to_collision, a cost predicting a future
collision with a human and pushing the robot to act earlier
and show its intention to the human. The discomfort_cost
proposed in this paper is inspired by this. Similar behavior
was applied to the case of the drone in [29], showing this
anticipation effect where the drone takes into account the
perception of the human. The results of the study by Szafir
et al. [30] show the importance of taking into account the
phases of acceleration and deceleration of the drone and
therefore, its kinematics to improve their social integration
in an environment where they collaborate with humans.

III. HUMAN-AWARE REACTIVE TRAJECTORY PLANNER

We need a reactive planner which can perform well in a
3D environment that is not too sensitive to different local
minima. We propose an approach inspired by the STOMP
algorithm [4] which allows great flexibility due to its stochas-
tic nature. The optimization takes as input a list of points
forming an original path whose ends are the start position
and the desired goal. From this original path, it generates
K noisy trajectories exploring the surrounding space and
calculates the associated costs. These K trajectories are then
analyzed using different costs applied at each timestep or
waypoint to sort the most interesting configurations and
finally generate an optimized trajectory. Below, we define the
various costs that we use to help the optimizer generate safe
and comfortable trajectories for humans in the scene. Then,
we adapt the optimization algorithm to take into account
not only the kinematic constraints of the robot but also the
constraints imposed to respect human comfort.

A. Human-Aware Costs

1) Discomfort: To represent the discomfort caused to one
or more humans when a drone moves in the environment,
we consider a cost based on the relative speed and distance
between the drone and humans present. Indeed, we want to
translate the fact that a drone moving fast and close to a
human is much less comfortable than a distant slow drone.
In addition, if the drone is forced in one way or another to
pass close to a human, it must adapt its speed by reducing it
to limit the discomfort generated to this human, or even stop
if it has reached a certain threshold. The time_to_collision
cost presented in [27] is the first part of the answer, but we
want information on this cost even when the velocity vector
of the drone is not oriented towards the human. Therefore,
we formulate the discomfort_cost as:
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where ||Vyob — Vium|| and Distyop—pum are respectively the
relative speed and distance between the drone and the human.
The second term of Eq. (1)) describes the cost associated with



the proximity of the drone to the human whose influence can
be adjusted using the scaling factor orozimity-

2) Visibility and effort to see: The visibility criterion
presented in [26] uses a 2D grid. Since a drone can move
in three dimensions, we need to extend the model to a 3D
grid. The 3D grid centered at the origin of the human visual
field gives the visibility cost, C,;s, for each cell which is
computed as follows:

o All cells contained in a cone of pan and tilt angles

respectively equal to 2 x |a| and 2 * |o/| (blue zone in
Fig. Ph and Fig. Zb) located in front of the human have
the same cost value. This value is relatively low (= 1)
representing a relatively free zone and corresponding to
the preferential approach zone according to [14].
 Angles increase clockwise as |5| = 7 — |a| and |¢| =
m—|a. Cells in the zone starting at |a,q.| (respectively
|l ...]) and ending at | 3,42 | (respectively |@p,q.|) have
a cost proportional to |a| 4 | 3| (respectively ||+ [¢]).
This makes it possible to reconcile the approach zones
in the visual field which are less comfortable than the
frontal zone and the zones which are not in the visual
field of the human that require an effort to turn around.
e Zones hidden by obstacles, out of the visual field and
beyond a threshold distance (4 m) correspond to a zero
cost value.

As depicted in Fig. 2] we can see the orientation of the
human gaze represented by the red arrow. Directly in front of
human is represented in dark blue, the zone of low cost, and
then there is a gradual increase of the cost more and more
towards the rear corresponding to more and more reddish
colors.

Fig. 2: Visibility cost : a) (resp. b) Cutaway top (resp. side) view
showing the 3D simulation rendering of the change in visibility
cost as a function of the panoramic (resp. tilt) angle. ¢) 3D view
showing the consideration of obstacles. The human gaze direction
is represented by a red arrow. Red colored cells correspond to high
cost while blue colors correspond to low cost.

