
HAL Id: hal-03578218
https://hal.science/hal-03578218

Submitted on 21 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Station-Keeping of L2 Halo Orbits Under Sampled-Data
Model Predictive Control

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco, Dorothée
Normand-Cyrot

To cite this version:
Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco, Dorothée Normand-Cyrot. Station-Keeping
of L2 Halo Orbits Under Sampled-Data Model Predictive Control. Journal of Guidance, Control, and
Dynamics, 2022, �10.2514/1.G006349�. �hal-03578218�

https://hal.science/hal-03578218
https://hal.archives-ouvertes.fr


Station-keeping of 𝐿2 halo orbits under sampled-data model
predictive control

Mohamed Elobaid∗, Mattia Mattioni† and Salvatore Monaco‡

Department of Computer, Control and Management Engineering (DIAG) (La Sapienza university of Rome); via Ariosto
25, 00185 Rome (Italy)

Dorothée Normand-Cyrot§
Laboratory of Signals and Systems (L2S, UMR 8506) (CNRS and University of Paris Saclay); 3, Rue Joliot Curie,

91192, Gif-sur-Yvette (France)

I. Introduction
The dynamics of a spacecraft in the Earth-Moon gravitational system (the so-called Restricted Three-Body Problem

(RTBP) [1, 2]) exhibit equilibria commonly known as Libration (or Lagrangian) points. This makes Lagrangian points

excellent locations for spacecrafts in exploration applications [3]. Among those the so-called translunar Libration

point 𝐿2 has been attracting particular interest for various satellite communication applications [4] and deep space

observation and exploration purposes [5] as also testified by the numerous space missions that have already taken place

(e.g., NASA’s ARTEMIS [6] and CNSA’s Chang’e 5-T1 [7]) and new ones are in schedule [8].

However, keeping a spacecraft close to 𝐿2 requires an active control action because, as well-known, it is an unstable

equilibrium point as are most equilibrium trajectories within the Halo family of orbits around it [9, 10]. In this

respect, several control design methods have been proposed throughout the last decades for stabilizing Halo orbits while

mitigating the effect of perturbations and unmodelled dynamics (see [11] for a complete survey, and [12] for an earlier

work). Among these and related to this work, the most important ones are based on optimization [13–19], receding

horizon [20, 21] and advanced nonlinear design (e.g. projection to the stable manifold [22], feedback linearization,

nonlinear regulation [23] and backstepping [24]). In the majority of the aforementioned works, a circular RTBP model

is used to describe the dynamics of a spacecraft so neglecting the primaries motion perturbations whose effect, however,

cannot be discarded in practice. Only few works consider the more realistic elliptic RTBPs in which the eccentricity is

not zero (e.g. [3, 23]) possibly making use of ephemeris models considering the solar radiation pressure and other

gravitational perturbations (e.g. [24]).

In the sequel, we provide a new control scheme assuming the so-called elliptic RTBP model under the influence of

solar radiation pressure which captures the principal feature of the dynamics while retaining simplicity [11]. In addition,

a modified model predictive control approach is proposed to cope with real-time implementation issues as, for instance,
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the digital nature of both actuation and sensing and possible limits on control, unavoidable in practice. In particular,

we consider the case in which measures are available only at sporadic time instants whereas the control is piecewise

constant over the sampling period (e.g. [25]). The approach we propose is based on the design of multi-rate (MR)

strategies at the planning level providing a suitable reference governor for a model-predictive control (MPC) control

scheme. The resulting control system enables to overcome the limits of small prediction horizons underlined in [21],

when the controller is designed under usual MPC. As a matter of fact, such limits would bring to unfeasible controllers

for small prediction horizons when the design makes use of a the sampled-data model, due to the cancellation of the

possibly unstable zero-dynamics under sampling [26]. Also, the use of large prediction horizons, typically used as a

stratagem in practice, might introduce large computational delays.

This work is contextualized in this framework by proposing a new sampled-data MPC control scheme where the

problem is simplified. This is achieved by generating a suitable reference trajectory based on a multi-rate planner which

guarantees stability of the closed loop and feasibility of the optimization problem solved, at each step, by the MPC

assuming cheap control. In particular, such a planner is designed starting from the nonlinear regulation-based controller

proposed in [23] which yields, by construction, admissible and bounded trajectories which can be then fed to the MPC as

reference to track. In this context, the contribution of this paper stands in the proposition of a new control scheme which

employs at the low level an inherently robust nonlinear MPC fed by a references generated by a multi-rate sampled-data

model of a control system designed making use of nonlinear regulation.

The choice of the proposed control scheme is motivated by the observation that MPC and nonlinear regulation can be

employed together to mitigate each the deficiencies of the other: nonlinear regulation appears to be the natural context

for setting the problem since the references and perturbations are periodic although it lacks in robustness to unmodelled

disturbances; MPC is becoming a standard tool for handling tracking applications, it is inherently robust to bounded

perturbations [27] despite it requiring reference signals pre-processing to guarantee convergence and recursive feasibility.

Thus, the implementation of a nonlinear MPC fed by samples of a reference signal generated by the sampled-data model

of the controlled circular RTBP under nonlinear regulation provides a natural solution.

The remainder of this work is organized as follows. Notations are given at the end of this section. Section II

describes the motion equations, the class of quasi Halo orbit references under investigation and formally states the

problem. Some background material on the employed control strategies which are at the basis of the proposed control

scheme are detailed in Section III. The proposed control scheme is developed in Section IV. Section V presents a

comparative study highlighting the advantages of the proposed approach as well as brief discussion of computational

aspects. Concluding remarks end this note.
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Notations

R, C and N denote the sets of real, complex and natural numbers respectively whereas Z≥0 = N∪ {0}, S1 = {𝑝 ∈ C :

|𝑝 | < 1} and C− is the left-hand side of the complex plane. For a real matrix 𝐴 ∈ R𝑛×𝑛, 𝜎(𝐴) ⊂ C denotes its spectrum.

The symbols > 0 and < 0 (resp. � and ≺) denote positive and negative definite functions (resp. matrices), respectively.

Given a vector 𝑞 ∈ R𝑛, and matrix 𝐴 � 0, the weighted norm of 𝑞 is denoted ‖𝑞‖𝐴 =
√︁
𝑞>𝐴𝑞. 𝐼 and Id are the identity

matrix (of suitable dimensions) and the identity operator respectively. All vector fields and mappings are assumed

smooth. Given a smooth vector field 𝑓 over R𝑛 the Lie derivative is denoted by L 𝑓 =
∑𝑛

𝑖=1 𝑓𝑖 (·) 𝜕
𝜕𝑞𝑖
and recursively

L𝑖
𝑓
= L 𝑓 (L𝑖−1𝑓 ) with L

0
𝑓
= Id. The Lie exponent operator is given by 𝑒L 𝑓 := Id +∑𝑖≥1

L𝑖
𝑓

𝑖! . A continuous function

𝛾 : [0,∞) → [0,∞) with 𝛾(0) = 0 is said to be of class K∞ if it is unbounded and strictly increasing. A continuous

function 𝑅(𝑥, 𝛿) is of order O(𝛿𝑝) with 𝑝 ≥ 1 if, whenever it is defined, it can be written as 𝑅(𝑥, 𝛿) = 𝛿𝑝−1 𝑅̃(𝑥, 𝛿) and

there exists a function 𝛽(𝛿) ∈ 𝐾∞ and 𝛿★ > 0 such that ∀𝛿 ≤ 𝛿★, |𝑅̃(𝑥, 𝛿) | ≤ 𝛽(𝛿). Both 0𝑚×𝑛, 𝐼𝑛 denote a zero matrix

of dimension 𝑚 × 𝑛 and the Identity matrix of dimension 𝑛 respectively.

