
Epistemic Reasoning About Rationality
and Bids in Auctions

Munyque Mittelmann1(B), Andreas Herzig2, and Laurent Perrussel1

1 Université de Toulouse - IRIT, Toulouse, France
{munyque.mittelmann,andreas.herzig,laurent.perrussel}@irit.fr

2 Université de Toulouse - IRIT-CNRS, Toulouse, France

Abstract. In this paper, we investigate strategic reasoning in the con-
text of auctions. More precisely, we establish an explicit link between
bidding actions and bounded rationality. To do so, we extend the Auc-
tion Description Language with an epistemic operator and an action
choice operator and use it to represent a classical auction where agents
have imperfect information about other agents’ valuations. We formalize
bounded rationality concepts in iterative protocols and show how to use
them to reason about the players’ actions. Finally, we provide a model
checking algorithm.

Keywords: Logics for multi-agent systems · Game description
language · Bounded rationality · Auction-based markets

1 Introduction

Building a General Auction Player is similar to the General Game Playing (GGP)
challenge [9], it aims at designing an agent that can participate in an auction
while discovering the rules governing it. As for games, there is a wide variety
of auction-based markets. Auctions may differ in the participants’ type (e.g.,
only buyers, both buyers and sellers, ...), the kind and amount of goods being
auctioned, the bidding protocol, and the allocation and payment rules [13].

Inspired by the Game Description Language (GDL), which is a logic program-
ming language for representing and reasoning about game rules [9], we defined a
general language to describe auction-based markets from the auctioneer perspec-
tive [15]: Auction Description Language (ADL). In this paper, we consider the
player’s perspective and our goal is to show how an agent may reason about the
rules governing an auction and also about their knowledge of other agents’ val-
uations for eliciting her bid. More precisely, we show that computing a rational
bid requires to assume that other agents are also bidding rationally. Following
[2], we understand ‘rational’ as ‘not playing dominated actions’.

This research is supported by the ANR project AGAPE ANR-18-CE23-0013 and by
the EU project TAILOR (EU Horizon 2020 program, GA No 952215).

https://doi.org/10.1007/978-3-030-75775-5_9

Our contribution is twofold. We first extend ADL with knowledge operators
from Epistemic GDL [12] and the action modality from the GDL variant pro-
posed in [21]. This extension aims at providing the ground for the design of
General Auction Players. Second, we characterize rationality along two dimen-
sions: (i) the impact of the level of higher-order knowledge about other agents
and (ii) the impact of looking-ahead beyond the next action to be executed. We
also explore the complexity of model-checking for evaluating rationality.

Related Work. To the best of our knowledge, there is no contribution that focuses
on the strategic dimension of auctions through a logical perspective. However,
numerous contributions define logical systems for representing games and repre-
senting strategic reasoning. GGP uses the Game Description Language (GDL) [9]
for representing games. The Auction Description Language (ADL) [15] extends
GDL by handling numerical variables, a key feature for representing an auction
mechanism with its allocation and payment rules.

Alternating-time Temporal Logic (ATL) [1] provides a logic-based analy-
sis of strategic decisions. Strategy Logic (SL) generalizes ATL with first-order
quantifications over strategies [4]. These approaches cannot model the internal
structures of strategies, which makes it difficult to easily design strategies aim-
ing to achieve a goal state. A logic for reasoning about composite strategies in
turn-based games is introduced in [17], where strategies are treated as programs
that are combined by PDL-like connectives. Zhang and Thielscher [22] present a
variant of GDL to describe game strategies, where strategies can be understood
as moves for a player. However, their work can only model turn-based games.

To incorporate imperfect information games, GDL has been extended to
GDL-II [18] and GDL-III [19]. GDL-II and GDL-III aim at describing the rules
of an imperfect information game, but do not provide tools for reasoning about
how a player infers information based on these rules. All these logics face decid-
ability and tractability issues: their expressive power prevents them from being
implemented realistically in an artificial agent. Jiang et al. [12] propose an epis-
temic extension of GDL (EGDL) to represent and reason about imperfect infor-
mation games. Their language allows us to represent the rules in the imperfect
information setting. A key characteristic of EGDL is that it manages the balance
between expressiveness and computational complexity of model checking (ΔP

2).
Epistemic Game Theory (EGT) considers strategic reasoning with uncertain

information and is about the interplay between knowledge, belief and rationality
[3,14]. More precisely, EGT shows how dominated strategies may be eliminated
in an iterative manner [2]. These contributions however require perfect reason-
ers, who can reason about higher-order knowledge at arbitrary depth, which is
unrealistic. In [5], the authors abandon this hypothesis but do not propose a full
logic detailing the impact of bounded rationality.

Structure of the Paper. The remainder of the paper proceeds as follows. In
Sect. 2, we define the models of E-ADL in terms of State-Transition structures.
In Sect. 3 we present the language and its semantics and illustrate our approach

by describing a Dutch auction. In Sect. 4 we show how to express bounded ratio-
nality with higher-order knowledge. In Sect. 5 we present the model-checking
algorithm. Section 6 concludes the paper.