Algorithm 1: Constrained velocity computation

Given;
— Drone kinematics constraints: vy,qz, Gmaz> A€Cmax
— discomfort_constraint: DCF,, .,

for each noisy smooth trajectory do

for each 3D position of the drone do
Compute kinematic velocity of the drone

Vkins
Compute discomfort cost Cy;s With v}
if Cy;s < DCF,, .. then

| Uchoice = Ukins

else
VUchoice =
« — .
(DCFmam - Diz;omm“y ) * DZSthumfrob;
hum—rob
end
Vdrone = min(vmawa Uchoice)
end
end

B. Kinematic constraints

The driving idea behind our approach is to take into
account the kinematics of the drone while respecting hu-
man comfort by taking as a reference the discomfort_cost
defined above. The particularity of the STOMP algorithm
on which we based the optimization part of our approach
is the generation and comparison of K noisy trajectories
aiming to explore space in a stochastic manner. Starting
from this principle, we propose in Algorithm [I] to constrain
these K generated trajectories by considering the kinematic
constraints of the drone such as its maximum speed V.4,
acceleration a,,,4, and deceleration dec,, . To this, we add
an additional constraint linked to the cost of discomfort by
setting a value DCF,,,,, which cannot be exceeded and
named as discomfort_constraint in this paper. Thus for each
point of the trajectory generated randomly, we calculate the
maximum speed vy, that the drone can reach considering
its kinematics limits and, if for this position and speed,
the Cy;s exceeds discomfort_constraint limit DC'F,,, 4., then
the discomfort_constraint predominates and limits the speed
below the maximum speed that it is possible to achieve.
Conversely, if for a given position, the drone can move at its
maximum speed and it is not inconvenient for humans, then
it will limit its speed to its maximum kinematic limits.

C. Local cost and Trajectory cost

Similar to the STOMP algorithm [4], we calculate the
cost for each timestep or waypoint at the local level and an
overall trajectory cost. The local cost function is defined as
the sum of the visibility cost, C;s, discomfort cost, Cy;s and
obstacle cost, Copsiacies, Which pushes the waypoints away
from the obstacles whenever possible without violating the
social constraints. For the calculation of the trajectory cost,
we define a time cost, Cy;me, Which is the combination of
the path length and sum of the velocities at each timestep.



Finally, the total cost of trajectory is defined as follows:

N

Ctotal = Z Cvz's + Ctime (2)
i=1

where, N is the number of waypoints, Crime = Qtime * %, L

is the length of the trajectory, V is the sum of the magnitude

of the velocity at each waypoint and ;¢ is a constant. The

optimization converges when the change in the total cost of

the trajectory is below the chosen threshold.

IV. EVALUATION IN SIMULATED EXPERIMENTS

In this section, we first give more details about the
implementation of KHAOS. Then, we present the results and
analysis of the proposed trajectory planner in five different
scenarios that show the robustness of our system. By default,
the results presented in this section correspond to a maximum
speed of the drone of 1m s~1. Likewise, the maximum

acceleration and deceleration are fixed at around 1ms—2.

The study of the influence of the orientation of the drone is
not taken into account as a social constraint here, and the
orientation of the drone is the same as its velocity vector.
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Fig. 3: Frontal approach with a discomfort_constraint of 0.5: a) Top

view b) Side view c) Side view with a zoom at the top showing

the drone’s size represented by a sphere of 0.9 m e) Drone speed

and discomfort_cost as a function of time. Frontal approach with

a discomfort_constraint of 0.25: d) Side view f) Drone speed and

discomfort_cost as a function of time.

A. Setup

The simulation results presented here use the Movelt [31]
collision scene in which the model of a human is imported.

This model is composed of simple primitives such as spheres,
cylinders and boxes. The drone is considered as a 0.9m
diameter sphere that can be configurable and is not shown
in the images to improve readability (except in Fig [3p),
showing only its trajectories. Obstacles present in some
results are added in the same way. We can thus manage the
numerous collision tests necessary for the optimizer and the
computation of 3D grids directly with Movelt [31] or else
externally using FCL [32].

B. Frontal approach

In this scenario, as shown in Fig. [3] the drone starts at
a distance of 9m from the human and approaches him at a
very close distance of 0.5m and at a height of 1.5 m. This
interaction distance is very small and close to the human’s
head, which can be considered a very uncomfortable situation
for him. A discomfort_constraint equal to 0.5 is chosen and
it can be imagined as the maximum speed of 1 ms~! for the
drone at a distance of 2m from the human. We represent
the trajectory by drawing each of its segments with an arrow
whose color depends on the average speed. The more the
color tends towards red, the higher the speed and the more
the color tends towards green, the slower the speed. From this
representation, we can visually see the phases of acceleration
and deceleration of the drone. As the approach is frontal,
the cost of the human visual field does not influence and
does not distort the trajectory. In our implementation, we
favor positions far from obstacles, and that explains the slight
deformation of the trajectory towards the opposite direction
of the ground, which is considered as an obstacle.