II. Modelling and Problem Statement

A. The spacecraft model

The motion of a small third body under the gravitational pull of both the Earth and Moon gets the form (see [11] and

the references therein)

¥𝑥−𝑢1 − 2 ¤𝑦(1 + 𝛽(𝑡)) − 𝑥(1 + 2𝛽(𝑡) + 𝛽(𝑡)2) − 𝑦 ¤𝛽(𝑡) = −
(1 − 𝜇) (𝑥 + 𝜇(1 + 𝛼(𝑡)))

𝑟1
− 𝜇(𝑥 − (1 − 𝜇) (1 + 𝛼(𝑡)))

𝑟2
+ 𝑔𝑠𝑐

𝑐
cos2 (𝜁𝑡)

¥𝑦−𝑢2 − 2 ¤𝑥(1 + 𝛽(𝑡)) − 𝑦(1 + 2𝛽(𝑡) + 𝛽(𝑡)2) − 𝑥 ¤𝛽(𝑡) = −
(1 − 𝜇)𝑦
𝑟1

− 𝜇𝑦
𝑟2
+ 𝑔𝑠𝑐

𝑐
sin2 (𝜁𝑡) (1)

¥𝑧−𝑢3 = −
(1 − 𝜇)𝑧
𝑟1

− 𝜇𝑧
𝑟2

where: 𝑒 ≈ 0.0549 is the eccentricity; 𝑥 , 𝑦 , 𝑧 are the distance normalized coordinates of the third body expressed in

a rotating frame centered at the barycenter when the eccentricity 𝑒 is small; 𝑢1 , 𝑢2 , 𝑢3 are three axis thrusts in the

corresponding direction; 𝛼(𝑡) and 𝛽(𝑡) are periodic functions with zero mean value admitting the form of a series

expansion in 𝑒 given by

𝛼(𝑡) = −𝑒 cos(𝑡 + 𝜙) + 0.5𝑒2 (1 + cos(2𝑡 + 2𝜙)) +𝑂 (𝑒3) (2a)

𝛽(𝑡) = 2𝑒 cos(𝑡 + 𝜙) + 2.5𝑒2 cos(2𝑡 + 2𝜙) +𝑂 (𝑒3); (2b)

𝑚1, 𝑚2 are the masses of the Earth and Moon respectively, and 𝜇 =
𝑚2

𝑚1+𝑚2 ; 𝑟𝑖 =
|𝑟𝑖,3 |
‖𝑟𝑖,3 ‖3

for 𝑖 = 1, 2 denote the norm, in

the distance normalized rotating frame, of the vector from the Earth to the third body and from the moon to the third

body respectively; 𝑔𝑠𝑐 and 𝑐 are the solar constant and the speed of light with 𝑔𝑠𝑐
𝑐
≈ 4.5−6𝑁/𝑚2; finally, 𝜁 ≈ 0.9252 is
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the angular rate of the sun light line in non-dimensional units.

Remark II.1 It is assumed that the average distance between Earth and Moon is normalized, as well as the sum of

masses of Earth and Moon (i.e., 𝑚1 + 𝑚2) and the average angular rate of change between the rotating and inertial

frame [3].

Remark II.2 The periodic functions 𝛼(𝑡) and 𝛽(𝑡) are used to capture the effect of eccentricity 𝑒 of the orbits; as a

matter of fact, when 𝛼(𝑡) = 𝛽(𝑡) = 0, (1) reduces to the well known approximated circular RTBP model.

The motion equations (1) can be re-written in the control affine perturbed state-space form

¤𝑞 = 𝑓 (𝑞, 𝜉) + 𝐵(𝑢 + 𝐷)

𝑝 = ℎ(𝑞) = 𝐶𝑞
(3)

with

𝑓 (𝑞, 𝜉) =


𝑓1 (𝑞)

𝑓2 (𝑞, 𝜉)

 , 𝑓1 (𝑞) =
[
03×3 𝐼3

]
𝑞, 𝐵 =


03×3

𝐼3

 , 𝐶 =

[
𝐼3 03×3

]
𝑓2 (𝑞, 𝜉) = − 𝑀𝑝 − 2𝑁 ¤𝑝 − 𝜉1 (2𝑀𝑝 + 2𝑁 ¤𝑝) − 𝜉2𝑀𝑝 − 𝜉3𝑁 ¤𝑝 −

1 − 𝜇
‖𝑝 − 𝑑1‖3

(𝑝 − 𝑑1) −
𝜇

‖𝑝 − 𝑑2‖3
(𝑝 − 𝑑2)

𝑀 =



−1 0 0

0 −1 0

0 0 0


, 𝑁 =



0 −1 0

1 0 0

0 0 0


, 𝑑1 =



−𝜇 − 𝜉4
1−𝜇

0

0


, 𝑑2 =



1 − 𝜇 + 𝜉4
𝜇

0

0


where 𝑝 = (𝑥 𝑦 𝑧)𝑇 ∈ R3 specifies the output, 𝑞 := (𝑞1 . . . 𝑞6)> = (𝑝> ¤𝑝>)> ∈ R6 the state, 𝑢 ∈ R3 the control input,

𝜉 (𝑡) =
(
𝛽(𝑡) 𝛽2 (𝑡) ¤𝛽(𝑡) 𝜇(1 − 𝜇)𝛼(𝑡)

)>
∈ R4 (4)

and the vector of the eccentricity perturbation and the Solar Radiation Pressure (SRP)

𝐷 (𝑡) =



𝐺𝑠𝑐

𝑐
cos2 (𝜁𝑡)

𝐺𝑠𝑐

𝑐
sin2 (𝜁𝑡)

0


.

When setting 𝜉 = 04×1, 𝐷 (𝑡) = 03×1, the dynamics (1) reduces to the so-called circular RTBP model. In that case,

the resultin dynamics possesses five equilibria with fixed location on the rotating frame and usually denoted by 𝐿𝑖 , with
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𝑖 = 1, . . . , 5. Among these, 𝐿1, 𝐿2 and 𝐿3 are the so-called collinear points with the corresponding 𝑥 coordinates, in

the distance normalized rotating frame, given by 𝐿3 = −1.0050627, 𝐿1 = 0.8369147, 𝐿2 = 1.155682. As shown in

[28, 29] (see also [30, 31] for comments on the circular and elliptic RTBP cases respectively), the solutions of (3) close

to the collinear equilibria, when suitably initialized, are periodic in nature as also underlined by the corresponding linear

tangent model of (1).