2 Auctions as State-Transition Models

In this section, we introduce a logical framework for reasoning about auction
protocols while considering imperfect information. The framework is based on
ADL [15] and Epistemic GDL [11]. We call the framework Epistemic Auction
Description Language, denoted by E-ADL.

Definition 1. An auction signature S is a tuple (N,V,A, Φ,Y), where: (i)
N = {1, 2, · · · , n} is a nonempty finite set of agents; (ii) V ⊂ Z is a finite subset
of integer numbers representing the range of valuations, bids and payments; (iii)
A =

⋃
r∈N Ar, where each Ar consists of a nonempty finite set of actions per-

formed by agent r ∈ N and Ar ∩As = ∅ if r �= s. For convenience, we may write
ar for denoting an action in Ar; (iv) Φ = {p, q, · · · } is a finite set of atomic
propositions for specifying individual features of a state; (v) Y = {y1, y2, · · · } is
a finite set of numerical variables for specifying numerical features of a state.

We assume a total order among the agents in N, denoted by ≺, where r ≺ i
means that agent r precedes agent i in ≺; it will be used to break ties in winner
determination. Throughout the rest of the paper, we fix an auction signature
S and all concepts will be based on this signature, except if stated otherwise.
We adopt a semantics based on state-transition models. This is more suitable
for describing the dynamics than stable models that were initially considered for
GDL and GGP [9].

Definition 2. A state transition ST-model M is a tuple (W, I, T, {Rr}r∈N,
U, πΦ, πY), where: (i) W is a finite nonempty set of states; (ii) I ⊆ W is a
set of initial states; (iii) T ⊆ W \ I is a set of terminal states; (iv) Rr ⊆ W × W
is an equivalence relation for agent r, indicating the states that are indistin-
guishable for r; (v) U : W × (

∏
r∈N Ar) → W is an update function, specifying

the transitions for each combination of joint actions; (vi) πΦ : W → 2Φ is the
valuation function for the state propositions; and (vii) πY : W × Y → V is the
valuation function for the numerical variables.

For a group of agents G ∈ 2N \{∅}, we write dG ∈ ∏
r∈G Ar to denote a joint

action of the agents in G. We denote by dr the individual action for agent r ∈ G
in the joint action dG. When G = N then we omit N and simply write d instead
of dN. Let Rr(w) denote the set of all states that agent r cannot distinguish from
w, i.e., Rr(w) = {u ∈ W : wRru}.

For every w ∈ W and d ∈ ∏
r∈N Ar, we call (w, d) a move. Given a group of

agents G ∈ 2N \ {∅}, we write (w, 〈dG, d-G〉) instead of (w, d) when we want to
talk about G’s part in (w, d), where d-G ∈ ∏

s∈N\G As denotes the actions of all
the agents except those in G in the joint action d. Our notion of move resembles
the turn-based definition proposed in [21] and [22].

Definition 3. Two moves (w, d) and (u, e) are equivalent for agent r, written
(w, d) ≈r (u, e), iff wRru and dr = er.

Clearly relation ≈r is reflexive, transitive and symmetric. Differently from
standard GDL, our semantics is based on moves instead of paths. This allows
the agent to reason about the effects of actions without exploring all ways the
game could proceed (i.e., all the reachable states in each complete path where
she takes this action). In E-ADL, we define the action execution modality in
games with synchronous moves. The idea of move-based semantics and action
modalities stems from [21]. Their approach is restricted to turn-based games,
where only one action can be performed at a given state.

3 Epistemic Auction Description Language

The Epistemic Auction Description Language (E-ADL) is a framework to allow
epistemic reasoning for auction players. First, we introduce the syntax.

3.1 Syntax

Let z ∈ Lz be a numerical term defined as follows: z ::= t | add(z, z) | sub(z, z) |
min(z, z) | max(z, z) | times(z, z) | y, where t ∈ V, y ∈ Y . The meaning of
numerical terms is the natural one; for instance, the term min(z1, z2) specifies
the minimum value between z1 and z2. Finally, y denotes the value of the variable
y ∈ Y in the current state.

A formula in E-ADL, denoted ϕ ∈ LE-ADL, is defined by the following BNF:

ϕ ::= p | z ⊗ z | r ≺ r | initial | terminal | does(ar) | ¬ϕ | ϕ ∧ ϕ | Krϕ | [dG]ϕ

where p ∈ Φ, r ∈ N, ⊗ ∈ {>, <,=}, ar ∈ A, G ∈ 2N \ {∅}, dG ∈ ∏
r∈G Ar

and z ∈ Lz. Other connectives ∨,→,↔,� and ⊥ are defined by ¬ and ∧ in
the standard way. The comparison operators ≤, ≥ and �= are defined by ∨, >,
< and =. The extension of the operators >, < and = and numerical terms
max(z1, z2),min(z1, z2), add(z1, z2) to multiple arguments is straightforward.
The formula r1 ≺ r2 denotes the tie-breaking priority of r1 over r2.

