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ABSTRACT

The classic approach to clip classification consist of computing
scores per class and identifying the most frequent top-score classes.
Usually, predictions are always reported; and consequently, we are
either right or wrong. However, in most applications, erroneous pre-
dictions will carry substantial negative effects. Ideally, we should
communicate only correct predictions and abstain from reporting er-
roneous ones. Two novel methods are shown to come near this goal.
Their main advantages are: on the one hand, most false positives are
successfully identified; on the other hand, the best levels of accuracy
are maintained, if not improved.

Index Terms— image classification, classifiers, neural net-
works, validation step, a contrario, NFA.

1. INTRODUCTION

Image classification is a fundamental task in computer vision that
categorizes images by executing predefined operations on their pix-
els. Video classification can be sometimes very similar to image
classification. Indeed, a digital video can be viewed as a discrete
sequence of frames (i.e. images) sampled at a certain frequency.
Typically, the classification process relies on different components.
The main component consist of cutting edge classifiers which are,
for the most part, derived from deep learning techniques. The direct
output of these classifiers are usually very good nowadays. Still, it is
a common practice to impose some additional conditions in order to
validate predictions from the classifier: a validation step. This step
is usually very simple, and it comes in to improve performance and
to evaluate the confidence of the classifier.

Several datasets have been made available in the literature to
keep track of best performing models for various classes: MNIST [1],
ImageNet [2], Oxford IIIT Pets [3], CIFAR-100 [4], Caltech-UCSD
Birds [5], among others. Many successful deep learning architec-
tures have been proposed and tested on these datasets for image
classification: LeNet-5 [6], AlexNet [7], VGGNet [8], GoogLeNet
(Inception-V1) [9], ResNet-50 [10], NASNet [11], ViT [12], among
many others. Figure 1 shows the VGG16 [8] architecture setup for
classification over the ImageNet [2] dataset.

In comparison to classifiers, the validation step has received less
attention by the scientific community. A possible explanation is that
in order to increase performance it usually works better to improve
the classifier itself. Nevertheless, in some cases improving the clas-
sifier is not an option (e.g. using a third-party classifier, new training
data is not available yet, the cost of the training is expensive, etc);
and even when enjoying performance from a state-of-the-art classi-
fier, the validation step should end up improving the robustness of
the method. When classifiers fail, they often tend to mis-classify
each class into several different others, seemingly randomly. This
noise can be used to identify lack of confidence from the classifier.
A suitable framework to validate events in the presence of noise is

Fig. 1: The VGG16 [8] architecture for classification over the Ima-
geNet [2] Large Scale Visual Recognition Challenge dataset.

the a-contrario theory introduced in [13]. The a-contrario method-
ology has already been successfully used in diverse computer vision
applications [14–22]. They all have in common the proposition of a
metric followed by an evaluation of agreement.

In this paper, we propose two robust validation steps for video
clip classification that attempt to identify false positives by assess-
ing confidence. If there is not enough agreement among predicted
classes per frame, any resulting clip classification is invalidated and
re-assigned to a virtual unknown class. The unknown class signals
for no reporting i.e. no classification is to be communicated to the
outside world. The proposed methods analyze top scores per frame
up to predefined levels, thus enabling for multiple rank detections.
Coherently, classes detected at top ranks (e.g. argmax) are consid-
ered more significant than poorly ranked classes.

This paper is organized as follows. The terminology as well as
two main scenarios are described in Section 2. The two novel clas-
sifiers with a-contrario validation are proposed in Section 3. Exper-
imental results are presented in Section 4. Section 5 concludes the
paper.