B. The quasi-halo orbit model and 𝐿2-station keeping

When neglecting external signals (i.e., 𝐷 = 𝑢 = 03×1), the linear tangent model of (3) at 𝑞★ = (𝐿2 0 0 0 0 0)> gets

the form

¤𝑞 = 𝐴𝑞, 𝐴 =


03×3 𝐼3

𝐴2,1 𝐴2,2

 , 𝐴2,1 =



1 + 2𝜂 0 0

0 1 − 𝜂 0

0 0 −𝜂


, 𝐴2,2 =



0 2 0

−2 0 0

0 0 0


(5)

with 𝜂 =
1−𝜇
(𝐿2+𝜇)3

+ 𝜇

(𝐿2−1+𝜇)3
= 3.194075. Because 𝐴 possesses periodic modes, for a suitable set of initial conditions

𝑞0 ∈ R6, (5) admits periodic and bounded solutions of the form 𝑞(𝑡) = (𝜈(𝑡) ¤𝜈(𝑡))> [28] with

𝜈(𝑡) =
[
− 𝑘 (1−𝜂+Ω2)

2Ω cos(Ω𝑡 + 𝜙) 𝑘 sin(Ω𝑡 + 𝜙) 𝑘 cos(Ω𝑧 𝑡)
]>
. (6)

where, in addition, 𝑘 being a constant depending on the initial displacement from 𝐿2, 𝜙 a phase angle and Ω,Ω𝑧 the

in-plane and out-of-plane natural frequencies. It is assumed that Ω = Ω𝑧 = 1.8636 for guaranteeing visibility from

Earth. In addition, when simulating, 𝜙 is set to zero.

Expression (6) defines a quasi Halo orbit that is an approximate circular orbit in 3D centered around 𝐿2. In this

sense, the objective is to drive and maintain the satellite onto such an orbit. Formally, the control objective consists in

designing a feedback law ensuring tracking of the quasi halo orbit described by (6) (i.e., that 𝑝(𝑡) → 𝜈(𝑡) as 𝑡 →∞). In

the concerned literature (e.g., [11] and references therein) such a problem is commonly referred to as station-keeping of

the 𝐿2 orbit and has found, as already mentioned, numerous solutions under different working assumptions. However

none of them considers, at the same time, issues arising from both digital implementation of the control laws and the

effect of unmodelled perturbations over the closed loop as formally set here below.

Problem II.1 (𝐿2 station-keeping under digital control) Consider a spacecraft whose dynamics around 𝐿2 is de-

scribed by (3). Assume that measures of the states are available at periodic sampling instants 𝑡 = 𝑘𝛿 with 𝑘 ∈ Z≥0,

and 𝛿 ≥ 0 the sampling period. In addition, let the the control be piecewise constant over intervals of length 𝛿; i.e.,

𝑢(𝑡) = 𝑢(𝑘𝛿) = 𝑢(𝑘) for 𝑡 ∈ [𝑘𝛿, (𝑘 + 1)𝛿(. Design a piecewise constant feedback 𝑢(𝑘) = 𝛾(𝑞(𝑘), 𝜈(𝑘)) ensuring

that the position of the satellite approaches and stays on the quasi-Halo orbit reference (6) at all sampling instants
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𝑡 = 𝑘𝛿, 𝑘 ≥ 0; namely, 𝑝(𝑘𝛿) → 𝜈(𝑘𝛿) as 𝑘 →∞ and 𝑝((𝑘 + 1)𝛿) = 𝜈((𝑘 + 1)𝛿) if 𝑝(𝑘𝛿) = 𝜈(𝑘𝛿).

Before going in the details of the solution we propose, the continuous-time one based on regulation is recalled from [23]

together with preliminaries on sampling and nonlinear MPC.

III. Recalls on nonlinear continuous-time and sampled-data 𝐿2 station keeping control

A. Continuous-time nonlinear regulation for Halo orbits stabilization

When neglecting the effects of the SRP, a good solution to the 𝐿2-station-keeping control is achieved under regulation

by fixing the exosystem as

¤𝜔 =𝑆𝜔 (7a)

𝜉 =𝑇𝜉𝜔 (7b)

𝜈 =𝑇𝜈𝜔 (7c)

with 𝜔 ∈ R4 and

𝑆 =


𝑆1 02×2

02×2 𝑆2

 , 𝑆1 =

0 −1

1 0

 , 𝑆2 = Ω𝑆1, 𝑇𝜈 =


03×2

− 𝑘 (1−𝜂+Ω2)
2Ω 0

0 𝑘

𝑘 cos 𝜙 𝑘 sin 𝜙


, 𝑇𝜉 =



2 0

0 0

0 −2

−𝜇(1 − 𝜇) 0

04×2


𝑒.

(8)

The so-defined exosystem dynamically generates, when setting the initial condition𝜔0 =
(
cos 𝜙 sin 𝜙 cos 𝜙 sin 𝜙

)>
,

the external signals feeding (3) and, in particular, the quasi Halo orbits (6), the reference trajectories to track, and the

periodic eccentricity perturbations (7b) to asymptotically reject.

As the intuition suggests, the exosystem satisfies the internal model principle [32] so that the problem reduces to

stabilizing the internally admissible trajectory (7c) while negating the effect of the eccentricity perturbations (7b);

namely, one seeks for a control law ensuring the regulation error falls to zero asymptotically, i.e.,

𝑒(𝑡) = 𝐶𝑞(𝑡) − 𝑇𝜈𝜔(𝑡) → 0 as 𝑡 →∞.

This argument is at the basis of the controller proposed in [23] deduced by assuming 𝜉 (𝑡) ≈ 0 and approximating (3) as

¤𝑞 = 𝑓0 (𝑞) + 𝑃(𝑞)𝜉 + 𝐵𝑢 (9)
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with

𝑓0 (𝑞) = 𝑓 (𝑞, 0), 𝑃(𝑞) = 𝜕 𝑓

𝜕𝜉

���
𝜉=0
.

In this way, one gets the feedback law

𝑢 = 𝑐(𝜔) + 𝐾 (𝑞 − 𝜋(𝜔)) (10)

with: 𝜋 : R4 → R6 and 𝑐 : R4 → R3, solutions to the Francis-Byrnes-Isidori equations [33, 34],

𝜕𝜋(𝜔)
𝜕𝜔

𝑆𝜔 = 𝑓0 (𝜋(𝜔)) + 𝑃(𝜋(𝜔))𝜔 + 𝐵𝑐(𝜔)

0 = 𝐶𝜋(𝜔) − 𝑇𝜈𝜔,

given by

𝜋(𝜔) = Π𝜔, Π =


𝑇𝜈

𝑇𝜈𝑆

 , 𝑐(𝜔) = −
[
03×3 𝐼3

] (
𝑓0 (𝜋(𝜔)) + 𝑃(𝜋(𝜔))𝑇𝜉𝜔

)
+ Π𝑆𝜔 (11)

with 𝐾 ensuring 𝜎(𝐴 + 𝐵𝐾) ⊂ C−, 𝐴 =
𝜕 𝑓0 (𝑞)
𝜕𝑞

���
𝑞=𝑞★
. In [23], this control was shown to provide good results both in

terms of quasi-Halo orbit station-keeping error (also when considering higher order terms in (2)) and energy expenditure

in the sense of ‖𝑢(𝑡)‖ in the nominal case of 𝐷 (𝑡) = 0. However, such a controller lacks in robusteness with respect to

unmodelled uncertainties (e.g., the effect of the SRP) and digital implementation of the control laws as demanded from

more recent practical scenarios [5]. To make regulation robust with respect to sampling, a solution based on direct

digital design has been proposed in [25] solving the regulation problem on the sampled-data multi-rate equivalent model

of (3). Still, in this setting, measures are available only at the sampling periods while the control switches at suitably

defined sub-intervals, so making it work in open loop during such sub-intervals.