Intuitively, initial and terminal specify the initial and the terminal states,
respectively; does(ar) asserts that agent r takes action ar at the current move.
The epistemic operator Kr is taken from the Epistemic Logic [7]. The formula
Krϕ is read as “agent r knows that ϕ”. The action execution operator comes from
the GDL variant with action modalities [21] and the formula [dG]ϕ means that
if joint action dG is executed, ϕ will be true next. The abbreviation does(dG)
specifies that each agent in G performs her respective action in dG, that is,
does(dG) def=

∧
r∈G does(dr). As in [21], we use the action modality to define the

temporal operator ©:

©ϕ =def

∨
d∈∏

r∈N Ar

(does(d) ∧ [d]ϕ)

The formula ©ϕ reads “ϕ will be true next”. We also use the following
abbreviation from Epistemic Logic: K̂rϕ =def ¬Kr¬ϕ where K̂rϕ represents
that “ϕ is compatible with agent r’s knowledge”. Given j > 0 and G ∈ 2N \ {∅},
we write σG = (

∏
r∈G Ar)j for a sequence of joint actions for G. The i-th joint

action in σG is noted σG
i . Finally, define [σG]j ϕ, for |σG| = j by induction of j:

[σG]1 ϕ
def= [σG]ϕ

[σG]j+1 ϕ
def= [σG][σG

j]ϕ

The formula [σG]j ϕ means that if the group G followed the sequence of joint
actions described by σG for the next j stages, then ϕ would hold.

3.2 Semantics

The semantics for E-ADL is given in two steps. First, function f interprets the
meaning of numerical terms z ∈ Lz. Next, a formula ϕ ∈ LE-ADL is interpreted
with respect to a move. In Definition 4, we specify function f to evaluate the
meaning of any z ∈ Lz in a move.

Definition 4. Let M be an ST-Model. Define Function f : W × (
∏

r∈N Ar) ×
Lz → Z, assigning any w ∈ W, d ∈ ∏

r∈N Ar, and z ∈ Lz to a number in Z:
If z is on the form add(z′, z′′), sub(z′, z′′), min(z′, z′′), max(z′, z′′) or

times(z′, z′′), then f(w, d, z) is defined through the application of the corre-
sponding mathematical operators and functions over f(w, d, z′) and f(w, d, z′′).
Otherwise, f(w, d, z) = z if z ∈ V and f(w, d, z) = πY (w, z) if z ∈ Y .

Definition 5. Let M be an ST-Model. Given a move (w, d), where w ∈ W and
d ∈ ∏

r∈N Ar, and a formula ϕ ∈ LADL, we say that ϕ is true in the move (w, d)
under M , denoted by M |=(w,d) ϕ, according to the following rules:

M |=(w,d) p iff p ∈ πΦ(w)
M |=(w,d) ¬ϕ iff M �|=(w,d) ϕ
M |=(w,d) ϕ1 ∧ ϕ2 iff M |=(w,d) ϕ1 and M |=(w,d) ϕ2

M |=(w,d) initial iff w ∈ I
M |=(w,d) terminal iff w ∈ T
M |=(w,d) r1 ≺ r2 iff r1 ≺ r2

M |=(w,d) does(ar) iff dr = ar

M |=(w,d) z1 ⊗ z2 iff f(w, d, z1) ⊗ f(w, d, z2),where ⊗ ∈ {>, <,=}
M |=(w,d) Krϕ iff for every u ∈ W and e ∈ ∏

s∈N As, if (w, d) ≈r (u, e),
then M |=(u,e) ϕ

M |=(w,d) [bG]ϕ iff M |=(U(w,e),c) ϕ, where e = 〈bG, d−G〉, for every
c ∈ ∏

r∈N Ar

A formula ϕ is globally true in an ST-Model M, written M |= ϕ, if M |=(w,d) ϕ
for all w ∈ W and d ∈ ∏

r∈N Ar. Finally, let Σ be a set of formulas in LE-ADL,
then M is a model of Σ if M |= ϕ for all ϕ ∈ Σ.

Each Kr is a normal modal operator. It satisfies that if all r-accessible worlds
agree on ϕ then r knows either ϕ or ¬ϕ. If ϕ is true then r knows that ϕ.

Proposition 1. Let M be an ST-Model, r ∈ N be an agent and ϕ ∈ LE-ADL

be a formula, then M |= ϕ → Krϕ if and only if for all w, u ∈ W and all
d, e ∈ ∏

r∈N Ar such that (w, d) ≈r (u, e), M |=(w,d) ϕ iff M |=(u,e) ϕ.

It follows from the equivalence relation ≈r that agent r knows the actions she
performs. This is similar to the uniform strategies in Alternating-time Temporal
Epistemic Logic [10] and Dynamic Epistemic Logic [20].

