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and Mohsen Guizani, Fellow, IEEE

Abstract—Unmanned Aerial Vehicles (UAVs) have attracted
much attention lately and are being used in a multitude of
applications. But the duration of being in the sky remains to
be an issue due to their energy limitation. In particular, this
represents a major challenge when UAVs are used as base
stations (BSs) to complement the wireless network. Therefore,
as UAVs execute their missions in the sky, it becomes beneficial
to wirelessly harvest energy from external and adjustable flying
energy sources (FESs) to power their onboard batteries and avoid
disrupting their trajectories. For this purpose, wireless power
transfer (WPT) is seen as a promising charging technology to
keep UAVs in flight and allow them to complete their missions. In
this work, we leverage a multi-agent deep reinforcement learning
(MADRL) method to optimize the task of energy transfer between
FESs and UAVs. The optimization is performed by carrying out
three essential tasks: (i) maximizing the sum-energy received
by all UAVs based on FESs using WPT, (ii) optimizing the
energy loading process of FESs from a ground BS, and (iii)
computing the most energy-efficient trajectories of the FESs while
carrying out their charging duties. Furthermore, to ensure high-
level reliability of energy transmission, we use directional energy
transfer for charging both FESs and UAVs by using laser beams
and energy beam-forming technologies, respectively. In this study,
the simulation results show that the proposed MADRL method
has efficiently optimized the trajectories and energy consumption
of FESs, which translates into a significant energy transfer gain
compared to the baseline strategies.

Index Terms—UAV; Wireless Power Transfer (WPT), Energy
Harvesting; Deep Reinforcement Learning; Energy Efficiency.

I. INTRODUCTION

The development of Unmanned Aerial Vehicles (UAVs)
have led to the emergence of an extensive range of UAV-
enabled applications and services spanning from parcel deliv-
ery and public safety to monitoring and disaster management
[1]. Deploying UAVs as flying base stations (BSs) could
take several forms, such as aerial hot-spots or small cell
networks, adjusting their locations dynamically and extending
the coverage and capacity of ground cellular networks [2], [3].
However, the operating time of UAVs is severely limited by
their short-lived built-in only energy sources (e.g., batteries)
[4]. Thus, some existing works in the literature have adopted
various energy-efficient strategies to prolong the flying time of
UAV networks by improving specific parameters such as tra-
jectories, end-to-end communications, and transmission power,
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or by using replacement strategies for the deployed UAVs [5]–
[7]. But, unfortunately, these improvements remain limited and
do not sufficiently extend the UAV network’s lifetime [8].
Moreover, this constraint leads the onboard batteries to be
replaced or recharged periodically, resulting in a high cost
in terms of mission delay and incurred interruptions, thus,
affecting the entire UAV network performance.

To guarantee uninterrupted UAV missions and meet the
challenge of endless energy supply, wireless power transfer
(WPT) technology is considered a leading solution to pro-
viding flexible and cost-effective energy supply to UAVs [9].
Indeed, the far-field WPT technology based on RF signals
is considered as a promising approach for powering UAVs
[10]. Therefore, WPT technology is expected to have abundant
applications in the future generation of mobile networks, such
as 5G, Beyond 5G, and 6G (see [11], [12] and the references
therein). In general, a typical WPT system consists of a set of
energy receivers (ERs) (e.g., low-powered Internet of Things
(IoT) devices, sensors, or even UAVs) harvesting energy that
is wirelessly emitted from static energy transmitters (ETs)
that are dispatched at fixed locations. Nevertheless, the per-
formance of WPT systems is seriously degraded when there
are long distances between ETs and ERs, which is due to
the problem of limited power transmission resulting in severe
propagation loss of radio frequency (RF) signals. In the case of
ER-equipped UAVs, two options could be envisaged to address
this issue. Firstly, an important number of ETs could be
massively deployed [13] on the ground. However, this option
would significantly increase the cost and UAVs have to fly near
ETs, forcing UAVs to divert from their mission and fly at low
altitudes during the energy loading process from ETs using
WPT. Unfortunately, this option is not always possible, and
especially when ETs are deployed in an environment full of
obstacles (e.g., forests or mountainous areas), where the energy
harvesting using WPT technology could suffer from the non-
line-of-sight (NLoS) problem, which significantly decreases
the efficiency of energy transfer.

This research is motivated by the need to find a potential
solution to power UAVs while accomplishing their missions
with the objective to overcome three main challenges. First,
UAVs operating in remote regions need to recharge or replace
their batteries regularly, which requires a massive deployment
of landing/charging stations (CSs) to avoid irreversible UAV
failure and the need of human intervention. This solution will
be costly in installing and maintaining CSs and could lead
to numerous drawbacks, namely when the deployment area
is constrained. Second, even if some existing solutions have
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Fig. 1: Motivating scenario.

attempted to optimize the density and deployment of CSs, they
do not prevent the interruption of missions performed by UAVs
that need to go back and forth to recharge/replace their batter-
ies. This significantly lengthens the missions’ completion time
and affects the proper functioning of the network, especially
when UAVs are deployed to serve ground users. Finally, con-
ventional far-field WPT systems suffer from many problems,
including limited transfer distance, energy attenuation due to
high path loss, unpredictable reliability, and other issues [14]–
[16]. This results in reducing the WPT efficiency and thus
minimizing the amount of energy harvested by UAVs. A possi-
ble solution should address all the issues mentioned previously
and improve the energy use and the WPT performance. Our
proposed solution is inspired by air-to-air refueling of military
jets using aerial tankers [17]. In this solution, we propose
to deploy a set of intelligent flying energy sources (FESs)
operating autonomously with the sole objective of recharging
UAVs efficiently (see Fig. 1). FESs are themselves UAVs with
onboard WPT ETs, and therefore they are supposed to have
a higher energy capacity allowing them to transfer energy to
regular ER-equipped UAVs. FESs being themselves UAVs, are
recharged from ground CSs. The FESs appropriately maintain
LoS of RF links and reduce distances to UAVs for proper
charging using energy beamforming. However, the deployment
of FESs faces serious challenges. For example, since UAVs
with a low energy level can appear anywhere and at any
time, FESs are required to continuously hover and cater to
the UAVs’ energy need. As a result, FESs share a common
flight space (see A2 in Fig. 1), leading to potential collisions
with all flying vehicles and other surrounding obstacles (e.g.,
high-rise buildings or communication towers). The recharging
process along with constant mobility and communication to
coordinate with various entities leads inevitably to excessive
energy consumption. Moreover, UAV trajectories are solely
decided by the nature of their missions – e.g., collecting data
from ground devices and sensors (see A1 in Fig. 1), FESs
find themselves adapting their own trajectories to minimize
the gap with UAVs to execute the energy transfer efficiently.
To address the issues of classical far-field WPT systems,

we adopt energy beam-forming technology, which presents
itself as an efficient solution that maximizes the received
signal strength. Therefore, FESs (c.f., Fig. 1) are equipped
with an antenna array to simultaneously establish multiple
energy beams towards UAVs depending on their locations, and
therefore enhance the energy transfer efficiency.

It is worth noting that it becomes a complex task to
jointly consider the challenges mentioned above when trying
to solve a single problem optimally using existing optimization
techniques. That is, we rely on the use of Deep Reinforcement
Learning (DRL) methods applied to multi-agent environments,
which have demonstrated their efficiency to process large
state space and time-varying environments. Furthermore, DRL
methods can provide near-optimal performance on several
learning tasks with little or no domain knowledge. The main
contributions of this article are summarized as follows:

• Designing a wirelessly-powered UAV network architec-
ture based on autonomous mobile FESs that provide
energy supply to moving UAVs without disrupting their
trajectories and/or missions.

• Optimizing the trajectories of FESs, avoiding collisions
between themselves, and ensuring an acceptable level of
fairness when recharging UAVs.

• Optimizing FESs energy loading process from the ground
CS while taking into account the energy requirements of
the FESs.

• Providing an analytical and numerical basis for the val-
idation of the proposed approach and the analysis of its
effectiveness.

The rest of this paper is organized as follows. Section
II discusses the related literature papers that we believe are
relevant to our work. Section III introduces a novel wireless
powered UAV network architecture and formulates the prob-
lem statement. Section IV provides a set of DRL preliminaries
and describes the elements of our multi-agent DRL-based
approach. In Section V, we present a performance evaluation
and analysis of the proposed solution with a description of the
simulation results. Section VI concludes this study.
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II. RELATED WORK

There exists incredible array of energy limited IoT devices,
including UAVs [18]. As a promising solution, WPT has
shown its advantages in supplying energy consumption in
many UAV-assisted applications. Indeed, according to [19],
the WPT market is set to exceed $12 billion by 2022 and
will grow to reach $25 Billion by 2025. Similarly, based on a
recent study appeared in [20], the UAV market has also seen
a meteoric growth that would reach $43 billion by 2025 (c.f.,
Fig. 2).
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Fig. 2: Statistic of UAV and WPT market growth (Data Source:
Drone Industry Insight Report 2020-2025 [21]).