B. Multi-rate 𝐿2-station under sampling

When 𝐷 = 03×1, the corresponding unperturbed model (3) possesses a well-defined (vector) relative degree

𝑟 = (2 2 2); i.e., the following holds:

• 𝐿𝐵ℎ(𝑞) = 𝐶𝐵 = 03×3 while 𝐿𝐵𝐿 𝑓 (·, 𝜉)ℎ(𝑞) = 𝐶 𝜕 𝑓 (𝑞, 𝜉 )
𝜕𝑞

𝐵 ≠ 03×3;

• the decoupling matrix𝑈 (𝑞, 𝜉) = 𝐶 𝜕 𝑓 (𝑞, 𝜉 )
𝜕𝑞

𝐵 is non-singular.

Let us now assume that measurements are available only at 𝑡 = 𝑘𝛿 (i.e., the sampling instants) with 𝑘 ≥ 0 and the

control and the eccentricity perturbation are piecewise constant over the sampling period 𝛿 ≥ 0; i.e., 𝜉 (𝑡) = 𝜉 (𝑘) and

𝑢(𝑡) = 𝑢(𝑘) for 𝑡 ∈ [𝑘𝛿, (𝑘 + 1)𝛿(. Then, the dynamics are described at all sampling instants by the so-called single-rate

7



(SR) equivalent sampled-data model which takes the form of a map

𝑞(𝑘 + 1) = 𝐹 𝛿 (𝑞(𝑘), 𝜉 (𝑘), 𝑢(𝑘))

𝑝(𝑘) = ℎ(𝑞(𝑘)) = 𝐶𝑞(𝑘)
(12)

with 𝑞(𝑘) = 𝑞(𝑘𝛿) and

𝐹 𝛿 (𝑞, 𝜉, 𝑢) = 𝑒𝛿L 𝑓 (·, 𝜉 )+𝐵𝑢𝑞 = 𝑞 +
∑︁
𝑗>0

𝛿 𝑗

𝑗!
(𝐿 𝑓 ( ·, 𝜉 )+𝐵𝑢) 𝑗𝑞. (13)

It is a matter of computation to verify that, independently on the continuous-time vector relative degree 𝑟, the relative

degree of each output channel of the sampled-data equivalent model (12) always falls to 𝑟𝑑 = (1 1 1); namely, one gets

𝜕𝑝(𝑘 + 1)
𝜕𝑢(𝑘) =

𝛿2

2!
L𝐵L 𝑓 ( ·, 𝜉 )ℎ(𝑞) + O(𝛿3) =

𝛿2

2!
𝐶
𝜕 𝑓 (𝑞, 𝜉)
𝜕𝑞

𝐵 + O(𝛿3) ≠ 0.

As a consequence, the sampled dynamics (12) possesses a further unstable zero dynamics (the so-called sampling

zero-dynamics) of dimension 3. For this reason, inversion-like techniques via single-rate sampling cannot be achieved

while guaranteeing stability of the internal dynamics. This fact induces some obstructions due to the appearance of

the sampling zero-dynamics. To overcome this pathology, multirate sampling has been introduced and developed in a

nonlinear context [35].

In detail, fixing 𝛿 = 𝛿
2 and 𝑢(𝑡) = 𝑢

𝑖 (𝑘), 𝑡 ∈ [𝑘𝛿, 𝑘𝛿 + 𝑖𝛿(, 𝑖 = 1, 2 one gets the multirate (MR) equivalent model of

order 2 of the form

𝑞(𝑘 + 1) =𝐹 𝛿
2 (𝑞(𝑘), 𝜉 (𝑘), 𝑢(𝑘)) (14)

with

𝐹 𝛿
2 (𝑞, 𝜉, 𝑢) = 𝐹

𝛿 (·, 𝜉, 𝑢2) ◦ 𝐹 𝛿 (𝑞, 𝜉, 𝑢1) =
∑︁

𝑗1 , 𝑗2≥0

𝛿 𝑗1+ 𝑗2

𝑗1! 𝑗2!
(𝐿 𝑓 ( ·, 𝜉 )+𝐵𝑢1 ) 𝑗1 ◦ (𝐿 𝑓 ( ·, 𝜉 )+𝐵𝑢2 ) 𝑗2𝑞.

At this point, the multi-rate design model used for regulation is deduced by approximating (14) as

𝑞(𝑘 + 1) =𝑞(𝑘) + 𝛿
2
(
𝑓 𝛿 (𝑞(𝑘), 𝜔(𝑘)) + 𝑔𝛿 (𝜔(𝑘))𝑢(𝑘)

)
(15)

with

𝑓 𝛿 (𝑞, 𝜔) = 𝑓 (𝑞, 𝑇𝜉𝜔) + 𝑓 (𝑞, 𝑇𝜉 𝑒
𝛿
2 𝑆𝜔) + 𝛿

2
𝜕 𝑓

𝜕𝑞
(𝑞, 𝑇𝜉 𝑒

𝛿
2 𝑆𝜔) 𝑓 (𝑞, 𝑇𝜉𝜔)

𝑔𝛿 (𝜔) =
[ (
𝐼 + 𝛿

2
𝜕 𝑓

𝜕𝑞
(𝑞, 𝑇𝜉 𝑒

𝛿
2 𝑆𝜔)

)
𝐵 𝐵

]
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where we have used the exosystem (7) for predicting the disturbance at the small sampling instants 𝑡 = 𝑘𝛿 + 𝛿; namely,

𝜉 (𝑘𝛿 + 𝛿) = 𝑇𝜉 𝑒
𝛿
2 𝑆𝜔(𝑘) and 𝜔(𝑘) = 𝜔(𝑘𝛿).

Because 𝑔𝛿 (𝜔) is non-singular the regulation problem is solved by the feedback

𝑢 =
(
𝑔𝛿 (𝜔)

)−1 (
𝐴𝑑 (𝑞 − 𝜋(𝜔)) − 𝑓 𝛿 (𝑞, 𝜔) + 𝜋(𝑒𝛿𝑆𝜔)

)
with 𝜋(𝜔) as in (11) and 𝐴𝑑 any Schur stable matrix (i.e., with 𝜎(𝐼 + 𝛿𝐴𝑑) ∈ S1). In this sense a MR feedback was

used to solve Problem II.1 in an approximate sense. This feedback was shown to give better results when applied to the

simulation model (3) without SRP compared to the emulation-based implementation of the continuous-time regulation

feedback (10) (i.e., when directly implemented via zero-order-holding (ZOH) and no redesign). On the other hand, a

known limitation of MR sampled-data control is the lack of robustness.