Proposition 2. For any agent r ∈ N, action ar ∈ Ar, formula ϕ ∈ LE-ADL,
number of steps j > 0, group of agents G ∈ 2N \ {∅} and σr ∈ (

∏
r∈G Ar)j:

1. M |= does(ar) → Krdoes(ar)
2. If M |= [σG]j ϕ then M |= Kr[σG]j ϕ
3. If M |= [σG]jKrϕ then M |= Kr[σG]jϕ

Let us now illustrate how to represent an auction-based protocol in E-ADL,
namely, a Dutch auction. First, we show the syntactical representation through
E-ADL-formulas. Later, we address the semantical representation.

3.3 Running Example: Dutch Auction

In a Dutch auction, the auctioneer starts by proposing a high asking price. The
price is decreased until it reaches a predefined reserve price or some bidder shows
interest at purchasing the good. The auction then ends and the object is sold at
the given price to the bidder who signaled her interest [13].

Let Sdut be an auction signature and starting, reserve ∈ N, dec, n ∈ N \
{0} be constant values. The constants starting, reserve, dec, n represent the
starting and reserve prices, the decrement in each round and the number
of agents, respectively. The auction signature is defined as follows: Sdut =
(Ndut,Vdut,Adut, Φdut,Ydut), where Ndut = {1, . . . , n}, Vdut = {0, . . . , starting},
Adut = {bidr,waitr : r ∈ Ndut}, Φdut = {winnerr : r ∈ N} and Ydut =
{paymentr, ϑr : r ∈ N}. The numerical variables paymentr and ϑr specify the
payment and the private valuation for an agent r.

Syntactical Representation. The rules of the Dutch auction are formulated
by E-ADL-formulas as shown in Fig. 1.

In an initial state, the price starts at starting and there is no winner (Rule
1). If an agent is a winner, she pays the current price. Otherwise, she does not
pay anything (Rules 2 and 3). The terminal state is reached when it is not
possible to decrease the price anymore or there is a winner (Rule 4). While not
in the terminal state, the price either decreases if no agent bids or the price is
settled if some agent accepted to purchase the good (Rules 5 and 6). If only one
agent accepts, she is marked as the winner. In case two or more agents bid, the
winner is assigned according to the tie-breaking rule. Rules 7 and 8 ensure no
proposition or numerical variable change its value after a terminal state. Finally,
Rule 9 specifies that each agent is aware of how much she valuates the good. Let
Σdut be the set of Rules 1–9.

1. initial price = starting ∧ r∈Ndut
¬winnerr

2. winnerr paymentr = price, for each r ∈ Ndut

3. ¬winnerr paymentr = 0, for each r ∈ Ndut

4. terminal sub(price, dec) < reserve ∨ ∨
r∈Ndut

winnerr

5. ¬terminal ∧ price = x ∧ ∧
r∈Ndut

does(waitr) ©(price = sub(price, dec) ∧∧
r∈Ndut

¬winnerr), for each x ∈ Vdut

6. ¬terminal ∧ price = x ∧ does(bidr) ∧ ∧
s�=r,s∈Ndut

(¬does(bids) ∨ r ≺ s)
©(winnerr ∧ ∧

s�=r,s∈Ndut
¬winners), for each x ∈ Vdut and each r ∈ Ndut

7. terminal ∧ y = x y = x, for each y ∈ Ydut and each x ∈ Vdut

8. terminal ∧ win
©

©win, for each win ∈ {winnerr, ¬winnerr : r ∈ Ndut}
9. Kr(ϑr = x) Kr (ϑr = x), for each x Vdut and r Ndut

Fig. 1. Dutch auction represented by Σdut

Model Representation. Let us address the model representation of the
Dutch auction. Let us define Mdut as the class of models Mdut defined for
a signature Sdut and the constants starting, reserve, dec and n. Each Mdut =
(Wdut, Idut,Tdut, {Rr,dut}r∈N,Udut, πΦ,dut, πY,dut) is defined as follows:

– Wdut = {〈pr,buyer, val1, . . . , valn〉 : 0 ≤ pr ≤ starting & buyer ∈ Ndut ∪
{none} & 0 ≤ valr ≤ starting for each r ∈ Ndut};

– Idut = {〈starting, none, val1, . . . , valn〉 : 0 ≤ valr ≤ starting for each r ∈ Ndut};
– Tdut = {〈pr,buyer, val1, . . . , valn〉 : 0 ≤ pr ≤ starting & buyer ∈ Ndut &

0 ≤ valr ≤ starting for each r ∈ Ndut}∪{〈pr, buyer, val1, . . . , valn〉 : pr−dec <
reserve & buyer ∈ Ndut ∪ {none} & 0 ≤ valr ≤ starting for each r ∈ Ndut};

– For each agent r ∈ Ndut and for any two states w = 〈pr,buyer, val1, . . . , valn〉
and u = 〈pr′,buyer′, val′1, . . . , val′n〉 in Wdut, the relation Rr,dut is defined as
follows: wRr,dutu iff (i) pr = pr′; (ii) buyer = buyer′; and (iii) valr = val′r.