From this statistic, it is only natural to expect UAVs to
use WPT technology in an integrated manner and to power
ERs. To stay within the scope of this work, we focus our
interest here around three major research areas related to UAV-
enabled WPT systems: (i) Terrestrial CS, (ii) UAV trajectory
optimization, and (iii) Reinforcement Learning (RL) based
techniques for optimizing UAV-enabled WPT systems.

A. Terrestrial CS-based WPT

CSs are quite necessary to allow UAVs to perform a long-
term mission. For instance, in [22], the authors deployed
wireless powered UAV-BSs for data transmissions to ground
users (GUs). To maximize the downlink sum rate of the
system, the placement of UAV-BSs, the resource allocations
of energy, and the time duration for TDMA and FDMA are
jointly optimized. The work of [23] maximized the coverage of
UAVs, while optimizing UAV 3D deployment and scheduling
energy recharging actions of UAVs. In [24], a UAV-based
data collection scheme is designed, which is energetically
supported by a mobile CS on the ground. Liu et al. [25] have
deployed a wireless UAV network, where each UAV has to be
serviced before deployment. In another study [26], the authors
focused on minimizing the number of CSs and optimizing their
deployment where UAVs can recharge their batteries and then
fly again. Also, the influence of CSs on network performance
is studied in [27]. This study concluded that achieving an
optimized coverage can be reached by reducing the charging
time and deploying lower dense CSs.

Existing terrestrial CS-based approaches have demonstrated
their efficiency in improving the endurance of the deployed
UAVs. However, UAVs should interrupt their missions and

flight back onto a CS, which prevents them from continuing
their tasks during a longer charging time. This constraint could
constitute an inflexibility issue, especially in emergencies or
time-sensitive applications.

B. UAV-enabled Trajectory-aware WPT

Much research has been conducted to optimize UAV trajec-
tories to optimize the energy transfer process. For instance,
in [28], the speed of UAVs is optimized to maximize the
uplink throughput of a UAV-enabled WPT system. Hu et
al. [29] maximized the harvested energy among GUs, while
considering the maximum UAV speed constraints. In [30], the
UAV data collectors’ energy consumption is reduced based
on the energy harvested from the surroundings. The work
in [31] enhanced the efficiency of a UAV-assisted wireless
powered communication network (WPCN) by considering the
UAV mission time and energy consumption of UAVs. In [32],
two UAV deployment’s scenarios are studied: (i) a single
UAV to perform both the energy transfer and information
harvesting towards and from GUs and (ii) Two different UAVs
make the two tasks separately. The two scenarios aimed to
maximize the minimum throughput of GUs. Wu et al. [33]
studied the UAV’s trajectory optimization problem intending to
design a trajectory that should maximize the energy utilization
efficiency and thus prolong the lifetime of sensor networks.
Another UAV-assisted wireless powered sensor network is
proposed in [34]. The authors used a heuristic algorithm to
optimize the trajectory of the UAV while considering some
channel parameters.

However, various constraints are neglected in UAV-enabled
trajectory-aware WPT approaches. For example, some tech-
niques are based only on a single UAV to perform energy
transfer. In contrast, the other techniques are based on multiple
UAVs without considering some issues, such as collisions,
energy transfer fairness, and completion time. In addition, the
UAV energy consumption is often neglected, which makes the
proposed approaches not realistic.

C. RL-enabled WPT

Recently, we have witnessed a resurgence of interest in
machine learning (ML) techniques, and more particularly, RL
methods in the context of UAV-enabled WPT systems. In [35],
a Q-learning method is applied to address the fairness in terms
of energy transfer in a UAV-enabled WPT system. The authors
of [39] deployed a stationary FES to charge UAV-ERs. This
architecture aims to optimize the location of UAV-ET to maxi-
mize the total harvested energy by UAV-ERs, which are flying
in a linear trajectory in a square area. Nevertheless, the authors
assume that UAV-ET and UAV-ERs fly at the same altitude,
which can increase the probability of collision between each
other. To address this issue, Hosseini et al. [36] proposed to
maximize the long-term flying time of UAV-ERs by optimizing
the energy transfer process. Since there are many UAV-ERs,
the authors propose to optimize the trajectory of a single UAV-
ET based on the Q-learning method. Similarly, in [37], the
authors deployed an aerial charging host to maintain UAV-
ERs in flight, which is formulated as a Q-learning problem
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TABLE I: Features comparison of the related WPT-enabled schemes.
Terrestrial CS-based UAV Trajectory-aware RL-enabled

Features Ref. [22] Ref. [24] Ref. [28] Ref. [29] Ref. [35] Ref. [36] Ref. [37] Ref. [38] Proposed method

Basic ideology

Resource
allocation in

wireless powered
UAV-assisted

cellular network.

UAV-enabled data
collection with the
help of mobile CS.

Throughput
maximization

through
UAV-enabled

energy harvesting
system.

UAV trajectory
optimization for
maximizing GUs
harvested energy.

Q-learning based
trajectory

optimization of
UAV-enabled WPT

system.

Q-learning based
energy transfer and

flying time
optimization.

Q-learning based
optimal charging

sequence of
UAV-ERs.

DRL-based
resource

management of
UAV-enabled WPT

system.

DRL-based wireless
powered UAV

network.

Energy
Transfer

Technology
RF-signal RF-signal RF-signal RF-signal RF-signal Energy

beamforming RF-signal RF-signal Laser/Energy
beamforming

Optimization
technique Successive convex DRL Successive convex Lagrange dual Q-learning Q-learning Q-learning DRL DRL

Type of ET(s) Terrestrial CS Terrestrial CS Flying CS Flying CS Flying CS Flying CS Flying CS Flying CS Flying CS
Type of ER(s) UAV UAV GU GU UAV UAV UAV IoT UAV

Density of
ET(s) A single CS A single CS A single CS A single CS A single CS A single CS A single CS A single CS Multiple CSs

Density of
ER(s) A single UAV A single UAV Multiple GUs Multiple GUs Two UAVs Multiple UAVs Multiple UAVs Multiple IoT Multiple UAVs

Mobility of
ET(s) Static Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Mobility of
ER(s) Dynamic Dynamic Static Static Static Static Static Static Dynamic

Major
advantage

Resource is
equally shared
among GUs.

Providing sufficient
energy for cruising

UAV

Uplink throughput
is optimized and
fairness issue is

addressed

Minimal received
energy is

maximized among
GUs

Less complexity
Level of received
wireless power is

enhanced.

The stability of the
whole system is

maintained

Data packet loss is
minimized Maintain the

integrality of UAVs
in flight

Major
Limitation

Placement of a
UAV-BS

Unexpected events
are not considered

Energy
consumption of

UAV is neglected

Significant
complexity is

induced
less scalable Assumptions are

not realistic

Mobility of
UAV-ERs is not

considered

Both dynamic
battery capacity

and queue size are
not considered

More complex

to find the optimal charging sequence of UAV-ERs. In [38],
the authors investigated the resource allocation problem in
UAV-enabled WPT and data collection for minimizing both
data packet loss and energy consumption of IoT nodes. For
this purpose, a DRL-based resource management method is
adopted, which allows the UAV to optimally determine the
data collection sequences, the power transmission, and the
associated modulation scheme of IoT nodes. The authors of
[40] deployed a single UAV to perform, at the same time, data
collection and wireless power transfer towards ground nodes.
Both tasks are optimized based on a DRL method. In the
same way, a multi-objective optimization is proposed in [41]
where a UAV is deployed to collect data from a target device
and charge other covered devices. Using an adequate DRL
variant, this approach jointly optimizes three objectives during
a given mission period: (i) maximization of sum data rate, (ii)
maximization of total harvested energy, and (iii) minimization
of UAV’s energy consumption.

As for drawbacks, all these research attempts focus only
on small and straightforward scenarios, and most with just a
single UAV that plays the role of FES. However, for larger
scenarios (i.e., scenarios with hundreds or thousands of UAVs
acting as ERs), multiple FESs are required to reasonably
satisfy the UAVs’ energy requirements, where DRL methods
are more appropriate to support complex and broad-scale
environments.