C. 𝐿2-station keeping under nonlinear MPC

With reference to the SR sampled-data model (12) and assuming 𝜉 = 04×1, a station-keeping nonlinear MPC has

been proposed in [21] based on the online solution, at all sampling instants, of a finite horizon optimal control problem

of the form;

min
{
𝑉𝑛𝑝
(𝑞(𝑘 + 𝑛𝑝)) +

𝑛𝑝−1∑︁
𝑖=1
‖𝑝(𝑘 + 𝑖) − 𝜈(𝑘 + 𝑖)‖2𝑄 + ‖𝑢(𝑘 + 𝑖 − 1)‖

2
𝑅

}
(16a)

s. t. 𝑞(𝑘 + 1) = 𝐹 𝛿 (𝑞(𝑘), 0, 𝑢(𝑘)) (16b)

𝑞(𝑘 + 𝑖) ∈ X, 𝑢(𝑘 + 𝑗) ∈ U, 𝑖 = 1 . . . , 𝑛𝑝 − 1, 𝑗 = 0, . . . , 𝑛𝑐 − 1 (16c)

𝑞(𝑘 + 𝑛𝑝) ∈ X𝑛𝑝
(16d)

where: the sampled-data equivalent model is used as prediction model [27]; 𝜈(𝑘) = 𝜈(𝑘𝛿) is the sample of the reference

trajectory in (6); 𝑄 � 0 and 𝑅 � 0 are the penalizing weights; 𝑛𝑝 , 𝑛𝑐 are the prediction and control horizons; X,U

are the states and control constraints sets assumed, as usual, compact, convex and containing the origin; 𝑉𝑛𝑝
and X𝑛𝑝

represent the terminal cost and terminal constraint set respectively. Those terminal ingredients are incorporated into the

optimization problem (16) for providing closed-loop stability and convergence [36]. Instability in closed loop, when no

further constraint is included, arises due to the generally unstable zero-dynamics induced by single-rate sampling [37].

Remark III.1 In Halo-orbit station-keeping applications usually one has box constraints on the controls [11].

The nonconvex nonlinear programming (NLP) problem (16) can be recast into a polynomial optimization problem
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[21, 38] of the form

𝑉★ = max
𝑈 ∈U,𝜆∈R

𝜆 (17a)

𝑠.𝑡 𝑝0 (𝑈) − 𝜆 ≥ 0 (17b)

with 𝜆 ∈ R,𝑈 = (𝑢(𝑘), . . . 𝑢(𝑘 + 𝑛𝑝 − 1))> being the decision variable, and denoting the single-shooting prediction

of the output for 𝑖 steps by 𝐻𝑖 (𝑈);

𝑝0 (𝑈) = 𝐻1 (𝑈) + 𝐻2 (𝑈) + . . . + 𝐻𝑛𝑝
(𝑈)

𝐻1 (𝑈) = ‖𝜈(𝑘 + 1) − 𝐶𝐹 𝛿 (𝑞(𝑘), 0, 𝑢(𝑘))‖𝑄

𝐻2 (𝑈) = ‖𝜈(𝑘 + 2) − 𝐶𝐹 𝛿 (·, 0, 𝑢(𝑘 + 1)) ◦ 𝐹 𝛿 (𝑞(𝑘), 0, 𝑢(𝑘))‖𝑄
...

𝐻𝑛𝑝
(𝑈) = ‖𝜈(𝑘 + 𝑛𝑝) − 𝐶𝐹 𝛿 (·, 0, 𝑢(𝑘 + 𝑛𝑝 − 1)) ◦ · · · ◦ 𝐹 𝛿 (𝑞(𝑘), 0, 𝑢(𝑘))‖𝑄

so to guarantee, if any, convergence to a solution in finite time and the corresponding global optimality. The above

problem is a Sum-Of-Squares (SOS) polynomial minimization problem [39] subject to convex polynomial constraints,

for which one can utilize a Semi-Definite Programming (SDP) solver to reach global optimal solutions in polynomial

time. However, as noted in [21], when solving (17) via SDP solvers two issues arise: semi-definite programming

solutions to (17) are computationally demanding (depending on the degree of the sum of squares polynomial relaxations

for 𝑝0 (𝑈) − 𝜆), and the closed loop system may lack in robustness since the employed prediction model neglects both

eccentricity and SRP and for which no reference signal pre-processing is done.

In the context of tracking known limitations with nonlinear MPC are related to two main aspects: recursive feasibility

of the optimization problem that is linked to admissibility of the reference trajectory for the dynamics, and boundedness

of the closed-loop trajectories [40].

IV. Station-keeping under sampled-data model predictive control
To solve issues arising in both the recalled sampled-data approaches (i.e., nonlinear multi-rate control and standard

MPC), we propose to integrate a Multi-Rate (MR) sampled-data planner in MPC while reducing the complexity of the

optimization problem and removing terminal costs and further fictitious constraints. The new control scheme combines

nonlinear regulation under multi-rate sampling and single-rate MPC so to simplify the optimization problem associated

to the MPC and, at the same time, improving robustness of the closed loop.

With reference to Figure 1 below, we detail the proposed single-rate sampled-data quasi Halo orbit station-keeping

10



control scheme. This proposed scheme solves Problem II.1 combining an outer trajectory planner together with an

inner nonlinear MPC controller working at different sampling rates. More In detail, the trajectory is planned at all

𝑡 = 2𝑘𝛿 (the so-called planning instants), whereas the control is computed by the MPC inner controller at all 𝑡 = 𝑘𝛿 (the

sampling instants). The control is composed by themulti-rate reference governor (or planner) and the inner-loop

MPC controller. More precisely, given samples of the quasi Halo orbit reference generated by the exosystem (7c), the

MR reference governor produces a sequence of admissible position trajectories, denoted by 𝑝𝑖 (𝑘) = 𝑝(𝑘 + 𝑖), based on

a simplified model of the spacecraft under the regulation feedback (10) when neglecting the SRP; such a reference

is then fed to a simplified nonlinear MPC control problem, thus ensuring tracking, while mitigating the effect of the

unmodelled additive SRP disturbance.

ERTBP Approx. Model

SRP

CRTBP
Prediction mode

+ RK45 int

Inner-loop MPC

OCP + NLP/SDP
solver

Exo-System

Sampled-
data MR
planner 

Reg closed
loop

 MR reference planner

Simulation Model

Fig. 1 The proposed control scheme MR MPC

A. MR as a reference governor

Starting from the design in Section III.B, we consider the feedback system (3) under the control (10) computed for

𝐾 = 03×6 and 𝐷 = 03×1; namely, we get

¤𝑞(𝑡) = 𝑓 (𝑞(𝑡), 𝜔(𝑡)) + 𝐵𝑢̃𝑖 (𝑘) (18)

for 𝑡 ∈ [(𝑘 + 𝑖−1
2 𝛿, (𝑘 +

𝑖
2 )𝛿( and 𝑖 = 1, 2 and 𝑓 (𝑞, 𝜔) = 𝑓 (𝑞, 𝑇𝜉𝜔) + 𝐵𝑐(𝜔). Accordingly, the corresponding MR

sampled-data equivalent model is approximately provided by

𝑞(𝑘 + 1) = 𝐹̃ 𝛿
2 (𝑞(𝑘), 𝜔(𝑘), 𝑢̃(𝑘)) (19)
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with 𝑢̃ = (𝑢>1 𝑢
>
2 )
> ∈ R6, the map

𝐹̃ 𝛿
2 (𝑞, 𝜔, 𝑢̃) = 𝑞 +

𝛿

2
(
𝑓 𝛿 (𝑞, 𝜔) + 𝑔̃𝛿 (𝜔)𝑢̃

)