– For all states w = 〈pr,buyer, val1, . . . , valn〉 and all joint actions d =
(ar)r∈Ndut , such that w ∈ Wdut and ar ∈ {bidr, waitr}, we define Udut as
follows:

• If w �∈ Tdut, then Udut(w, d) = 〈pr′, buyer′, val1, . . . , valn〉, such that the
components pr′ and buyer′ are defined as follows: (i) pr′ = pr − dec
if ar = waitr, for all r ∈ Ndut; otherwise pr′ = pr; (ii) buyer′ = r if
ar = bidr for some r ∈ N and for all s ∈ Ndut such that s �= r, either
as = waits or r ≺ s; otherwise, buyer′ = none;

• Otherwise, Udut(w, d) = w.
– Finally, for each state w = 〈pr,buyer, val1, . . . , valn〉, such that w ∈ Wdut, let

πΦ,dut(w) = {winnerr : buyer = r & r ∈ Ndut}; πY,dut(w,price) = pr. For
each agent r ∈ Ndut, let πY,dut(w, ϑr) = valr and πY,dut(w,paymentr) = pr
if buyer = r. Otherwise, πY,dut(w,paymentr) = 0.

Let us assume a model Mdut ∈ Mdut and Σdut for some Sdut and the con-
stants starting, reserve ∈ N, dec, n ∈ N \ {0}.

Proposition 3. Mdut is an ST-Model and Mdut |= Σdut, i.e., Mdut is a model
of Σdut.

That is, Mdut is a sound representation of Σdut. Notice that as Mdut is not
the unique model for Σdut, thereby, the completeness does not hold. It follows
from Proposition 1 and 3 that each agent knows the auction rules denoted by
Σdut, that is, Mdut |= ∧

r∈N(KrΣdut). In the next section, we define rationality
in E-ADL.

4 Rationality in Auctions

To characterize rationality of auction players, we assume {ϑr, paymentr : r ∈
N} ⊆ Y and {winnerr : r ∈ N} ⊆ Φ, where ϑr, paymentr and winnerr specify
the agents valuation, payment and whether she won the auction, resp. Let ut ∈
V, we denote whether the utility of agent r ∈ N is equal to ut in a single good
and unit auction according to the truth value of the following formula:

utilityr = ut
def= (ut = sub(ϑr, paymentr)∧ winnerr) ∨

(ut = −paymentr ∧ ¬winnerr)

Note that we can extend the notion of utility to multiple units and goods by
including numerical variables representing the agents’ allocations and their val-
uations for such allocations. In this work, we focus on epistemic reasoning about
action choice and rationality of auction players. For a discussion on expressivity
and hierarchy of valuations functions, the reader may refer to Feige et al. [8].

Similar to the strong strategy dominance (see [14]), we say an action ar of
an agent r is a strongly dominated action if and only if, there exists another
action br of r such that, for all actions a−r of the other agents, playing br while
others play a−r leads to a better utility than playing ar while others play a−r.
In E-ADL, the agents’ utility is captured in a move of a model and the action
choice operator allows us to compare what would have happened if a group of
agents took a given joint action.

4.1 Rationality

We adapt the weak rationality formalization from [14] to E-ADL formulas. Dif-
ferent from his approach, we consider levels of rationality instead of common
knowledge. Our notion of k-order rationality is based on [6]: an agent is k-order
rational if she is weakly rational and knows all agents are (k − 1)-order rational.

GDL-based languages explicit the stages of a game execution through paths
(or runs). The game starts from an initial state and the succeeding states are
defined according to the agents’ joint actions. Since GDL agents choose “on-
the-fly strategies” during the game, the players should be able to evaluate the
current state of the game and to decide which action they will execute.

Adopting these features from GDL in E-ADL allows us to explicitly model
information feedback, which is a key feature in the design of iterative auctions
[16]. For instance, in E-ADL, we can describe auctions where the agents are
assigned to allocations and payments at any stage, which may be different from

their final assignments in the terminal state. For this reason, instead of defining
utilities as a function to strategy profiles as in ATL [1], we model the agents’
utility as being dependent on the current state of the auction.

We refrase the rationality notions from [6,14] by, at first, considering k-
order of knowledge and, second, by taking into account state-based utilities and
exploring bounded sequences of actions. A rational agent plays according to
her utility after performing an action. When reasoning about iterative auctions,
the agent considers her utility after playing according to a sequence of j actions.
Since most auction-based markets are finite (in the sense that the auction finishes
eventually), it is reasonable to assume the agents only need to include in their
reasoning which actions may occur in the next j steps. Given a fixed number of
steps j > 0, we inductively define that an agent is k-order rational, for k ≤ j.
The base case is that any agent is 0-order rational, that is, Rat(r, 0, j) def= �. For
all k > 0, we define:

Rat(r, k + 1, j) def= WR(r, j) ∧ Kr

(∧
s∈N

Rat(s, k, j)
)

That is, an agent is (k + 1)-order rational if she is weakly rational when looking
j stages ahead and knows every other agent is k rational. Weak rationality is
defined by:

WR(r, j) def=
∧

ar∈Ar

(
does(ar) →

∨
ρr∈(Ar)j−1

WRAction(r, (ar, ρr), j)
)

where

WRAction(r, σr, j) =def

∧
χr∈(Ar)j

(∨
σ-r∈(

∏
s�=r As)j

(
K̂rdoes(σ-r

1)∧

∨
ut,ut′∈V

([χr, σ-r]j utilityr = ut′ ∧ [σr, σ-r]j utilityr = ut ∧ ut′ ≤ ut)
))

An agent ar is weakly rational when reasoning j stages ahead if when she per-
forms an action ar, there exists a sequence of j actions starting by ar that is
weakly rational for her to follow over j stages. Finally, it is weakly rational for
agent r to follow a sequence of actions σr for j steps, noted WRAction(r, σr, j),
if for every other sequence of actions χr there exists a sequence of joint actions
σ-r that r considers possible to be executed such that her utility after following
σr for j steps is at least as good as her utility after following χr.

Notice that if j is large enough to reach terminal states, the state-based
utilities represent strategy-based utility functions. Our definition of rationality
requires to assume that all agents are rational: as soon as one is known to be
non-rational, it is no longer possible to be k-order rational, for k > 1. This
requirement entails that looking ahead without considering knowledge leads to
consider all actions as rational:

Proposition 4. For every ST-Model M, state w ∈ W, joint action d ∈∏
r∈N Ar, agent r ∈ N and j > 0, it holds that M |=(w,d) does(dr) ∧ Rat(r, 0, j).

Next, considering higher-order knowledge enables us to eliminate strongly
dominated actions.

Theorem 1. For any ST-Model M, state w ∈ W, joint action d ∈ ∏
r∈N Ar,

k > 0, j > 0, agent r ∈ N and action ar ∈ Ar, if M |=(w,d) does(ar)∧Rat(r, k, j)
then M |=(w,d) does(ar) ∧ Rat(r, k − 1, j).

Proof. Assume M |=(w,d) does(ar) ∧ Rat(r, k, j). Thus, M |=(w,d) does(ar) ∧
WR(r, j)∧Kr(

∧
s∈N Rat(s, k−1, j)). Since Rr is reflexive, it follows that M |=(w,d)

does(ar) ∧ Rat(r, k − 1, j).

Note that increasing j may not enable the elimination of actions. The larger
j, the more stages will be considered. Ideally, j should be large enough to reach
terminal states. However, termination may not be ensured in auction protocols
and real world players usually have time restrictions to decide their actions.

4.2 Example: Rationality on the Dutch Auction

Let us consider the Dutch auction from Sect. 3.3. Consider a specific instance
Mdut in Mdut, such that there are only two players r and s whose valuation
for the good being auctioned is 7 and 4, respectively. The auctioneer starts
by proposing the price 10 and in each round the price is decreased by 1. For-
mally, Ndut = {r, s},Vdut = {0, . . . , 10},Adut = {bidr, waitr, bids, waits}, Φdut =
{winnerr, winners} and Ydut = {paymentr, ϑr, payments, ϑs}. Let Mdut be the
model defined by the signature Sdut = (Ndut, Vdut,Adut, Φdut, Ydut) and the con-
stants starting = 10, dec = 1, reserve = 0 and n = 2. We consider the initial state
w0 ∈ I, such that πY(w0, ϑr) = 7 and πY(w0, ϑs) = 4.

Fig. 2. The utilities agents r and s consider possible to obtain when they are 1st-order
rational

Due to the starting price and the decrement, the auction is ensured to end
after 10 stages. We therefore focus on the case j = 10. If the auction reaches

a terminal state before 10 stages, the update function ensures a loop in the
terminal state. Since the auction ends at the first bid, we write bidAfter(r, m)
as the sequence of actions σr, such that σr

i = waitr for i < m ≤ j and σr
i = bidr

for m ≤ i ≤ j. The sequence is read “r bids after m steps”. Let onlywait(r) be
the sequence of j actions waitr. We use a similar notation for expressing agent
s’s sequence of actions. Let d be a joint action, we will examine which sequences
of actions are rational for each agent to follow. We assume the Dutch auction
protocol Σdut and the tie-breaking ordering are common knowledge among the
agents in Ndut.

If the agents are 0-order rational, that is, if Mdut |=(w0,d) Rat(r, 0, j) ∧
Rat(s, 0, j), then both agents consider possible that any sequence of joint
actions will be taken. If we now consider 1st-order rationality for r, that is
Mdut |=(w0,d) Rat(r, 1, j), then r is not going to follow any sequence of actions
that are strongly dominated in j steps. The weakly rational sequences of actions
for r are those where she waits until the price is below her private valua-
tion (e.g., bidAfter(r, 4),bidAfter(r, 5), and so on). The sequence of actions
onlywait(r) is not rational for r. The weakly rational actions for agent s when
Mdut |=(w0,d) Rat(s, 1, j) are defined similarly. Figure 2 illustrates the utilities
each agent considers possible to achieve when playing a weakly rational sequence
of actions.