In this context, this paper concentrates on designing a
wirelessly powered UAV network architecture by flexibly
deploying multiple FESs to maintain all UAVs in flight, and
thus stabilize the whole system for a long period of time.
Furthermore, to increase the efficiency of the energy transfer,
we exploit energy beamforming technology to transfer power
to UAVs directionally, while finding an optimal policy to
maximize the benefit of the system. As far as we know, it
is the first attempt to optimize the trajectories of FESs based
on DRL methods to maximize the total harvested energy
by UAVs, while considering their mobility and the different
constraints that could increase the stability of the system. To
recapitulate, Table I provides a brief comparative study based
on crucial parameters between our proposed scheme and the

most relevant schemes previously described.

III. SYSTEM MODEL

As illustrated in Fig. 1, we assume that the architecture
of our wireless powered UAV network consists of a set
M , {m = 1, 2, . . . ,M} of UAVs, which are deployed in
an agricultural area to perform data collection from ground
sensors. To prevent UAVs from draining their batteries and
falling to the ground, another set N , {n = 1, 2, . . . , N} of
FESs with highly efficient batteries are deployed to perform
the charging process of UAVs, where 1 ≤ |N |< |M|. To
avoid collisions between the two sets, FESs and UAVs are
supposed to move freely in a 3D space at different altitude
intervals (i.e., flying spaces), namely A2 and A1, respectively.
To wirelessly supply FESs with energy, a terrestrial BS without
a dedicated landing dock is implemented on a hill at the edge
of a target square area of width w. The BS has a height
of hBS from the ground, i.e., its coordinates is denoted as
lBS = [0, 0, hBS ]. The duration of the UAV data collection
mission is denoted as t ∈ [0, F ly] in which our architecture
is tested. To streamline the test, the mission duration is
discretized into T time-slots, where ψ = Fly

T is the length of
each time-slot t ∈ T , {t = 1, 2, . . . , T}. T is supposed to be
sufficiently large such that FESs tend to be pretty much still at
each time-slot. The locations of each UAVm, where m ∈M,
is denoted as lm[t] = [xm[t], ym[t], hm[t]]T at each time-slot
t. We assume that each UAVm is moving strictly inside the
target area. All FESs are continuously changing their locations,
looking for UAVs with low energy levels to recharge them in
a timely manner. The instantaneous locations of each FESn,
at each time-slot, is denoted by ln[t] = [xn[t], yn[t], hn[t]]T .
It should be stressed that the altitudes of both FESs and UAVs
are dynamic according to the positions of sensors installed at
fixed positions on non-flat terrains, which are denoted as hm[t]
and hn[t], respectively. The distance between each UAVm and
FESn is calculated as follows:

dnm[t] =
√
‖lm[t]− ln[t]‖2 (1)

It is assumed that the movements of FESs are controlled by
the BS to which FESs are backhaul-connected through FES-to-
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BS links. Indeed, FESs should adapt their trajectories accord-
ing to those of UAVs such that they can shorten the distance
and improve the line of sight (LoS) of RF links, meet the
energy needs of UAVs, and maintain them in flight during the
whole mission or even for long periods. Due to the restricted
number of FESs and the scalable nature of the UAV network,
FESs need to continuously fly around to charge UAVs with
drained batteries. It is worth noting that we prioritize charging
specific UAVs over others, according to their energy levels.
Moreover, despite the particular deployment of UAVs in this
work, the proposed trajectory optimization of FESs will hold
applicable for any multi-UAV-assisted WPT applications. To
summarize, our approach is executed based on two processes:
(i) the loading process where FESs get their energy supplies
from the BS and (ii) the charging process where FESs revolve
around UAVs to recharge them with energy. For more clarity,
the list of major notations used in this paper is given in Table
II.

TABLE II: List of notations.

Label Explanation

T , T, t Set, number, and index of time-slots
N , N, n Set, number, and index of FESs
M,M,m Set, number, and index of UAVs
dmn [t] Distance between nodes n and m
Enm[t] Energy harvested at node m from node n
ln[t], En[t] Coordinates, and residual energy of node n
Υn, ELn[t] Transmission power and energy level of node n
Emaxn , Vmaxn Maximum energy and speed capacity of node n
ωn[t], hn[t], dn[t] Flying direction, altitude, and distance of node n
Pmn [t], Gmn [t] Signal strength, channel gain between n and m
Acn[t], Nbn[t] Active and fully charged status of node n
UC[t], σt Fully charged density, energy balancing of nodes
PR[t], F [t] Energy transfer priorities, and fairness
PRmn [t], SERmn [t] Energy transfer priority, charging service status
LDn[t], PRn[t] Service load, and energy transfer priority of n
rnt , ρn[t] Reward and penalty of node n
ont , a

n
t Observation and action of node n

st, at States and actions of the set N
πn(.), Qn(.) Actor and critic networks
πn
′
(.), Qn

′
(.) Target actor and critic networks

ηQ
n
, ηπ

n
Parameters of critic and actor networks

ηQ
n′
, ηπ

n′
Parameters of target critic and actor networks

Bn,∆, δ Buffer, size and index of Mini-batch of node n
ε, ν Action noise and discount factor

A. Channel Modeling

To illustrate the mechanism of energy harvesting and the
channel modeling of our architecture, we consider two chan-
nels: (i) BS-to-FES channel and (ii) FES-to-UAV channel.

In the literature, laser power has become a promising
solution to provide a convenient energy supply to FESs.
Indeed, as illustrated in Fig. 3, we assume that the BS is
composed of N laser beam directors (LBDs). To power the
FESs, LBDs transmit concentrated laser beams towards their
receiver telescopes based on a wireless channel dominated
by line-of-sight (LoS) links. Let us take, as an example, an
LBDn transmitting energy towards FESn with a fixed power
ΥLBDn > 0. The distance between the two devices can be
expressed as dLBDnn [t] =

√
Zn[t]2 + Jn[t]2, where Zn[t] and

Jn[t] 

FESn 

Zn[t] 

Concentrated 

Laser beams 

Base station 

Laser beam 

directors 

Receiver 

telescope 

Fig. 3: Channel modeling of BS-enabled loading process.

Jn[t] are the flight altitude from the LBDn and the distance
between the projection in R2 of FESn and its serving LBDn
at each time-slot t, respectively. For simplicity, at the loading
process, the position of each FESn and its corresponding
LBDn are assumed to be known. We consider a set of all
possible positions D for each FESn during the loading process:

L = {[xLBDnn , yLBDnn , hLBDnn ∈ D]}|n = 1, . . . , N (2)

The received signal strength at FESn from LBDn at each
time-slot t can be derived based on the FSO range equation
[42] as follows:

PLBDnn [t] = ψΥLBDn

O.EF0e
−θdLBDnn [t]

(Sz + dLBDnn [t]∆β)2
(3)

where Sz is the size of the laser beam, O is the receiver tele-
scope’s area of FESn, EF0 is the efficiency of the transmission
receiver optical, and θ is the medium attenuation’s coefficient
in m−1. ∆β is the laser beam’s angular spread that can be
estimated as Sd

Fl
, where Sd and Fl are the detector size and its

focal length, respectively. In this work, we suppose that the
laser power transmission follows a linear energy harvesting
model with a constant efficiency Φ ∈ (0, 1). Therefore, the
concrete harvested energy at FESn at time-slot t is given by:

ELBDnn [t] = ΦPLBDnn [t] (4)

It is worthy to note that (3) and (4) are verified under a
clear weather condition, i.e., the value of θ tends to 10−7m.
Consequently, the variations of ELBDnn [t] over the distance
dLBDnn [t] are dominated by (Sz+dLBDnn [t]∆β)−2 in this case.
Moreover, notice that Υk is supposed to be large and ∆β is
considered to be very small, as in [43] (i.e., ΥLBDn = 1kw
and ∆β = 3.4 × 10−5). As a result, ELBDnn [t] generally di-
minishes much more slowly over the distance dLBDnn [t] than it
does over RF energy harvesting [44]. This also shows that the
laser power transmission could have a much longer charging
distance to satisfy the energy needs of FESs. However, in
this work and to increase the efficiency of the laser-powered
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transmission, FESs should be in close proximity to LBDs
during the loading process.

As for UAV charging, laser beams are not considered due to
two reasons. First, it is assumed that the BS is located at the
edge of the target area (i.e., far from UAVs) and cannot ensure
LoS with UAVs. Second, even if Laser beams can be generated
from FESs, there would be an excessive energy consumption
of FESs and can hinder the proper functioning of this strategy.
As a solution, we assume that in the FES-to-UAV channel,
each FES is equipped with A antennas generating multiple
beams, each of which is assigned with a unique identifier and
covers a certain direction without overlapping (c.f., Fig. 4).