𝑓 𝛿 (𝑞, 𝜔) =
(
𝐼 + 𝛿
4
(𝐴 + 𝜕Γ

𝑞
(𝑞, 𝑇𝜉 𝑒

𝛿
2 𝑆𝜔))

)
𝐴𝑞, 𝑔̃𝛿 (𝜔) =

[
𝐵 + 𝛿

4 𝐴𝐵
𝛿
4
𝜕Γ
𝑞
(𝑞, 𝑇𝜉 𝑒

𝛿
2 𝑆𝜔)𝐵

]
Γ(𝑞, 𝜔) = −𝑀 (𝑝 + 𝑇𝜈𝜔) − 2𝑁 ( ¤𝑝 + 𝑇𝜈𝑆𝜔) − (2𝑀𝑝 + 2𝑁 ¤𝑝) (𝑒1𝑇𝜉𝜔) − 𝑀𝑝(𝑒2𝑇𝜉𝜔) − 𝑁 ¤𝑝(𝑒3𝑇𝜉𝜔)

− (1 − 𝜇) [ 𝑝 − 𝑑1
‖𝑝 − 𝑑1‖3

+ 𝑇𝜈𝜔 − 𝑑1
‖𝑇𝜈𝜔 − 𝑑1‖3

] − 𝜇[ 𝑝 − 𝑑2
‖𝑝 − 𝑑2‖3

+ 𝑇𝜈𝜔 − 𝑑2
‖𝑇𝜈𝜔 − 𝑑2‖3

] + 𝑃(𝜋(𝜔))𝑇𝜉𝜔 − 𝑇𝜈𝜔

𝑑1 =

[
−𝜇 − 𝑒4𝑇𝜉 𝜔𝜉

1−𝜇 0 0
]>
, 𝑑2 =

[
1 − 𝜇 + 𝑒4𝑇𝜉 𝜔𝜉

𝜇
0 0

]>
, 𝐴 =


03×3 𝐼3

03×3 03×3


Accordingly, station keeping is guaranteed for the discrete-time model (19) by the planned feedback law

𝑢̃(𝑞, 𝜔) =
(
𝑔̃𝛿 (𝜔)

)−1 (
𝐴𝑑 (𝑞 − 𝜋(𝜔)) + 𝜋(𝑒𝛿𝑆𝜔) − 𝑓 𝛿 (𝑞, 𝜔))

)
(20)

and 𝐴𝑑 being such that 𝜎(𝐼 + 𝛿𝐴𝑑) ⊂ S1 for all 𝛿 > 0.

Remark IV.1 It can be verified that Γ(𝑞, 𝜔) vanishes as 𝑝 → 𝑇𝜈𝜔 that is, as the satellite reaches the Halo orbit, apart

from the external perturbation. More in detail, one computes at the Halo orbit (i.e., 𝑝 = 𝑇𝜈𝜔)

Γ(𝑞, 𝜔) = −(𝑒1𝑇𝜉𝜔𝜉 ) (2𝑀𝑝 + 2𝑁 ¤𝑝) − (𝑒2𝑇𝜉𝜔𝜉 )𝑀𝑝 − (𝑒3𝑇𝜉𝜔𝜉 )𝑁 ¤𝑝 + 𝑃(𝜋(𝜔))𝑇𝜉𝜔𝜉 = Γ̄(𝑞)𝜔𝜉 .

Moreover, denoting 𝜔𝜉 =

[
𝐼2 02×2

]
𝜔, one gets ‖Γ̄(𝑞)𝜔𝜉 ‖ is bounded at the quasi Halo orbit since ‖𝜔𝜉 ‖ ≤ 𝑐, 𝑐 ∈

(0, 1].

At all planning instants 𝑡 = 𝑘𝛿, the simplified MR model (19) under the feedback (20) provides an admissible

sequence of bounded references 𝑝𝑖 (𝑘) = 𝑝(𝑘𝛿 + 𝑖 𝛿
2 ) with 𝑘 = 1, . . . , 𝑛̂𝑝 , 𝑖 = 1, 2 for the original dynamics (3) over the

prediction horizon of length 𝑛𝑝 = 2𝑛̂𝑝 and 𝑛̂𝑝 > 1. More rigorously, for 𝑖 = 1, 2, 𝑘 = 1, . . . , 𝑛̂𝑝 and 𝑞0 (𝑘) = 𝑞(𝑘𝛿) the

multi-rate planner gets the form

𝑞𝑖 (𝑘) =𝐹̃ 𝛿 (𝑞𝑖−1 (𝑘), 𝑢̃𝑖 (𝑘)) (21a)

𝑝𝑖 (𝑘) =𝐶𝑞𝑖 (𝑘) (21b)
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with the single-rate map associated to (18) given by

𝐹̃ 𝛿 (𝑞, 𝑢̃) = 𝑞 + 𝛿
(
𝑓 (𝑞, 𝜔) + 𝐵𝑢̃

)
+𝑂 (𝛿2)

Accordingly, such references can be directly fed to MPC controller for which, then, the optimization problem can be

notably simplified with respect to the one recalled in Section III.C, typically used in the literature, as the following

section details.

B. The inner-loop MPC controller

Assuming now the references computed by the planner (21), the actual single-rate control is computed via MPC

solving at all sampling instants 𝑡 = 𝑘𝛿 the modified optimization problem (16) of the form

𝑉★ = min
𝑈

{ 𝑛̂𝑝−1∑︁
ℓ=0

2∑︁
𝑖=1
‖𝑝((2𝑘 + ℓ + 𝑖)𝛿) − 𝑝𝑖 ((2𝑘 + ℓ)𝛿)‖𝑄 + ‖𝑢(2𝑘 + ℓ + 𝑖 − 1))‖𝑅

}
(22a)

s. t. 𝑞(𝑘 + 1) = 𝐹 𝛿 (𝑞(𝑘), 0, 𝑢(𝑘)) (22b)

𝑙𝑏 ≤ 𝑢(𝑘 + 𝑖 − 1) ≤ 𝑢𝑏, 𝑖 = 1, . . . , 𝑛𝑝 and 𝑛𝑝 = 2𝑛̂𝑝 . (22c)

Some comments are in order.

• The MPC problem we propose is notably simplified with respect to the one typically adopted in the literature. As

a matter of fact, the boundary conditions (16d) and the terminal penalty 𝑉𝑛𝑝
(·) are no longer needed. This is due

to the fact that the references 𝑝𝑖 (·) provide bounded and admissible trajectories for the dynamics by construction

of the multi-rate planner (19). This is specially true for 𝑅 small enough, when neglecting (22c) [41]. In this sense,

the admissible references 𝑝𝑖 (𝑘) are specifically designed to ensure better performances while simplifying the

optimization problem. The generated references depend on the quasi Halo references obtained from (7c).

• Expression (22b) represents a simplified prediction model for MPC being an approximate sampled-data equivalent

CRTBP model.

• The constraint (22c) takes into account possible saturations and physical limitations of the actuators and safety

margins on thrusts. Note that (22c) are simple algebraic convex box constraints. Consequently, polynomial

optimization reformulation of the nonlinear MPC problem above is possible replacing in (17) the constraint

13



𝑈 ∈ U, with𝑈 ∈ L = {𝑈 ∈ R3𝑛𝑝 : 𝐿 [𝑈 𝐼]> ≤ 0} where

𝐿 =



𝐼 0 . . . 0 −𝑢𝑏

𝐼 0 . . . 0 𝑙𝑏

...
...