Fig. 3. The utilities agents r and s consider possible to obtain when they are 7th-order
rational and Mdut |= (2 ≤ ϑs ≤ starting) ∧ (2 ≤ ϑr ≤ starting)

For k > 1, which actions a k-order rational agent considers possible her oppo-
nents will take depends on her knowledge about their valuations. For instance, let
us consider the case where it is common knowledge that (2 ≤ ϑs ≤ starting)∧(2 ≤
ϑr ≤ starting), i.e., we have Mdut |= (2 ≤ ϑs ≤ starting)∧ (2 ≤ ϑr ≤ starting). By
Proposition 1, both agents then know their opponent has a valuation between
2 and the starting price. If the agent s is 2nd-order rational, she will know the
sequence of actions onlywait(r) is not weakly rational for r. Due to the tie-
breaking rule, if both agents bid at the same stage, agent r wins. Thus, agent s

cannot win by waiting for the price to reach zero and it is not weakly rational
to perform bidAfter(s, 10). If r is 3rd-order rational, she knows that s knows
onlywait(r) is not rational for her and consequently, that it cannot be the case
that s will bidAfter(s, 10). If the agents are 4th-order rational, they will not con-
sider possible that the good is not sold before the price be zero. Thus, a similar
reasoning will happen due tie-breaking when the price is 1. Finally, Fig. 3 illus-
trates the utilities each agent considers possible when she is 7th-order rational.
Since agents are uncertain about which value between 2 and starting represents
the valuation of their opponents, raising the order of rationality beyond 7 would
not modify the actions they consider possible to be taken by their opponent.

5 Model Checking

Now we examine the upper bound of the complexity of deciding whether an E-
ADL formula is true with respect to a model and a move. To prove this bound, we
provide a model-checking algorithm and analyze its complexity. Let ϕ ∈ LE-ADL

be a formula and M = (W, I,T, {Rr}r∈N, U, πΦ, πY) be an ST-Model over S. We
say that ψ is a subformula of ϕ if either (i) ψ = ϕ; (ii) ϕ is of the form ¬φ, Krφ
or [dG]φ and ψ is a subformula of φ; or (iii) ϕ is of the form φ ∧ φ′ and ψ is a
subformula of either φ or φ′. Denote Sub(ϕ) as the set of all subformulas of ϕ.

Algorithm 1. modelCheck(M, w, d, ϕ)
Input: an ST-model M = (W, I, T, {Rr}r∈N, U, πΦ, πY), a state w of W, a joint

action d ∈ ∏
r∈N Ar and a formula ϕ ∈ LE-ADL.

Output: true if M |=(w,d) ϕ, and false otherwise

1: S ← Sub(ϕ) ordered by ascending length
2: Let isT rue[1, · · · , |ϕ|] be a boolean array initiated with true values
3: for i ← 1 to |ϕ| do
4: φ ← S[i]
5: switch the formula type of φ do
6: case φ is of the form φ′ ∧ φ′′

7: isT rue[i] ← isT rue[getIndex(S, φ′)] ∧ isT rue[getIndex(S, φ′′)]

8: case φ is of the form ¬φ′

9: isT rue[i] ← ¬isT rue[getIndex(S, φ′)]

10: case φ is atomic
11: isT rue[i] ← M |=(w,d) φ

12: case φ is of the form [bG]φ′

13: eG ← 〈bG, d-G〉
14: for each c ∈ ∏

r∈N Ar do
15: isT rue[i] ← isT rue[i] ∧ modelCheck(M, U(w, e), c, φ′)

16: case φ is of the form Krφ
′

17: for each u ∈ Rr(w) and each e ∈ ∏
r∈N Ar with er = dr do

18: isT rue[i] ← isT rue[i] ∧ modelCheck(M, u, e, φ′)

19: return isT rue[|ϕ|]

Theorem 2. The following problem is in O(|W| × |A|m), where m = |N| × |ϕ|:
Given an ST-Model M, a state w ∈ W, a joint action d ∈ ∏

r∈N Ar and a
formula ϕ ∈ LE-ADL, determine whether M |=(w,d) ϕ or not.

Proof. Algorithm 1, named modelCheck, works in the following way: first it gets
all subformulas of ϕ and orders them in a vector S by ascending length. Thus,
S(|ϕ|) = ϕ, i.e., the position |ϕ| in S corresponds to the formula ϕ itself, and if
φi is a subformula of φj then i < j. An induction on S labels each subformula
φi depending on whether or not φi is true in M at the move (w, d). If φi does
not have any subformula, its truth value is obtained directly from the model.
Since S is ordered by formulas length, if φi is either of the form φ′ ∧ φ′′ or ¬φ′

the algorithm labels φi according to the label assigned to φ′ and/or φ′′. If φi

is of the form [bG]φ′ then its label is recursively defined according to φ′ truth
value in the updated state given the joint action 〈bG, d-G〉, for any joint action
to be taken in the next move. Since we compare with every joint action, this is
done in an exponential number of steps, based on the size of the set of agents
(i.e., according to |A|n, where n = |N|). Finally, the case where φi is in the form
Krφ

′ is recursively defined according to the truth value of φ′ in all moves that
are equivalent to (w, d). Similar to the previous case, since we compare with all
possible moves and all states in Rr(w) ⊆ W, this step is done in an exponential
number of steps (i.e., according to |W| × |A|n, where n = |N|). As Algorithm
modelCheck visits each subformula at most once, and the number of subformulas
is not greater than the size of ϕ, the algorithm can clearly be implemented in
O(|W| × |A|m), where m = |N| × |ϕ|.