FESn 
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UAVm 

UAVM 

… … 

𝐥n[t]=(𝐱n[t],𝐲n[t],𝐡n[t]) 
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Energy 

beamformer 

…
 

… 

Beams 
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A transmit and 

receive structure  

of beamforming 

Fig. 4: Channel modeling of FES-enabled charging process.

Each beam transmits an RF-signal to a UAV that is equipped
with a pair of antennas operating over orthogonal frequency
bands, each of which is devoted to either data transmission or
energy harvesting to avoid the problem of interference. After
intercepting the RF-signals from FESs, the UAV processes the
signals, transforms them into direct current (DC) energy, and
then stores it in its embedded battery. Since FESs have a cer-
tain altitude and serve other flying UAVs, we assume that FES-
to-UAV channel is LoS dominated with a path loss exponent
α ∈ [2, 4]. It should be stressed that the Doppler effect caused
by the FES mobility is assumed to be perfectly compensated
at the UAV receivers based on the GPS, where the velocities
and positions of FESs can be accurately predicted. Therefore,
the time-varying channel between a given FESn and UAVm
can be expressed as follows [14]:

CHn
m[t] =

√
υ0dnm[t]−αb(Ω) (5)

where υ0 denotes the power gain at the reference distance d0 =
1m. b(Ω) represents a vector of the time difference between
each antenna element, which provides the angle the normal
direction of the array and the beam direction. By considering
a uniform linear array, b(Ω) can be formulated as follows:

b(Ω) = [1, . . . , ej
2πag
λ sin Ω, . . . , ej

2π(A−1)g
λ sin Ω]T (6)

where λ is the wavelength, which is equal to v
q , where v is

the speed of the light and q is the carrier frequency. g denotes
the spacing between the antenna elements. a ∈ {0, . . . , A−1}

represents the coordinate of the ath antenna element. There-
fore, the effective time-varying channel gain between FESn
and UAVm is expressed as:

Gnm[t] =
µ0

(dnm[t])
α
2
|bH(Ω)U |2 (7)

where U = [u0, . . . , ua, . . . , uA−1] denotes the beamforming
vector that describes the phase and amplitude excitation of
each array element, i.e., ua = AEa(Ω)Iae

−j 2π
λ ag sin Ω, where

Ia and AEa(Ω) are the amplitude excitation and the element
pattern of the ath array element, respectively. In the case when
the embedded UAVs’ batteries have unrestricted capacity, the
total harvested energy at UAVm from all FESs at time-slot t
is given by:

Em({ln[t], lm[t]}, t) =

N∑
n=1

Enm[t] =

N∑
n=1

ξGnm[t]Υnψ (8)

where 0 < ξ ≤ 1 denotes the RF-to-DC energy conversion
efficiency at each UAVm. Υn represents the transmission
power of FESn. Note that many factors could affect the sum-
energy received by all UAVs, such as the density of UAVs,
the trajectory, and the velocity of FESs.

B. Energy Consumption

Since it is assumed that both FESs and UAVs have a
limited energy supply and continuously moving, we focus
here exclusively on their energy consumption. Initially, UAVs
with fully charged batteries are dispatched to collect data from
sensors installed at fixed locations on the ground. Moreover,
FESs are deployed above UAVs to adapt to their dynamics and
efficiently supply them with energy and maintain them in flight
as long as possible. It is supposed that both UAVs and FESs
fly with a maximum speed of V maxϑ , ϑ ∈ M ∪ N , and only
hovering when UAVs communicate with sensors. It should
be stressed that the energy consumption dedicated to wireless
communications is relatively small, and therefore it is omitted
in this work. To estimate the energy consumption of each FES
and UAV, we follow the model proposed in [45]. Even though
this model has not been fully validated by flight experiments
and neglects many important factors, such as wind speed, 3D
mobility, and acceleration, it remains the most popular model
in the literature because of its simplicity. It can be formulated
as follows:

(9)

Prop(V ) = ϕb

(
1 +

3V 2

V 2
tip

)
︸ ︷︷ ︸
blade profile power

+ϕi

(√
1 +

V 4

4ι20
− V 2

2ι20

)
︸ ︷︷ ︸

induced power

+
1

2
δΞζκV 3︸ ︷︷ ︸

parasite power

where ϕb represents the induced power in a hover state and the
blade profile power, respectively. V denotes the flying speed
of both FES and UAV, Vtip represents the tip speed of the rotor
blade, and ι0 and ζ indicate the mean induced velocity and the
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solidity of the rotor, respectively. δ, Ξ, and κ are the fuselage
drag ratio, the air density, and the rotor disc area, respectively.
However, there is an exception for FESs, where their energy
consumption is also related to the energy transmission from
their own batteries towards UAVs. Indeed, each FESn have
two modes of functionality, where %n[t] = 1 means that FESn
is transferring energy towards UAVs, otherwise, %n[t] = 0.
As a consequence, the energy consumption of each UAVm
and FESn until the current time-slot t can be estimated as
follows:

Cn({%n[t], ln[t]}, t) =

∫ t

0
Prop(‖vn[t]‖)dt︸ ︷︷ ︸

propulsion energy

+

∫ t

0
%n[t]Υndt︸ ︷︷ ︸

energy transfer

(10a)

Cm({lm[t]}, t) =

∫ t

t−1
Prop(‖vm[t]‖)dt︸ ︷︷ ︸

propulsion energy

(10b)

where vn(t) = l̇n(t) and vm(t) = l̇m(t) represent the
velocities of FESn and UAVm, respectively. To be more
realistic, we suppose that the battery of each UAVm has a
capacity limited to Emaxm . Thus, at time-slot t, the residual
energy of UAVm after harvesting energy from the FESs can
be estimated as follows:

Em[t] =


Emax
m , ifEm[t− 1] +

N∑
n=1

En
m[t− 1] ≥ Emax

m

Em[t− 1] +
N∑
n=1

En
m[t− 1], Otherwise

(11)
Therefore, the residual energy of each FESn and UAVm at

each time-slot t+ 1 is expressed as follows:

En[t+ 1] = Emaxn − Cn({ln[t], pn[t]}, t), ∀n ∈ N (12a)
Em[t+ 1] = Em[t]− Cm({pm[t]}, t), ∀m ∈M (12b)

where Emaxn is the maximum energy capacity of each FESn.
At each time-slot t, the battery levels of each active UAVm
and FESn are supposed to be discretized into 5 different
levels, namely energy levels and denoted by ELϑ[t] ∈
{0, 1, 2, 3, 4},∀ϑ ∈ M∪N . The ratio of the residual energy
Eϑ[t] of each UAV and FES can be classified into energy
levels based on the following equation:

ELϑ[t] =

⌊
4− Emaxϑ − Eϑ[t]

Emaxϑ τ

⌋
,∀ϑ ∈M∪N (13)

where b.c is the floor function and τ is the threshold that is
assumed to be set to 20% in which a given UAVm or FESn
transits between energy levels (e.g., UAVm could pass into
”critical” state if Em[t]

Emaxm
< τ ). Moreover, it is supposed that τ

is the minimum threshold to allow FESs to reach the BS for the
loading process. FESs should continually move in each time-
slot to serve some UAVs despite others while minimizing their
energy consumption. For this purpose, we define a priority Ψ,
where each UAVm has its own priority Ψm[t] ∈ {0, 1, 2, 3, 4}
that is calculated as Ψm[t] = 4−ELm[t]. The highest priority
is set to 4, which indicates that UAVm has an energy level
0% < Em[t]

Emaxm
≤ 20% at time-slot t. We favor to serve active

UAVs with high priorities, which are more likely to deplete
their batteries quickly and falling to the ground. We introduce
a binary variable Acϑ[t] ∈ {0, 1},∀ϑ ∈ M∪N , which takes
the value of 1 if a given UAVm or FESn is active (Eϑ[t] >
0,∀ϑ ∈M∪N ) and 0 otherwise (Eϑ[t] = 0,∀ϑ ∈M∪N ).
Another binary variable Nbm[t] ∈ {0, 1}, ∀m ∈ M, is also
considered to define if an active UAVm has a fully charged
battery or not. Nbm[t] takes the value of 0 if UAVm has a fully
charged battery or inactive, and 1 otherwise in a time-slot t.