2. THE CONTEXT

We define a video, denoted by V , as a sequence of frames {f1, · · · , fn}
that are equally spaced in time. A frame is formally defined as a
function that usually belongs to R2 7→ R (a grayscale image) or to
R2 7→ R3 (a color image). We denote the set of frames as F. A clip
C is defined as a small contiguous subset of the video V ,

C := {fa, · · · , fb} ⊂ V,

where 1 ≤ a < b ≤ n. Let also P :=
{
p1, · · · ,pN

}
denote

the set of classes or properties. We assume that each frame f can be
classified into one and only one class p, i.e. there exists a function ψ,
called frame classifier, such that, ψ (f) = p. Similarly, a clip can be
classified if there exists a clear predominant class among its frames.
The frame classifier ψ is often assumed to depend explicitly on a
score function, φ : F 7→ RN , that assigns to each frame f a score
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Fig. 2: Scenario A. Estimating classes per clip, i.e., given a Cl we
are to predict the class pil to which it belongs.

per class, φ(f) = (s1, · · · , sN ). The score function is frequently
approximated by a neural network.

Based on φ, let us define the greedy frame classifier as:

ψg (f) := pargmaxφ(f). (1)

For simplicity in this paper, the argmax operator is viewed as a
function i.e. argmax: RN 7→ {1, · · · , N}. In practice, whenever
two or more classes share the maximal score, the argmax func-
tion follows a predefined set of rules in order to deterministically
return only one argument of the maxima. Likewise, a consensual
clip classifier can be defined based on scores per frame and a simple
consensual step,

ϕ0 (C) := pj (2)
where

j = argmax
i=1,··· ,N

∑
f∈C

1{i=argmaxφ(f)}. (3)

Finally, a common approach to assess confidence is to impose a min-
imum number of rank one observations from the greedy frame clas-
sifier. We call it the α-consensual clip classifier and it is formally
defined as:

ϕα(C) =
{

pj , α <
∑

f∈C 1{j=argmaxφ(f)}
pu, otherwise (4)

where j is defined as in Equation 3 and pu denotes an added extra
class signaling unconfidence.

Two main scenarios are addressed in this paper when classifying
clips. Let us describe them properly.

2.1. Scenario A. Classes per clip

Given a collection of clips, we are asked to predict the class associ-
ated with each clip, see Figure 2. In this scenario, we deal with clips
in an independent manner, i.e., we assume no connection between
clips. Examples of this scenario are numerous and they naturally
kick in whenever there is need of tags per clip (e.g. main object be-
ing focused by the camera, city or celebrity identification, type of
background, etc).

2.2. Scenario B. Classes per group of clips

As for the previous scenario, a collection of clips is available and we
are to predict a class per clip. In addition, clips are supposed to come
in groups, and frames within each group should share a common and
unique class. The number of groups as well as the number of clips in
each group is unknown beforehand. Figure 3 shows a representation
of this scenario.

This scenario is typical when dealing with clips coming from
a long video in which changes of the targeted events are expected
to occur from time to time. Examples of this situation are: game
identification (when people record themselves playing video games
they often play one game for several minutes and possibly change to
another after a while); spoken language identification (when talking
people are expected to speak the same language for a while, and
possibly switch to another later on); etc.

· · · C01 C02 · · · C0M1
C11 C12 · · · C1M2

· · ·
· · · ↓ ↓ · · · ↓ ↓ ↓ · · · ↓ · · ·
· · · pi0 pi0 · · · pi0 pi1 pi1 · · · pi1 · · ·

Fig. 3: Scenario B. Given a clip Cl we are to predict its class pil

knowing that this class is probably associated with several other
clips. The number of groups and the number of clips in each group
are unknown.

3. A CONTRARIO VALIDATION

The proposed validation procedure is based on the a contrario the-
ory [13], which relies on the non-accidentalness principle [23, 24].
Informally, this principle states that there should be no detection in
noise. In our context, we assess the existence of a causal relation
between several outputs from the score function φ.

3.1. Detecting meaningful classes

In a uniformly distributed random world, you would not expect to
observe a class more frequently than any other. Thus, we propose
to identify classifier confidence with specific anomalies in this ran-
dom world. To evaluate confidence, we measure the probability of
having equal or more frequent appearances of a class than what was
observed. This means that the real assumption in this subsection is
a certain similarity between the right tails from the resulting distri-
butions: one derived from our forthcoming assumption and the other
coming from the true distribution over φ-ranked vectors. Indeed, if
we observe a measure to the left hand side of the right tail, a precise
probability value is not needed as it will not get tagged as meaningful
anyway.