It follows that checking agent rationality is exponential in the quantity of
agents, the order of rationality and how many rounds are considered.

Corollary 1. Given an ST-model M, a state w ∈ W, a joint action d ∈∏
r∈N Ar, an agent r, j > 0 and k > 0, the problem of checking whether

M |=(w,d) Rat(r, k + 1, j) is in O(|W| × |A|nkj), where n = |N|.

6 Conclusion

In this paper, we present Epistemic Auction Description Language (E-ADL),
a language to allow reasoning about knowledge and action choice in auctions.
E-ADL extends ADL with epistemic operators and action modalities. Our goal
is to provide the ground for the design of General Auction Players and the char-
acterization of their rational behavior. As in the GGP competition, real world
players may have time restrictions to decide their actions. For those scenarios,
we explore bounded rationality in relation to the level of higher-order knowledge
about other agents and bounded looking-ahead beyond the next state. For future
work, we intend to investigate the interplay between agents’ bounded rationality
and the auctioneer revenue and to generalize the definitions to combinatorial
auctions.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM (JACM) 49(5), 672–713 (2002)

2. Aumann, R.: Backward induction and common knowledge of rationality. Games
Econ. Behav. 8, 6–19 (1995)

3. Bonanno, G.: Epistemic foundations of game theory. In: van Ditmarsch, H.,
Halpern, J.Y., van der Hoek, W., Kooi, B. (eds.) Handbook of Logics for Knowledge
and Belief, chap. 9, pp. 411–450. College Publications (2015)

4. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6),
677–693 (2010)

5. Chen, J., Micali, S.: Leveraging possibilistic beliefs in unrestricted combinatorial
auctions. Games 7(32), 83–101 (2016)

6. Chen, J., Micali, S., Pass, R.: Tight revenue bounds with possibilistic beliefs and
level-k rationality. Econometrica 83(4), 1619–1639 (2015)

7. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (2003)

8. Feige, U., Feldman, M., Immorlica, N., Izsak, R., Lucier, B., Syrgkanis, V.: A
unifying hierarchy of valuations with complements and substitutes. In: Proceedings
of AAAI 2015, pp. 872–878. AAAI Press (2015)

9. Genesereth, M., Thielscher, M.: General Game Playing. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, San
Rafael (2014)

10. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta
Informaticae 63(2–3), 185–219 (2004)

11. Jiang, G., Perrussel, L., Zhang, D.: On axiomatization of epistemic GDL. In: Bal-
tag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 598–613.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8 41

12. Jiang, G., Zhang, D., Perrussel, L., Zhang, H.: Epistemic GDL: a logic for repre-
senting and reasoning about imperfect information games. In: Procedings of IJCAI-
2016 (2016)

13. Krishna, V.: Auction Theory. Academic Press, San Diego (2009)
14. Lorini, E.: A minimal logic for interactive epistemology. Synthese 193(3), 725–755

(2015). https://doi.org/10.1007/s11229-015-0960-5
15. Mittelmann, M., Perrussel, L.: Auction description language (ADL): a general

framework for representing auction-based markets. In: ECAI 2020. IOS Press, San-
tiago de Compostela (2020)

16. Parkes, D.C.: Iterative Combinatorial Auctions. Combinatorial Auctions. MIT
Press, Cambridge (2006). https://doi.org/10.7551/mitpress/9780262033428.003.
0003

17. Ramanujam, R., Simon, S.: Dynamic logic on games with structured strategies. In:
Proceedings of KR-2008, pp. 49–58. AAAI Press (2008)

18. Thielscher, M.: A general game description language for incomplete information
games. In: Proceedings of AAAI 2010, pp. 994–999 (2010)

19. Thielscher, M.: GDL-III: a description language for epistemic general game playing.
In: Proceedings of IJCAI-2017, pp. 1276–1282 (2017)

20. Van Benthem, J.: Games in dynamic-epistemic logic. Bull. Econ. Res. 53(4), 219–
248 (2001). https://doi.org/10.1111/1467-8586.00133

21. Zhang, D., Thielscher, M.: A logic for reasoning about game strategies. In: Pro-
ceedings of AAAI 2015, pp. 1671–1677. AAAI Press (2015)

22. Zhang, D., Thielscher, M.: Representing and reasoning about game strategies. J.
Philos. Logic 44(2), 203–236 (2014). https://doi.org/10.1007/s10992-014-9334-6