. . .
...

...

𝐼 0 . . . 0 −𝑢𝑏

𝐼 0 . . . 0 𝑙𝑏



∈ R3𝑛𝑝×3𝑛𝑝+3 (23)

To sum up, the control scheme we propose is summarized in the algorithm below.
Algorithm 1: planning and control

Result: Solving Problem II.1: 𝑝(𝑘) → 𝜈(𝑘)

initialization ;

𝑞(𝑘) ← 𝑞(𝑡 = 𝑘𝛿), 𝑄 ← 𝑄, 𝑅 ← 𝑅, 𝑢𝑏 ← 𝑢𝑀𝐴𝑋 , 𝑙𝑏 ← 𝑢𝑀𝐼𝑁 ;

while 𝑡 ≥ 0 do

if 𝑡 = (𝑘 + 𝑗)𝛿, 𝑗 ∈ Z≥0 then

𝑘 ← 𝑘 + 𝑗 ;

(𝑝𝑖) = Planning(𝑞(𝑘), 𝑇𝜈𝜔(𝑘));

𝑢(𝑘) = SolveNMPC() ;

end

for 𝑡 = 𝑘𝛿 + 𝑖𝛿, 𝑖 = 1, 2 do

𝑢(𝑘) = SolveNMPC();

end

end

Remark IV.2 In the algorithm above, the SolveNMPC() routine is a NLP (equivalently SDP) routine that solves the

optimization problem 22. This can be any off the shelf routine. The implementation details and a brief discussion on the

computational aspects associated with this routine are deferred to the next section. The if statement in the algorithm

specifies that planning and control are carried at different sampling rates as already discussed. This is precisely why we

need to propagate the MR planner (19) and compute the admissible reference 𝑝𝑖 (𝑘) over double the prediction horizon.

The proposed control scheme solves the digital 𝐿2 station-keeping problem while addressing the limitations discussed

in Section III. It makes use of a simplified MR model to provide admissible references for a nonlinear MPC with an

improved prediction model. The corresponding advantages will be shown in the next section through simulations

depicting various realistic scenarios.
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V. Simulations and comparative discussions
A comparative study is carried out making use of Matlab/Simulink©.The proposed control scheme will be denoted

by MR MPC and compared to nonlinear MPC via polynomial optimization in [11, 21] (referred to as PolyNMPC),

nonlinear regulation and feedback linearization (FL) as proposed in [23] . For PolyNMPC, a polynomial approximation

of the CRTBP model is used for prediction deduced from Runge–Kutta (RK) numerical integrator of (3) assuming

𝐷 (𝑡) = 03×1 and 𝜉 = 04×1. Consequently the nonlinear MPC problem (22) is transformed into a polynomial optimization

problem using sum of squares (SOS), as detailed in (17). This equivalent optimization problem is then solved in a

receding horizon approach utilizing SOSTools© [42].

We assume as simulation time 𝑇 ≈ 2.7𝑑𝑎𝑦𝑠 = 𝑚𝛿 coinciding the time needed for at least two revolutions around the

orbit and 𝛿 > 0. The comparison is aimed at showing how the various controllers succeed in keeping the spacecraft on

the Halo orbit based, also, on Key Performance Indicators (KPIs) below.

Tracking Error in terms of the root-mean-square value of the spatial tracking error; namely, 𝑒𝑅𝑀𝑆 (𝑡) =√︃
1
3 (‖𝜈(𝑡) − 𝑝(𝑡)‖) and 𝑒𝑅𝑀𝑆 (𝑇) =

√︃
1
3 (‖𝜈(𝑇) − 𝑝(𝑇)‖) in non-dimensional units.

Energy Expenditure based on the L2-norm of the controls for the duration of the flight (i.e., 𝑇); i.e., 𝐸𝐸𝑇 =√︃∫ 𝑇

0 ‖𝑢(𝑡)‖2d𝑡 = 𝛿
√︃∑𝑚

𝑘=0 ‖𝑢(𝑘)‖2 with 𝑢(𝑘) = 𝑢(𝑘𝛿) and 𝑘 ≥ 0 in 𝑚/𝑠2. Additionally, the instantaneous control

norm (i.e., ‖𝑢(𝑡)‖ ) is reported as well as an indicator of the so-called velocity budget.

More in details, starting from several initial conditions (e.g. near 𝐿2, close to the quasi-Halo orbit), the proposed

MR MPC scheme is compared with different control strategies available in the literature in terms of robustness with

respect to the effect of:

• unmodelled perturbations and actuator saturations (Sections V.A-V.C) when the spacecraft starts from various

initial conditions (e.g. near 𝐿2, close to the quasi-Halo orbit) in nominal conditions with no SRP terms and

saturation on thrusts, and when assuming SRP terms and saturation of the actuators which were neglected during

the design.

• sampling (Section V.D) in presence of perturbations but no limits on the thrusts.

The computational aspects and the application of a Real Time Iteration MPC (RTI MPC) solver to the proposed control

scheme conclude the comparative study (Section V.E).

Remark V.1 The first two simulation scenarios (which are not realistic in general) are carried out for allowing the

comparison of the proposed controller with previous works in the literature reporting the same scenario. As a matter of

fact, the point 𝐿2 exists only in lower fidelity models such as the restricted three body problem. Once external forces are

included and the fidelity of the model improved, such a point may not even exist.

Remark V.2 The penalizing weighing matrices are fixed throughout the simulation scenarios as𝑄 = 𝑑𝑖𝑎𝑔{10, 10, 10, 1, 1, 1},

𝑅 = 0.1𝐼3. The small penalty on the control is chosen so that mimicking the cheap control setting one obtains, in
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Fig. 2 Comparison of control strategies. Red specifies the controlled trajectory in R3. Black the nominal
approximate halo reference, and dashed blue the MR planned reference. Plots are in non-dimensional units.
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Fig. 3 Comparison of performances of the various control strategies in the nominal unperturbed case.

nominal conditions, an almost dynamic inversion-like behaviour [41]. These values maybe widely different from, for

example, the ones reported in [21]. This is accounted for by the fact that weighing matrices cannot be used to infer the

performances achieved when different constraints, reference signal pre-processing and optimization solvers are used.

For instance, the work [21] dealt with station-keeping around 𝐿1 in an unperturbed setting using a slightly different

prediction model.

A. First comparison starting from 𝐿2 in nominal conditions

The spacecraft is assumed to start in the translunar point i.e. 𝑞(0) = (𝐿2 0 0 0 0 0)> in the rotating frame with no

SRP terms. The proposed MR MPC and the PolyMPC are set with the same penalizing weights to facilitate comparison.

The sampling period 𝛿 = 0.65hr in dimensional time (this is a reasonable sampling period for this application see Sec.

4.A.7 in [11]). Figure 2 shows the controlled trajectories in R3 in non-dimensional units under the aformentioned

controllers. The results show that all the control schemes are comparable. This is further confirmed in Figure 3, where

clearly nonlinear regulation outperforms the rest both in terms of tracking error and energy expenditure. It is worth

mentioning that the proposed scheme outperforms its Poly MPC counterpart in terms of tracking error at the cost of

higher control effort (see also Figure 4). Table 1 summarizes the main KPIs and performances of the various controllers

tested in this scenario.
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Fig. 4 Comparison of control inputs of the various control strategies in the nominal unperturbed case.