Given a sequence of frames F := {f1, · · · , fM} and the score
function φ, we define a causality function as follows. Our stochastic
modelH0 used to evaluate accidentalness assumes a uniform distri-
bution over φ-ranked vectors. Let Rφ(f)k be a random variable (r.v.)
representing all classes associated to the k highest φ-scores from
frame f i.e. rankkφ(f). For example, an observed value of Rφ(f)1

corresponds to ψg , the greedy frame classifier from Equation 1. A
simple calculation states that

PH0

(
p ∈ Rφ(f)k

)
=
kV k−1

N−1

V kN
, (5)

where N is the total number of classes and V kN is the variations of k
elements among N . In order to assess the accidentalness of φ over
F , we propose to base the validation on the following r.v.:

CkF,φ (p) =
∑
f∈F

1{
p∈Rφ(f)

k

}, (6)

where
{
R
φ(f)
k

}
f∈F

are assumed independent and identically dis-

tributed (i.i.d.). Thus, CkF,φ (p) is a binomial r.v. whose number
of trials equals M and the probability of success for each trial ap-
pears in Equation 5. Finally, the causality function is defined as a
realization of CkF,φ (p), i.e. ckF,φ (p) =

∑
f∈F 1{

p∈rφ(f)
k

}.
To assess the accidentalness of frequent appearences of a class

p, we need to evaluate the survival function of our binomial r.v. in
Equation 6 at time ckF,φ (p): PH0

(
CkF,φ (p) ≥ ckF,φ (p)

)
. When

this probability is small enough, there exists evidence to reject the



null hypothesis and declare the class p meaningful. However, one
needs to consider that usually multiple classes are tested. If 100 tests
are performed, for example, it would not be surprising to observe an
event that appears with probability 0.01 under random conditions.
Thus, the number of tests NT needs to be included as a correction
term, as it is done in the statistical multiple hypothesis testing frame-
work [25],

NT = |
⋃
f∈F

r
φ(f)
k |.

Following the a contrario methodology [13], we define the Number
of False Alarms (NFA) of a class p as:

NFAk,F,φ(p) = NT · PH0

(
CkF,φ (p) ≥ ckF,φ (p)

)
. (7)

Classes with NFA ≤ ε, for a predefined ε value, are accepted as
valid. One can show [13] that under H0, the expected number of
classes with NFA ≤ ε is bounded by ε. As a result, ε corresponds
to the mean number of false detections under H0. We set the value
ε = 10−3, meaning that, under H0, only 1 out of 1000 draws ends
up with a false detection.

Algorithm 1 introduces our proposal to detect classes from a
sequence of frames F and a score function φ. Let us now address
scenarios A and B from Subsections 2.1-2.2.

Algorithm 1 DETECTCLASSES

input:
F - Sequence of frames.
φ - Score function.
kmax - Maximal accepted rank.
ε - NFA threshold.
start:
list of detections = ∅
foreach k ∈ {1, · · · , kmax} do

foreach p ∈
⋃

f∈F r
φ(f)
k do

if NFAk,F,φ(p) < ε then
. p is detected as meaningful

append (k,NFAk,F,φ(p),p) to list of detections

return list of detections

3.2. Detections in Scenario A

Under conditions similar to those from scenario A, Algorithm 2 is
able to classify a collection of clips either into the set of available
classes or into the additional unknown class. The added unknown
class, denoted as pu, is used whenever the score function φ seems
unconfident.

3.3. Detections in Scenario B

Under the hypothesis of scenario B, Algorithm 3 makes global and
per clip detections in order to assess causality. This is extremely
useful when some clips do not have enough frames to detect confi-
dence from the score function φ. The idea behind it is simple. First,
a global strong detection is more reliable than weak per-clip detec-
tions. Indeed, it is easier to assess confidence when more frames are
involved. Finally, as global detections lose the per clip information,
we use their strongly detected classes to validate weak detections per
clip.