We can find these phases in Fig. [Bp representing the
speed of the drone as well as the discomfort_cost along the
trajectory. First of all, the drone accelerates in accordance
with its kinematic limits until it reaches its maximum speed
of 1ms~!. Gradually approaching the human, the discom-
fort_cost increases until it reaches the discomfort_constraint
of 0.5 that we have set. Once this maximum value is reached,
the optimizer will regulate the speed and start to decelerate so
as not to violate either the discomfort_constraint or the kine-
matic constraints of the drone. Let us now consider the same
trajectory but this time we fixed the discomfort_constraint
at 0.25. In Fig. Bf, we find the same acceleration phase
as before. On the other hand, the discomfort_constraint is
reached more quickly which pushes the drone to slow down
approximately 2 s earlier, allowing the drone to signal to the
human its intention to slow down in his/her presence. In
addition, the deceleration phase is much longer by around
3, which gives time to the human to adapt better to the
presence of the drone.

C. Two Humans

Until now, the trajectories generated by KHAOS are not
subject to constraints linked to the environment except the
human himself. Now let’s study Fig. @] a situation where
the drone firstly navigates in a corridor and crosses a human
represented in blue on its way, then continues by approaching
a second human in green from the back to finish at a position



where it can exchange an object with him. For this, we
added 2 walls 3 m high, positioned so that there is sufficient
space for the drone to navigate to the human’s right in the
corridor. A ceiling is added to the corridor to force the
drone through it instead of going around it. Each human
has his own visibility grid computed. For a given position
in the optimization process, we consider the maximum value
of the visibility_cost and discomfort_constraint between the
different humans in the scene.
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Fig. 4: Trajectory execution in a two-humans scenario for a
discomfort_constraint of 0.5. a) First iteration, the robot starts by
navigating in the corridor b) A few iterations later, after having
passed the blue human in the corridor ¢) (resp. d) speed magnitude,
discomfort_cost and visibility_cost as a function of time correspond-
ing to the trajectory from (a) (resp b: Time origin corresponds to
the beginning of the re-planned trajectory).

In this situation, the corridor walls do not allow the
optimizer to generate trajectories that deviate greatly from
the human in blue. Despite the constraints induced by the
walls, the speed is close to the maximum speed along the
trajectory except for the points closest to the blue human.
Here, the points of the trajectory are spatially blocked by the
wall, and therefore the discomfort_cost takes over by limiting
the speed. This is what we observe in Fig. 4c|between 4 and
13 s when the speed is limited by the discomfort_constraint.
At the same time, we can observe that the visibility_cost
greatly increases because the drone goes more and more
towards the back of the blue human and can’t pass far from
him until it comes out of the grid at approximately 14.5s
and visibility_cost drop to 0.

Once the drone has passed the human in blue, it finds itself

behind the back of another human represented in green. Here,
the influence of his visibility_cost becomes predominant
compared to that of the human in blue. The trajectory greatly
deviates as shown in Fig. 4b|and this shows how our planner
ensures to limit the effort necessary for the human to turn
his head, and thus have the drone in his field of view while
respecting the discomfort_constraint. Fig. |4d| shows that the
drone moves away from the human by adapting its speed
and reduces the effort required to see it specifically at the
end when it is in close proximity to the human.

In the situation where the drone disengages from the
human after handover (Fig. [5a), the shape of the trajectory is
similar to the approach from the back. It first prioritizes the
positions in front of the human to move away and go around
the human. It accelerates smoothly, as shown in Fig. [5b|until
the first 2s, limited by the discomfort_cost, and then adapts
its speed in agreement with other constraints.
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Fig. 5: Drone disengagement from the human and motion toward
the corridor with a discomfort_constraint of 0.5. a) Shape of the
trajectory b) speed magnitude, discomfort_constraint and visibil-
ity_cost as a function of time. Blue arrow indicates the direction of
the trajectory.