Nbm[t] =

{
0, ifEm[t] = Emaxm ∨Acm[t] = 0

1, Otherwise
(14)

The total number of active UAVs in which their batteries
could be charged is given as follows:

UC[t] =

M∑
m=1

Nbm[t] (15)

To have a clear idea of how the energy levels of UAVs
that are not fully charged are distributed around the average
µ (i.e., average of energy levels of active UAVs with not fully
charged batteries). Generally, a large standard deviation means
that energy levels are more dispersed around the average. In
contrast, a small standard deviation indicates that the energy
levels are not widely dispersed around the average. Therefore,
σt is calculated as follows:

σt =

√∑M
m=1 ((ELm[t]×Nbm[t])− µ)

UC[t]
(16)

C. Problem Statement

In line with the preceding discussions, and before we pro-
ceed with the problem statement, we present some assumptions
and concepts, which are required for the proper functionality
of the proposed approach. FESs and UAVs are supposed to be
uniformly distributed over the target area. Initially, we assume
that both UAVs and FESs are fully charged, and their energy
capacities are finite and set to Emaxn and Emaxm , respectively.
Our main objective is to find a control policy defining how
FESs should serve UAVs in each time-slot and fly back to BS
for the loading process when it is needed. To mathematically
formulate the problem, we first define the charging service
status of UAVm with FESn at a time-slot t is given by:

SERnm[t] =

{
1, ifEnm[t] > 0 ∧Nbm[t] = 1 ∧Ψm[t] > 0

0, Otherwise
(17)

To estimate the relative FES service load of UAVm at time-slot
t, we define LDm[t] ∈ {0, 1}, which is calculated as follows:

LDm[t] =

N∑
n=1

SERnm[t]

N
(18)

We also define PRmn [t] ∈ {0, 1, 2, 3, 4}, ∀n ∈ N , ∀m ∈M,
to indicate the energy transfer priority of FESn to UAVm at a
time-slot t, which is expressed as follows:
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PRmn [t] =

{
Ψm[t], ifEnm[t] > 0 ∧Nbm[t] = 1

0, Otherwise
(19)

The total energy transfer priority of a given FESn at time-slot
t is given by (20):

PRn[t] =

M∑
m=1

PRmn [t] (20)

The total energy transfer priorities of all FESs at each time-slot
t is given by (21):

PR[t] =

N∑
n=1

M∑
m=1

PRmn [t] (21)

The proposed approach aims to maximize the harvested energy
among UAVs with a low energy level (or with the highest
priorities). However, it is noticed that the energy levels of
UAVs are dynamic and can change over time. Therefore,
some UAVs with medium and high energy levels may never
be serviced, which leads to unfair charging services. As a
solution, our objective is to balance the service of FESs over
UAVs in a fair manner at each time-slot t. To do so, we use
the widely-known metric of fairness, namely the Jain’s fairness
index [46]. The fairness index up to a time-slot t is given by:

F [t] =

(∑M
m=1 LDm[t]

)2

UC[t]
(∑M

m=1(LDm[t])2
) (22)

We formulate an optimization problem for our scenario to
provide efficient and fair energy transfer to UAVs while jointly
minimizing the energy consumption of FESs, maintaining all
UAVs active, and ensuring that all FESs remain active for a
long time-averaged term. This optimization mainly depends
on the total energy transfer priorities of all FESs PR[t],
fairness level F [t], the activity status of each UAVm Acm[t],
and energy level ELn[t] of each FESn. For convenience, let
L = {ln[t],∀n ∈ N} be the set of positions of FESs at
each time-slot t. Thus, we propose addressing the following
optimization problem:

P : max
L

E

 T∑
t=1

(F [t]PR[t])

T∑
t=1

(σt(M−
M∑
m=1

Acm[t]))+1

×
T∑
t=1

N∑
t=1

ELn[t]

N×T


s.t. C1: Acϑ[t] ∈ {0, 1}, ∀ϑ ∈M∪N ,∀t ∈ T

C2:
N∑
n=1

Acn[t] = N, ∀t ∈ T

C3:
M∑
m=1

Acm[t] = M, ∀t ∈ T

C4: dcn[t] > Sa, ∀n 6= c ∈ N ,∀t ∈ T
C5: dBSn [t] > Sa, ∀n ∈ N ,∀t ∈ T
C6: 0 ≤ xn[t] ≤ w, ∀n ∈ N ,∀t ∈ T
C7: 0 ≤ yn[t] ≤ w, ∀n ∈ N ,∀t ∈ T
C8: A1 < hn[t] ≤ A2, ∀n ∈ N ,∀t ∈ T

(23)
where E[.] is calculated by considering the randomness of

UAV mobility. Constraint C1 represents the activity status of

UAVs and FESs. C2 and C3 ensures that the number of FESs
and UAVs initially deployed, remains all active at each time-
slot t. C4 and C5 denote that FESs should respect the safety
distance Sa between each other and with the BS at each time-
slot t to avoid collisions. C6 and C7 guarantees that FESs will
not cross the boundaries of the target area during the whole
flight mission. C8 restricts FESs to fly in its dedicated flight
space [A1, A2] to avoid collisions with UAVs. It is complex
to address all these constraints based on existing optimization
techniques. This is because it is impractical to explore the
dynamic movement of UAVs, and thus it is challenging to
adapt to the dynamic changes of the environment. Moreover,
it is distinguished that P (23) is a mixed-integer non-linear
program (MINLP) due to the existence of both a binary
variable Acϑ[t] and continuous variables hn[t], xn[t], and
yn[t], which is generally computationally complex to solve
it efficiently, and especially for large-scale networks. To opti-
mally address this issue at a low complexity, we develop a deep
reinforcement learning algorithm to maximize the harvested
energy at UAVs fairly.

IV. ENGINE: A DEEP REINFORCEMENT LEARNING
METHOD

In RL, an agent learns how to optimally interact (i.e., taking
a series of actions A) with an environment system S, to
maximize a numerical reward. At each time-slot t, the agent
observes the state st ∈ S and executes an action at ∈ A based
on the policy π(st, at), which updates st to st+1 ∈ S. This
process is repeated until the end of the episode. The tuple,
(st, at, rt, st+1), is exploited repeatedly to enhance the policy
π until the policy converges to an optimal policy. Nevertheless,
RL is inappropriate for complex environments characterized
by continuous action spaces and high dimensional state spaces.
To improve the RL algorithms’ learning speed and their
performances, the DRL exploits the advantage of a deep neural
network (DNN) to train the learning process.

Deep Deterministic Policy Gradient (DDPG) is a widely
adopted DRL algorithm for continuous control problems [47].
DDPG is based on two DNNs, namely actor and critic (AC)
networks, where the actor network is represented as π(s|ηπ),
which denotes the current policy by obtaining optimal actions
at based on specific states st. The critic network is, however,
represented as a deep Q network Q(s, a|ηQ) in which its
parameter is learned based on the Bellman equation as in Q-
learning. The actor-network π(s|ηπ) can be updated by:

∇ηπJ(ηπ) ≈ E
[
∇ηππ(s|ηπ)|s=st∇aQ(s, a|ηQ)|s=st,a=π(st)

]
(24)

It is worth noting that the actor and critic networks apply the
experience reply and target network to ensure convergence and
improve performance. However, the movement optimization
problem (23) is very challenging since it needs to jointly
optimize the FES trajectory and energy transfer priorities. To
address this problem, we adopted the use of the observable
Markov game approach based on a multi-agent architecture
[48]. The choice of this kind of architecture is based on
the fact that it has an excellent exploration capacity and can
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Fig. 5: Structure of the FES agent.

efficiently find an optimized solution by learning, particularly
in continuous action space. Moreover, since we will deploy
as many agents as there are FESs, the DDPG is adopted
by each agent to address its corresponding decision process.
Furthermore, this architecture centralizes the learning and
distributes the execution using other agents’ observations and
actions.

A. ENGINE Description

There are N agents deployed at the BS representing the
N deployed FESs, which are computational processes able
to perform decisions, timely respond, and follow up on goals.
Each agent interacts with its corresponding FES in a sequence
of actions that are selected from the feasible continuous actions
A , {at, t ∈ T }. Also, the agents interact with the dynamic
UAV environment characterized by a set of states S , {st, t ∈
T }. The states are denoted as st = {ont , t ∈ T , n ∈ N}, where
ont is the private observation of FESn. The actions are defined
as at = {ant , t ∈ T , n ∈ N}, where ant is the action taken
by FESn. At each time-slot t, each agent observes its private
observation ont , takes its own action ant , and receives its own
reward rnt . Then, the UAV environment updates the current
state st and passes it to a new state st+1. It is worth noting
that each agent n, n ∈ N maintains a buffer Bn, a critic
network Qn(st, at|ηQ

n

), an actor network ant = πn(ont |ηπ
n

),
and their respective target networks Qn

′
(st+1, at+1|ηQ

n′

) and
an
′

t+1 = πn
′
(ont+1|ηπ

n′

). As depicted in Fig. 5, the optimization
of our approach is conducted based on a centralized training
combined with a distributed training. Each agent n calculates
and sends its own action ant to the environment, and then it
receives both its own reward rnt and the private observations of
all other agents st = {ont , t ∈ T , n ∈ N}. It should be stressed
that all the agents can share their own private information with

the BS, such as observations and actions. This information is
exploited by the critic network to be trained, which allows each
agent n to estimate its own action ant using only its private
observation ont . The primary objective of each agent n is to
maximize the accumulated rewards. Therefore, all FESs should
operate in an intelligent, orderly, and fair way to achieve the
maximum charging service on the UAV network.