Algorithm 2 can be used in this scenario as well, but it will not
exploit the fact that clips come in groups. Algorithm 3 is indeed

Algorithm 2 ACONTRARIOCLIPCLASSIFIER

input:
{C1, · · · , CN} - Clips to classify.
φ - Score function.
kmax - Maximal accepted rank per clip.
ε - NFA threshold per clip.
start:
foreach C ∈ {C1, · · · , CN} do
D(C) = first class in lexicographical order w.r.t. (rank,nfa) from

DETECTCLASSES(C, φ, kmax, ε).

. if DETECTCLASSES returns ∅, we then set D(C) = pu

return D

more adapted to this situation. The reader will notice that if a class p
is not strongly (i.e. globally) detected as meaningful by Algorithm 3,
then no clip association is possible for this class, even if there exists
a clip C such that ∀f ∈ C, p = pargmaxφ(f). Conversely, the most
meaningful class in a clip (i.e. weakly meaningful) might not neces-
sarily be the one assigned to the clip by Algorithm 3. Indeed, a less
meaningful class in that clip might be more meaningful globally,
and therefore have a better chance to emerge as the class assigned to
the clip. Additionally, and depending upon the application, it could
make sense to attach the unknown class pu to any clip for which two
or more global detections are weakly detected.

Algorithm 3 ACONTRARIOGROUPCLASSIFIER

input:
{C1, · · · , CN} - Clips to classify.
φ - Score function.
kgmax - Global maximal accepted rank.
kmax - Maximal accepted rank per clip.
εg - Global NFA threshold.
ε - NFA threshold per clip.
start:
D(Ci) = pu ∀i . initialize D
global detections = DETECTCLASSES(∪Ni=1Ci, φ, kgmax, ε

g)
SORT(global detections) . in-place lexicographical order w.r.t. (rank,nfa)
foreach (k, nfa, p) in global detections do

foreach C ∈ {C1, · · · , CN} do
if D(C) = pu and
p in DETECTCLASSES(C, φ, kmax, ε) then
D(C) = p

return D

4. EXPERIMENTAL RESULTS

We have used these validation steps within our company (Unique
Entertainment Experience) to identify false positives while improv-
ing performance. Our approach is simple: we prefer not to com-
municate a prediction if we know there is a high chance of it being a
false positive. Our models not being public yet, we choose to present
results based on simulated scenarios A and B from Subsections 2.1-
2.2. We simulate these scenarios by ensuring all frames in a clip
share a unique class; all frames belonging to a test set from CIFAR-
100 [4].

Each simulation of scenario A from Subsection 2.1 generates
exactly one hundred clips. Each clip Ci consists of random frames



Scenario A Scenario B

φsmall φvgg φsmall φvgg

Classifiers Acc FP U Acc FP U Acc FP U Acc FP U

Greedy frame classifier (ψg) 30.40 69.60 - 63.48 36.52 - 30.51 69.49 - 63.17 36.83 -
Consensual clip classifier (ϕ0) 60.91 39.09 - 93.07 6.93 - 60.96 39.04 - 92.87 7.13 -
α-Consensual clip classifier (ϕ1) 58.99 20.60 20.41 92.84 5.58 1.58 59.02 20.98 20.00 92.70 5.84 1.46
α-Consensual clip classifier (ϕ2) 41.84 4.09 54.07 87.61 2.37 10.02 42.07 4.11 53.82 87.27 2.50 10.23
α-Consensual clip classifier (ϕ3) 24.91 0.73 74.36 75.55 0.72 23.73 25.15 0.81 74.04 74.54 0.77 24.69
α-Consensual clip classifier (ϕ4) 13.08 0.13 86.79 58.61 0.20 41.19 12.80 0.13 87.07 57.80 0.22 41.99
ACONTRARIOCLIPCLASSIFIER∗ 57.88 10.30 31.82 92.85 4.50 2.65 58.80 10.46 30.74 92.64 4.86 2.49