D. Planner reactivity

In order to illustrate the reactivity of our planner, we use
the corridor scenario like the one above. Fig. [6a] shows the
trajectory deformation with the discomfort_constraint fixed
at 0.25. We then move the human to his right towards the
wall and reduce the drone’s initial passage space, as shown
in Fig. [6b] We observe in Fig. [6b] that the planner reacts
immediately by deviating the path and reducing the speed
(Fig. when close to the human.

E. Highly constrained environment

We want to show the KHAOS’s ability to adapt and find
solutions even in very constrained environments. For that,
we take the previous corridor scene and add an obstacle
that can be compared to a counter in order to restrict the
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Fig. 6: Planner reactivity after moving the human to his right for
a discomfort_constraint of 0.25. On the left: First iteration (a) with
corresponding drone’s speed magnitude and discomfort_cost as a
function of time (c). On the right: Next iteration just after moving
the human on his right reducing the passage to the drone (b) with its
corresponding speed magnitude and discomfort_cost as a function
of time (d).

possibilities of the passage of the drone through the place
where the human is located. It is placed on the ground and
prevents access to the drone from the area below the human’s
right arm. The space between the ceiling and the human’s
head is sufficient for the drone to pass, but in this case,
the trajectory would be very uncomfortable for the human
or even dangerous. We deliberately challenge KHAOS by
choosing an original path passing through the area below the
human’s left arm represented by the red line in Fig.[7} Flying

Fig. 7: Drone’s trajectory along the constrained corridor with a
discomfort_constraint of 0.5.

in this area would push it to pass very close to the human
body, which would be very uncomfortable. If the drone had
no other choice, the optimizer would be able to generate a
trajectory where the drone would go at a very slow speed
as it passes close to the human body. In the case presented
here, the optimizer chooses a trajectory far from the human
and on the opposite side by changing the homotopy class.
We, therefore, can say that the trajectories generated by the
optimizer are not deformed just locally but by exploring
the surrounding space to find more suitable solutions. This

trajectory is not only more comfortable for the human but
also allows the drone to reach its goal more quickly.

V. DISCUSSION

The trajectory is generated and refreshed at a frequency
between 5-10Hz on a standard computer (1.9 GHz Intel i7
CPU, 32 GB of memory): with such a performance, our
reactive planner can be used in real-time in real robot exper-
iments. Trajectories used in our experiments are generated
from an original path corresponding to a straight line to
simplify reading except for the two humans scenario. Indeed,
in our case, we must be attentive not only to the shape of
the trajectories but also to the adaptation of the speed. The
noise generated by a multi-rotor drone is a function of its
speed and/or acceleration. Moreover, the acoustic intensity
decreases proportionally to the inverse of the square of the
distance. We can therefore consider the discomfort_constraint
described in this paper provides to reducing this nuisance
as well. The physical model used for the calculation of the
speeds of the drone by considering the discomfort_constraint
can be improved. At some parts of the trajectory the speed
is not derivable, but most of the time, the system produces
a smooth motion compatible with human interaction. To
improve it, we can combine it with the bounded jerk model
techniques [33] that could produce smoother and better
velocity profiles.

VI. CONCLUSION

We have presented an algorithm called KHAOS for the
generation of reactive human-aware trajectories in 3D and
taking into account the kinematic constraints of a drone, the
potential discomfort caused by the robot’s fast motion close
to the human as well as its visibility, and the consideration
of human effort to see it. We proposed a discomfort cost
considering the relative distances and speeds between a
drone and a human. We have shown how the drone adapts
its behavior in several situations and have discussed the
capabilities of the proposed planner. The reactivity of this
planner in these different scenarios is highlighted in the
attached video. In future work, we plan to improve the
planner by adding the management of drone orientation and
using it effectively on a real drone. We also plan to improve
the behavior of the drone by working on the smoothing of
speeds and accelerations. On the human-aware level, we
want to go more in-depth by studying how to adapt the
trajectories by integrating the handover phase [34] as well
as the control of the manipulator’s arm [35], which requires
being very close to the human. We aim at a coordinated
arm movement which can, for example, start reaching to
exchange an object while the navigation phase is not yet
over, which requires testing deformable configuration spaces
for the drone. Finally, we will carry out a user study to tune
the parameters of the social constraints and to assess whether
the trajectories generated by KHAOS are socially acceptable
and to which extent they can be improved based on users
feedback from experiments with the real robot.
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