The advantage of ENGINE is that it allows performing
centralized training and distributed execution, where each
agent learns its state-action value function separately. In
addition, each agent can get its action without knowing all
information about the other agents. Another advantage is that
ENGINE is based on the actor and critic networks to stabilize
the learning phase. Furthermore, the critic network generates
state-action values for each agent based on observations and
actions from all agents, which can be used to evaluate the
policy performance during the training phase. However, it is
also fair to recognize that ENGINE does not behave well
in an environment with a large number of agents. This is
due to the fact that with the increasing number of agents in
the system, it adds further complexity to the critic network
when dealing with the input with larger dimensions. As a
result, the critic network may become slower or even show
problematic convergence, thus impacting the actor network’s
training speed. In the following, we describe the three basic
components of our proposed model ENGINE.

1) State space: Each agent n observes the UAV environ-
ment state st = {ont , t ∈ T , n ∈ N}. Each observation ont
includes the following details:

• lm[t] = [xm[t], ym[t], hm[t]], ∀m ∈ M: the current
positions of all UAVs.

• Em[t], ∀m ∈M: the residual energy of all UAVs.
• ln[t] = [xn[t], yn[t], hn[t]], n ∈ N : the current position

of FESn.
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• En[t], n ∈ N : the current residual energy of FESn.
• LDm[t], ∀m ∈M: The FES service loads of all UAVs.
• Sn[t] ∈ {0, 1}, n ∈ N : takes the value of 0 if an

active FESn is at the loading process (ln[t] ∈ L), and 1
otherwise (i.e., FESn is performing the charging process
of UAVs).

At each time-slot t, the format of the observation ont is
defined as ont = [l1[t], . . . , lM [t], E1[t], . . . , EM [t], LD1[t]
, . . . , LDM [t]t, ln[t], En[t], Sn[t]], with a cardinality of 3M +
3. Since all FESs and UAVs are supposed to be backhaul
connected to the BS, in the online testing phase, each of these
variables is collected by the BS at each time-slot and serves as
an input of ENGINE. It should be stressed that all elements of
ont are normalized to accelerate the learning process. In detail,
all elements that can take values greater than 1 are divided to
their maximum corresponding values.

2) Action space: The action space is defined as A =
{Ac(t),Al(t),Atl(t)}, where Ac(t) = {ωn[t], hn[t], dn[t]} is
the actions that could be taken during the charging process
and they consist of three parts defined as follows:

• ωn[t] ∈ [0, 2π[: the azimuthal angle of the FESn or its
horizontal flying direction.

• hn[t] ∈]A1, A2]: the interval altitudes of FESn.
• dn[t] ∈ [0, dmax]: the flying distance of FESn. If
dn[t] = 0, it that FESn is hovering at the same location.
Otherwise, FESn moves to a certain distance dn[t] with
a fixed velocity V ∈ [0, V maxn ].

The actions of FESn during the loading process are lim-
ited to Al(t) = {ωn[t], hn[t], dn[t]}, where ωn[t] = 0,
dn[t] = 0, and no new altitude is selected hn[t] = 0,
which means that FESn is performing the hovering ac-
tion until the loading is achieved. The action taken by
FESn when it needs to make the loading process is re-
stricted to Atl(t) = {ωn[t], hn[t], dn[t]}, where ωn[t] =

arccos

(
xn[t]xLBDnn +yn[t]yLBDnn√

(x2
n[t]+y2n)((xLBDnn )2+(yLBDnn )2)

)
, hn[t] = hLBDnn ,

and dn[t] =
√

(xn[t]− xLBDnn )2 + (yn[t]− yLBDnn )2. It
should be stressed that this action must not be selected by
Ac(t). Consequently, the selection of the different actions
ant ∈ Ã(t) of FESn is given by:

Ã(t) =


Al(t), ifSn[t] = 0 ∧ En[t] < Emax

n

Atl(t), ifSn[t] = 1 ∧ En[t] < Emax
n

Ac(t) \ Atl(t), ifSn[t] = 1 ∧ En[t] ≤ Emax
n

(25)

3) Reward function: At each slot t, we reward each FESn
based on the priorities of energy transfer, the current state st,
and the next state of the environment st+1. In our proposed
method ENGINE, the reward function maximizes the priorities
of energy transfer in a fair way provided by FESn while
maintaining all UAVs active and within an acceptable energy
level during the whole mission. The reward function is defined
as follows:

rnt = ELn[t]× F [t]PRn[t]

σt(M −
M∑
m=1

Acm[t]) + 1

(26)

Generally speaking, the reward function focuses on fairly
distributing energy among UAVs while maintaining their en-
ergy levels at about the same level to avoid their failures.
We punish all FESs for flying out of the target area and
collisions between each other or with the BS. Moreover, a
penalty is given at each FESn for making the loading process.
Consequently, three penalties are incurred by each FESn:

ρ1
n[t] =


Λ1, if xn[t] ∧ yn[t] /∈ [0, w],

Λ1, if hn[t] /∈]A1, A2],

0, Otherwise
(27)

ρ2
n[t] =


Λ2, if dBSn [t] ≤ Sa,
Λ2, if dcn[t] ≤ Sa,∀n 6= c ∈ N
0, Otherwise

(28)

ρ3
n[t] =

{
0, if Sn[t] = 1,

Λ3, Otherwise
(29)

The penalties Λ1, Λ2, and Λ3 are incurred by each FESn,
whenever an action ant would result in violating the safety
distance Sa, crossing the target area, or selecting the loading
process, respectively. Then, at each time-slot t, all penalties are

summed for each FESn, i.e., ρn[t] =
3∑
i=1

ρin[t], and incurred

from its corresponding reward rnt .

B. ENGINE Algorithm

As depicted in Fig. 5, the ENGINE’s implementation con-
sists of the environment, the obtained reward with incurred
penalties, and the different neural networks. The environment
can be partially observed by each agent n ∈ N , where the
actor and critic networks estimate the optimal control policy
of each FESn.

The algorithm of ENGINE is formally presented in Algo-
rithm 1 and illustrated in Fig. 5. This algorithm is executed by
each agent n, which controls the actions of its corresponding
FESn based on a DDPG algorithm and tries to find an optimal
policy πn

∗
. Initially, the reply buffer B of size B is initialized

(Line 2). We randomly initialize the critic network Qn(.) and
the actor network πn(.) with their respective weights ηQ

n

and
ηπ

n

(Line 3). As for Line 4, we create target networks Qn
′
(.)

and πn
′
(.) based on the same structure as Q(.) and π(.) with

their respective weights ηQ
n′ ← ηQ and ηπ

n′ ← ηπ . In line 5,
we initialize the action noise ε. It should be stressed that the
parameters ηQ

n′

and ηπ
n′

are slowly updated at the end of the
algorithm (Lines 30-32) based on the parameter χ = 0.001 for
the sake of stability. In Lines 6-7, we initialize the number of
episodes EPS and the number of epochs T .

The second part of the algorithm (Lines 9-32) represents the
training process of ENGINE over EPS episodes, and in each
episode, there are T time steps. In Lines 10-11, the partial
observation of the environment ont and location ln[t] of each
FESn is randomly initialized ¬. As for Lines 13-17, at each
time-slot t ∈ T , ENGINE selects a trajectory action ant for
each FESn based on the actor-network πn(ont |ηπ

n

) with an
additional random noise ε that decreases over epochs with
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a rate of 0.9995 ­. When an action ant is executed, FESn
receives a reward rnt and transits to the next state st+1. Then,
an observation is made to see if FESn have exceeded their
restrictions (see (27), (28), and (29)). If this is the case, a
set of penalties is calculated in Line 17. These penalties are
deducted from the reward rnt in Line 20. Moreover, the action
ant is canceled and the state of the environment is updated
accordingly to st+1 (Line18). In the case when no penalty is
observed, the reward rnt is calculated, and a new state st+1 is
obtained.