ACONTRARIOGROUPCLASSIFIER∗∗ - - - - - - 58.56 3.65 37.79 95.09 1.49 3.43

Table 1: Classification metrics over one thousand random simulations of scenarios A and B from Subsections 2.1-2.2. Accuracy, false
positive rate and unconfidence rate are reported for different classifiers based on two score functions: φsmall and φvgg. Legend: mean accuracy
(Acc); mean rate of false positives (FP); mean rate of the virtual unknown class (U); non applicable (-). Our set of parameters in these
experiments were: kmax = 5, ε = 10−3 (*); and kgmax = 1, kmax = 5, εg = ε = 10−3 (**). Cells in each column Acc and FP are colored
linearly between light blue (worst scores) and dark blue (best scores); the U column is not colored.

(a) All classifiers depending on the score function φsmall.

(b) All classifiers depending on the score function φvgg.

Fig. 4: Visualisation of classifiers on a random simulation of sce-
nario B from Subsection 2.2.

belonging to the i-th class from CIFAR-100. The number of frames
per clip ranging randomly between 5 and 10.

Similarly, for each simulation of scenario B from Subsection 2.2,
we draw several clips from two random classes. The number of clips
per class and the number of frames per clip are chosen as random
integers between 5 and 10. Either one or two classes are present in
each simulation of scenario B.

Two score functions have been trained on CIFAR-100: the first,
denoted by φsmall, consists of a small network (two convolutions and
three fully connected layers) trained from scratch for 100 epochs;
the second, denoted by φvgg, is a pretrained VGG16 model1.

1available at pytorch hub: repo ‘chenyaofo/pytorch-cifar-models’ and
model ‘cifar100 vgg16 bn’.

Table 1 reports three classification metrics (accuracy, false pos-
itive rate and unconfidence rate) under scenarios A and B. Eight
score-based classifiers are shown: the greedy frame classifier from
Equation 1, the consensual clip classifier from Equation 2, four α-
consensual clip classifiers from Equation 4, the a-contrario clip clas-
sifier from Algorithm 2 and the a-contrario group classifier from Al-
gorithm 3. In both scenarios, the a-contrario clip classifier ranked
among the highest accuracy scores while correctly identifying false
positives; almost not sacrificing any true positive in exchange for
recognizing false positives. A better compromise is achieved by the
a-contrario group classifier in scenario B, where the false positive
rate has been divided by three with respect to the a-contrario clip
classifier. Dark blue colored cells represent the best scores per col-
umn in Table 1. The proposed methods are consistently highlighted
as among the best scoring methods for both accuracy (Acc) and false
positive rate (FP).

Figure 4 shows, on a random simulation from scenario B, the
outputs of the greedy frame classifier and our two proposals. No-
tice the apparent randomness when classes are mis-classified by the
greedy frame classifier, i.e. the red dots out of the groundtruth line.
However, the classifier is sometimes pointing to a unique false posi-
tive; and some classes were not even observed. This means that our
assumption of uniformity over φ-ranked vectors does not hold. Still,
as commented in Subsection 3.1, this is not a dealbreaker, as our
core assumption is of similar right tails of Rφ(f)k under H0 and un-
der real life conditions; which explains the success of the proposed
classifiers under scenarios A and B.

5. CONCLUSIONS

In this paper we proposed two methods for clip classification. They
measure confidence of the score function when classifying, allowing
to accurately identify false positives. High levels of accuracy (if not
the best) are kept, while detecting lack of confidence in erroneous
predictions. These methods are helpful to prevent reporting when a
clip is likely to be mis-classified. A small variation of this methodol-
ogy could lead us to robust assignments of multiple classes per clip.
This extension will be the focus of future work. All results (and
more) presented in this paper are available at:
https://rdguez-mariano.github.io/pages/valsteps
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matching, with an application to keypoint matches validation,”
in ICIP, pp. 946–950. 2015.
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