Table 1 Summary of main KPI comparisons in scenario 1 at 𝑇 = 65hr

𝑒𝑅𝑀𝑆 (𝑇) N.D 𝐸𝐸𝑇 N.D

FL 0.04 2.238
Regulation 0.002 2.29
MR MPC 0.047 1.927
PolyMPC 0.069 0.98

Fig. 5 Comparison of control strategies. Red specifies the controlled trajectory in R3. Black the nominal
approximate halo reference, and dashed blue the MR planned reference. Plots are in non-dimensional units.

B. Second comparison starting from 𝐿2 with SRP and control limits

This is a more realistic scenario in which the spacecraft starts at the translunar libration point while being subject to

the primaries perturbations, solar radiation pressure as well as assuming each thrust being able to provide a maximum

of 0.55[ND]. the saturation limit on the thrust in non-dimensional units was chosen mainly to stress-test the compared

methodologies. The sampling period is maintained at 𝛿 = 0.65hr. While emulation of the standard feedback linearization

fails with this limit on the control (Figure 5), emulation of nonlinear regulation feedback yields better results in terms of

tracking error and control effort. Intuitively, better performance is obtained when utilizing the proposed MR MPC

approach, and PolyMPC (Figure 6)) being well equipped to handle constraints. Unlike the previous case, the propose

control scheme yields the best tracking performance, even outperforming nonlinear regulation which fails to maintain

long-term station-keeping. This is achieved at the expense of a relatively higher control effort over the station-keeping

simulation period. Table 2 summarizes the main KPIs and performances of the various controllers tested in this scenario.
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Fig. 6 Comparison of performances of the various control strategies in the second scenario.

Fig. 7 Comparison of control inputs of the various control strategies in the second scenario.

Fig. 8 Comparison of control strategies. Red specifies the controlled trajectory in R3. Black the nominal
approximate halo reference, and dashed blue the MR planned reference. Plots are in non-dimensional units.

C. Third comparison starting close to the orbit with SRP and control limits

In this typically studied and more realistic scenario consistent with the literature, we start near the orbit with a

so-called orbit injection error of 300km in dimensional units and the same control limit imposed previously. While at

the end of simulation period, the nonlinear regulation seems closer to the orbit (Figure 9), yet, it is clear from Figure 8

that the proposed controller maintains the space craft closer to the Halo orbit consistently during the whole simulation

period with no jumps in ‖𝑒(𝑡)‖ value. It is also worth mentioning that in this scenario both the PolyMPC controller and

the feedback linearization approach fail to achieve station-keeping (and is the corresponding figure is thus omitted).

Table 3 reflects the previous discussion.
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Table 2 Summary of main KPI comparisons in scenario 1 at 𝑇 = 65hr

𝑒𝑅𝑀𝑆 (𝑇) N.D 𝐸𝐸𝑇 N.D

FL N/A N/A
Regulation 0.044 4.2001
MR MPC 0.0255 6.0708
PolyMPC 0.0323 5.3414
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Fig. 9 Comparison of performances of the various control strategies in the third scenario.

Fig. 10 Station-keeping under MR MPC with 𝛿 = 1.2hr. All plots are in non-dimensional units.

D. Fourth comparison on the effect of 𝛿

A major benefit for the proposed MR MPC is the robustness with respect to higher sampling intervals. In fact

Figure 10 depicts how the proposed MR MPC maintains the spacecraft close to the quasi Halo orbit when increasing the

sampling interval length to 𝛿 = 1.2hr in dimensional units (still lower than that reported in 4.A.7 in [11]), starting close

to the orbit, namely 𝑞(0) = (1.022 0 0.12 0 0.1 0)> in non-dimensional units. Indeed, in this comparison we assume no

control saturation. At this sampling rate, all other reported controllers fail to keep the spacecraft in the vicinity of the

quasi Halo orbit.

E. Computational aspects and RTI MPC

To study the real time implementation question, we opt to utilize the real time iteration model predictive control [43],

together with the multirate sampled-data planner. The simulations are carried out using ACADO’S [44] Matlab Interface.

Simulations were run on a PC running Windows 10 with an Intel i7 9𝑡ℎ generation CPU and 16 GB of RAM. For testing
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Table 3 Summary of main KPI comparisons in scenario 1 at 𝑇 = 65hr

𝑒𝑅𝑀𝑆 (𝑇) N.D 𝐸𝐸𝑇 N.D

FL N/A N/A
Regulation 0.0174 5.4
MR MPC 0.0253 6.5410
PolyMPC N/A N/A

reasons, Horizon lengths up to 40 steps were used for the 3 different simulation scenarios discussed in the previous

section. Table 4 shows the underlying Quadratic-Program (QP) solution time for a prediction horizon length of 𝑛𝑝 = 30.

This indicates that the MR MPC, with an RTI MPC solver can be implemented to solve the problem of station-keeping

in real time provided some trade off is admissible in terms of quasi Halo orbit station-keeping performance.

Table 4 Time required by the CPU to solve the QP in the RTI in Scenario 1

Average time to QP solution in 𝜇𝑠

Scenario 1 187

Scenario 2 191

Scenario 3 220 0 50 100 150
0

100

200

300

VI. Conclusions
A sampled-data controller based on multi-rate planning and nonlinear model predictive control has been proposed

for allowing a spacecraft to track a quasi Halo orbit around the 𝐿2 point in the Earth-Moon system. In particular, the

control is composed of two main components: a multi-rate trajectory planner which, based on a simplified feedback

equivalent discrete-time model, generates admissible and bounded references guiding the spacecraft to the orbit; a model

predictive controller which, based on the aforementioned trajectories and a suitably defined sampled-data prediction

model, solves at each sampling instants a constrained optimization problem. Because of the generated references, such a

problem is feasible and the closed-loop trajectories are bounded.

Simulations based on realistic scenarios highlight that the performances achieved under the proposed control scheme

are significantly improved when compared to standard digital implementations (that is through zero-order-hold) of

standard nonlinear control laws (e.g., based on regulation, feedback linearization control) and polynomial optimization

based nonlinear MPC in station-keeping of quasi Halo orbits applications. Several aspects were considered such as

eccentricity related perturbations and saturation limits on the control inputs. Key performance indicators enforce the

validity of the proposed control scheme, both in terms of orbit tracking root-mean-square error and the L2 norm of the
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accelerations required for station-keeping as a measure of energy expenditure. Furthermore, robustness to both solar

radiation pressure, as modelled by an additive periodic perturbation, and slower sampling rates is illustrated. Finally, it

results that the proposed scheme is suitable for real time digital implementation on modern hardware, even with longer

prediction horizons for the MPC than the maximum typically assumed allowable in the literature (e.g. longer than 40

time steps), through small adjustment to the online optimization solver.

Since the methodology here proposed is general in nature, an additional conclusion that can be drawn is that it can

be used, with the appropriate changes, to handle a variety of Halo and Lyapunov orbits around libration points both in

the Earth-Moon and Sun-Earth systems. Of course the results here reported are preliminary in nature albeit paving the

way for sampled-data approaches in station-keeping applications.
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