In the last part of ENGINE, each agent n collects the tuple
(st, at, r

n
t , st+1) of each training time step, which is stored in

its replay buffer Bn ®. Then, a random mini-batch samples Γ
tuples from the buffer Bn to make the update of the actor and
critic networks based on three steps °. First, the target value
TGTnγ is calculated based on the target critic network Qn

′
(.),

where ν is a discount factor ². Second, the loss function
Loss(ηQ

n

updates the critic network ¯. Third, the policy
gradient ∇ηπnJ(ηπ

n

) updates the actor network. The update
of the parameters of the actor and critic networks based on
the same method in [47].

C. Complexity and Implementation Analysis

From the view of complexity, ENGINE operates well with
the increase of FESs’ density. This is explained by the fact
that each FES’ computational complexity is only related to
its neural network configuration, where the density of FESs
is considered to be linear to the size of the input layers (see
Table IV in Section V-A). The computational complexity of
Algorithm 1 is mainly determined by the density of FES agents
and the organization of the actor and critic networks for each
agent. Let ðA,i be the unit number in the ith layer of the
actor network and ðC,j be that in the jth layer of the critic
network. Then, it is supposed that the critic and actor networks
of each FES agent comprise J and I fully connected layers,
respectively. If the number of agents in the system is M , the
computational complexity can be calculated as follows:

=cplx = M ×

2×
I−1∑
i=1

ðA,iðA,i+1 + 2×
J−1∑
j=1

ðC,jðC,j+1

 ,

= O

M ×
I−1∑
i=1

ðA,iðA,i+1 +

J−1∑
j=1

ðC,jðC,j+1


(30)

It should also be stressed that ENGINE takes more time to
converge because each agent has its own actor and critic
networks that are updated only once at each step. Furthermore,
the architecture of ENGINE has a high number of parameters
due to the presence of numerous actor and critic networks.
Also, the agents do not have a shared replay buffer, which will
significantly slow down again ENGINE to converge during the
learning phase.

D. Convergence and Communication Cost

ENGINE adopts a gradient descent method to train actor
πn and critic Qn networks of each agent so that to update

Algorithm 1: ENGINE pseudo-code.
1 begin
2 Initialize replay buffer Bn to capacity B, where (Bn = ∅);
3 Randomly initialize actor network πn(.) and critic network

Qn(.) with their respective weights ηπ
n

and ηQ
n

;

4 Initialize target networks πn
′
(.) and Qn

′
(.) with weights

ηπ
n′ ← ηπ

n
and ηQ

n′ ← ηQ
n

;
5 Initialize the action noise ε;
6 EPS ← Number of episodes;
7 T ← Number of time steps;
99 for Episode← 0, . . . , EPS do

10 Initialize ln[t] of FESn;
11 Initialize state on0 , ∀n ∈ N , ∀m ∈M;

// All the components of ont are
initialized.

1313 for t← 0, . . . , T do
14 ant = πn(ont |ηπ

n
) + ε;

15 Execute: action ant = [ωn[t], hn[t]dn[t]], n ∈ N ;
1717 if ρn[t] > 0 then
18 Cancel action ant of FESn and update st+1;

19 Evaluate: get reward rnt based on (26), n ∈ N ;
20 rnt ← rnt − ρn[t];
21 Observe: obtain a new state st+1;
22 Store transition sample (st, at, rnt , st+1) into

experience buffer replay Bn
// Store tuples directly in the

experience replay buffer
23 Sample random mini-batch of size Γ samples of

transitions (sγ , aγ , rnγ , sγ+1) from Bn;
24 Set target value TGTnγ :

25 TGTnγ = rnγ +νQn
′
(sγ+1, πn

′
(sγ+1|ηπ

n′
)|ηQn

′
);

26 Update weight ηQ
n

of Qn(.) by minimizing the loss
(L(ηQ

n
)):

27 Loss(ηQ
n

) =
1
Γ

∑Γ
γ=1(TGTnγ −Qn(sγ , aγ |ηQ

n
))2;

28 Update weight ηπ
n

of πn(.) by:
29 ∇ηπn J(ηπ

n
) ≈

1
Γ

∑Γ
γ=1∇ηπn πn(ont |ηπ

n
)∇ant Q

i(st, at|ηQ
n

)|, n ∈
N , t ∈ T

30 Update the corresponding target network weights

ηQ
n′

of ηπ
n′

by:
31 ηQ

n′
= χηQ

n
+ (1− χ)ηQ

n′
;

32 ηπ
n′

= χηπ
n

+ (1− χ)ηπ
n′

;

their weights ηπ
n

and ηQ
n

, respectively, while decaying
the learning rates with iterations. After a finite number of
iterations, the weights will converge to particular values that
guarantee the convergence of ENGINE. According to [49] and
[50], the theoretical convergence analysis is very complicated
to be made before network training. Instead, the convergence
of ENGINE can be observed by simulations in Section V-A.

As for the communication cost among agents, the interaction
of each agent with the environment generates training samples
that are fed back to the BS, where a centralized training is
made using all information received from the agents. This does
not involve any communication between agents, and therefore
ENGINE incurs no communication cost among agents.

V. PERFORMANCE EVALUATION

In this section, we present the numerical results and perfor-
mance evaluation of ENGINE. In Sub-section V-A, we provide
the simulation settings and the parameters of the adopted
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neural network. In Sub-section V-B, we analyze the obtained
results of the training and testing stages of ENGINE, and we
interpret the numerical results of other baseline methods.

A. Simulation Settings

ENGINE is trained using Tensorflow 1.14.0 and Python
3.6.9 over 2000 episodes. Each episode is divided into 100
time-slots. ENGINE is then tested over ten episodes (i.e.,
1000 time-slots), where the average values of the important
metrics are calculated. We assume our environment to be
non-flat stretching over 5000m×5000m area, and that a set
M of UAVs is randomly moving and hovering within the
target area following the Gaussian Markov model. Each UAVm
can fly at an altitude hm[t] ∈ [50m, 100m]. Another set
N of FESs is also deployed over UAVs to provide them
energy charging services. Each FESn has a flight altitude
hn[t] ∈]100m, 150m]. Each FESn and UAVm can reach a
maximum speed of V maxϑ = 20m/s, ϑ ∈ N ∪M. The main
simulation settings are provided in Table III.

TABLE III: Simulation Setup.

Parameter Description Value
Surface Area size 25 km2

w Area width 5 km
hm Altitude of each UAVm [50m, 100m]
hn Altitude of each FESn ]100m, 150m]
UAV density Number of UAVs 10
FES density Number of FESs [2, 16]
Υn Transmission power of each FESn 50 W
ΥLBDn Transmission power of each LBDn 1 kW
Vmaxn Maximum speed of each FESn 14m/s
Vmaxm Maximum speed of each UAVm 14m/s
µ0 Reference channel gain -10 dB
α Path loss factor 2
q Carrier frequency 700 MHz
ξ Energy conversion 0.5
∆β Laser beam’s angular spread 3.4 × 10−5

Sz Laser beam size 0.1 m
θ Attenuation coefficient 10−7

As for the neural networks, we consider four fully connected
hidden layers for both the actor and critic networks. Both
networks have layers composed of 200, 200, 100, and 100
neurons, respectively, using rectified linear unit (ReLU) as
an activation function. In addition, Hyperbolic tangent (tanh)
is used as an activation function in the actor-network output
layer to restrict movements according to the maximum travel
distance of FESs. The critic network input is represented as a
concatenation of observations and actions, and the output is a
scalar for the evaluation of the observations according to the
global policy. The parameters are listed in Table IV.

Since the dynamic of UAVs to serve is unknown for FESs,
ENGINE is considered as an offline training phase, and it is
mainly executed at the BS to estimate the optimal policy πn

∗
.

Then, πn
∗

is extracted to optimize the movement of FESs to
fairly serve UAVs during the online testing phase.

B. Result Analysis

The simulations are divided into two phases: (i) the training
phase of ENGINE and (ii) the testing phase for a comparative
study with baseline methods. To compare the performance of

TABLE IV: Parameters of ENGINE.

Parameters of actor neural network
Layers Number Size Activ. functions
Input 1 3M + 3 –
Hidden 4 200, 200, 100, 100 ReLU
Output 1 3 Tanh

Parameters of critic neural network
Layers Number Size Activ. functions
Input 1 N(3M + 3) + 3 –
Hidden 4 200, 200, 100, 100 ReLU
Output 1 1 –

Key parameters of the training stage
Parameter Value
Memory size Bn 105

Mini-batch size Γ 256
Actor learning rate 0.001
Critic learning rate 0.001
Optimizer method Adam
Steps for updating target
networks

1000

Reward discount, ν 0.99
ρ1
n, ρ2

n, ρ3
n 10.0

RL Comparisons DQN, Multi-Agent DQN

ENGINE, we consider other DRL methods, namely Deep Q
Network (DQN) [51] and Multi-agent DQN (MADQN) [52].
Moreover, we consider two baseline methods, namely random
and greedy techniques.

1) Training ENGINE: At a first step, we calculate for each
episode the obtained reward and provide some analysis of the
results (c.f., Fig. 6). We can see that the obtained rewards
increase slowly through episodes to reach peak values after
250 training episodes. This is mainly caused by the efficient
learning of ENGINE to the dynamic of UAV network while
making intelligent decisions to increase the energy transfer
priorities among FESs.
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Fig. 6: Reward per episode (UAVs=10 and FESs=5).

To evaluate the convergence of ENGINE, we consider the
accumulated reward, the energy level of UAVs and FESs,
and the fairness index at each episode in the training process
(see Fig. 7). For instance Fig. 7(a) shows that initially, the
accumulated reward is not stable and mainly remains at a
low level. Then, it continues to increase and start stabilizing
after 500 episodes. This is explained by the fact that FESs are
initially randomly distributed over the target area, and their
priority services will be significantly decreased. Then, FESs
learn how to both efficiently perform the loading/charging
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(b) Energy levels of FESs.
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(c) Energy levels of UAVs.
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(d) Fairness index.

Fig. 7: Performance comparisons over episodes (UAVs=10 and FESs=5).

process and fly close to UAVs, especially those with low
energy levels, resulting in an increased reward. In Fig. 7(b),
we clearly distinguish that the average energy level of FESs
increases quickly at the outset of the learning step. This is
because FESs adapt quickly to the environment dynamic and
making movements only when it is required, thus consuming
less energy. At the same time, FESs avoid as much as possible
serving UAVs with high energy levels and tend to maximize
the energy transfer priorities to maintain the maximum number
of UAVs active. From Fig. 7(c), we observe that the initial
average battery level of all UAVs is between 67% and 82 %
due to the energy consumed during taking off from random
origins. Then, their average energy levels reach their lowest
point in nearly 500 episodes but never decrease after. This is
due to the continuous learning of FESs from the interaction
with the dynamic environment of UAVs and builds up a good
policy for multiple FESs trajectory control. Also, FESs have
enhanced their trajectories to achieve time and fair energy
charging services for UAVs, which results in preventing the
majority of UAVs from running out of energy. Under the same
number of episodes, we also trained ENGINE to calculate
the fairness index as depicted in Fig. 7(d). We can clearly
observe that ENGINE provides a high fairness index compared
to MADQN and DQN. This is explained by the fact that FESs
in ENGINE learn how to provide fairly charging services to
UAVs based on a fair service policy. As for MADQN and
DQN, their action space is discreet, and therefore FESs cannot
provide charging services optimally and fairly to UAVs and
adapt to their continuous movements.

In all these obtained results, the rewards, the average energy
levels of UAVs and FESs, and the average fairness index
calculated by DQN and MADQN, do not reach the optimal
values compared to ENGINE and converge more slowly. This
is caused by the overfitting issues of DQN and MADQN and
the extracted small-batch samples with the same probability
for training, which cannot distinguish the important samples.

2) Comparative study with baseline methods: In this sec-
tion, we first study the impact of the FES density on the
average energy levels of UAVs (c.f., Fig. 8). Then, in Fig. 9,
we show the average received energy by each individual UAV.
From Figs. 8(a) and 8(e), two observations can be made. First,
the average energy levels of UAVs in ENGINE significantly
outperform those obtained by the other methods since FESs
make intelligent decisions based on the knowledge of previous
experiences and aim to maximize the priorities of energy

transfer, and therefore increase the average energy levels of
UAVs. Second, as for the random and greedy techniques, they
usually have low fairness, which favors charging some UAVs
in spite of others. While in DQN and MADQN, FESs cannot
perform continuous actions, thus low convergence and not
good performance as in ENGINE. In Figs. 8(b) and 8(f), we
notice that the number of active UAVs increases continuously
as the density of FESs increases. This is due to the increase
of fairness in servicing UAVs, where FESs try to provide
energy charging services fairly between UAVs. The number
of active UAVs in DQN and MAQN has the same behavior
as in ENGINE, but does not perform better. This is explained
by the fact that in DQN and MAQN, some unserved UAVs
tend to quickly lack energy and may fall on the ground, thus
decreasing the number of active UAVs. As for the greedy and
random methods, we notice a reduced number of active UAVs,
which reflects the random behaviors of FESs to cover UAVs
and provide the required energy supply. Figs. 8(c) and 8(g)
show the fairness index according to the density of FESs.
Indeed, it is not strange that the fairness index has a strong
relationship with the density of FESs. Because in ENGINE,
each FES tries to serve at most one UAV to increase fairness
and maximize the rewards until the density of FESs exceeds
the density of UAVs and the fairness reaches nearly 1. As
for DQN and MADQN, even if the density of FESs exceeds
the density of UAVs, fairness did not reach the same level
as in ENGINE, which is due to the low convergence in
these methods, and thus low fairness among UAVs. In the
random and greedy techniques, we observe low and unstable
fairness among UAVs due to the random movements without
taking this factor into account. In Figs. 8(d) and 8(h), we
draw the obtained results in terms of energy levels of FESs
according to the speed of UAVs under the same number of
episodes. Indeed, we distinguish that ENGINE outperforms
DQN, MADQN, and the baseline methods as expected. This is
because ENGINE quickly builds an optimal policy compared
to the other methods, which allows a better movement control
of FESs according to the speed of UAVs. Moreover, it is
observed that ENGINE preserves the residual energy of FESs
up to 10% better than MADQN and DQN. This is because
FESs in ENGINE learn faster to place themselves in the right
places where energy is needed by UAVs.

In Fig. 9, it is observed that UAVs in ENGINE receive
nearly the same amount of energy, which illustrates the near-
fairness performed among UAVs. On the other hand, it is
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Fig. 8: FESs’ density impact on (a) Energy levels of UAVs, (b) Number of active UAV, (c) fairness index, and (d) UAVs’
speed impact on energy levels of FESs.

not the case for DQN and MADQN in which FESs fail to
provide an acceptable fairness index among UAVs due to the
low convergence of their algorithms.
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Fig. 9: Harvested energy of each UAV according to its index
(FESs=5).

VI. CONCLUSION

This research presented a novel technique for durable and
fair energy supply for UAVs using WPT technologies. This
method consists of deploying flying intelligent autonomous
FESs for recharging UAVs using energy beamforming WPT
technology. The main benefit of this technique lies in the
capacity of the FESs to distributively compute energy-efficient
3D trajectories towards the UAVs, while maintaining fairness
in recharging the UAVs, allowing a maximum number of them
active. In this paper, we provided detailed analytical models
for various elements of our solution, including the channel

model, the energy consumption model, and the beamforming-
based energy harvesting model. To support our approach, we
proposed using a multi-agent-based DRL method, called EN-
GINE, for the mobility control of the FES and the computation
of a near-optimal set of corresponding trajectories. Specifi-
cally, ENGINE exploits the movements of FESs in the target
3D space, to maximize the priorities of energy transfer at each
time-slot, taking into consideration the fairness among UAVs.
Furthermore, the training phase of ENGINE was appropriately
tuned to ensure a high level of fairness when scheduling opera-
tions of energy transfer to UAVs. This is done by maximizing
the minimum power transferred to all UAVs, and therefore
extending their flight time. The conducted simulations show
that ENGINE with optimized FES 3D trajectory significantly
improves the wireless powered UAV network performance. In
addition, ENGINE outperforms baseline methods in terms of
four metrics, including the average battery levels, the fairness
index, the average number of active UAVs, and the average
harvested energy.

However, it would be more cost-effective for the FESs to
execute additional tasks to their role of flying energy sources.
Therefore, for future work, we plan to extend the role of FESs
in the current solution with the role of data collectors for
UAVs. In this scenario, FESs can serve as mobile edges with
the ability to collect data from and compute tasks for UAVs
while supplying them with power. Moreover, we believe that
for the real-world deployment of our solution, some physical
variables, such as weather conditions, wireless interference,
and the size/weight of the flying energy sources, which were
neglected in the simulation, should be considered.
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